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Abstract: This work deals with circuit modeling of noise mode conversion due to system asymmetry 
in a three-phase motor drive system. In fact, it is well-known that in case of system asymmetry (e.g., 
slightly asymmetrical LC filter parameters), differential-mode noise can convert into common-mode 
noise, resulting in increased level of conducted electromagnetic interference. This phenomenon has 
been observed with measurements and reported in previous works, but a clear and rigorous 
analytical description is still a challenging point. The main novelty proposed in the paper is a 
rigorous analytical description of differential-to-common-mode noise conversion based on the 
Clarke transformation and the eigenvalue analysis. In particular, the magnitude and the frequency 
location of the differential-mode resonances injected into the common-mode circuit are derived in 
closed form. Moreover, since system asymmetry is usually uncontrolled (e.g., component tolerance 
and parasitic elements), a statistical analysis is also presented by treating the parameters of the LC 
filter as random variables. Thus, a second contribution proposed in the paper is the analytical 
derivation in closed form of the probability density function, the mean value, and the standard 
deviation of the random frequency location of the resonance peaks injected into the common-mode 
circuit. The importance of the analytical results derived in the paper is two-fold. First, a deep 
theoretical understanding of the phenomenon in terms of circuit theory concepts is achieved. 
Second, the impact of differential-to-common-mode noise conversion is described in quantitative 
terms. Thus, the obtained analytical results can be used to predict or explain the noise conversion 
impact on the frequency-domain measurements of common-mode currents. Theoretical derivations 
are validated through a time-domain Simulink implementation of a three-phase motor drive system, 
and a frequency-domain analysis through the discrete Fourier transform. 

Keywords: noise mode conversion; EMI modeling; common-mode current analysis; asymmetrical 
three-phase systems; statistical analysis 

 

1. Introduction 

Technical literature concerning three-phase motor drive systems is very wide and rich in 
contributions investigating several aspects related to that kind of systems. A first set of contributions 
is related to functional issues such as, for example, the control strategies for three-phase inverters 
(e.g., [1]). A second set of contributions is related to circuit modeling and measurement techniques of 
conducted electromagnetic interference (EMI) [2–12]. This point is crucial in modern power systems 
due to the widespread and pervasive use of power electronics. EMI modeling, indeed, is essential for 
both analysis and EMI mitigation techniques. 
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As far as the EMI issue is considered, several approaches have been used to model the high-
frequency behavior of power converters. Time-domain and frequency-domain approaches have both 
several disadvantages, such as long computational time and system oversimplification, respectively. 
Such drawbacks are potentially overcome by a further approach consisting in the behavioral 
modeling of power converters, based on the extraction of Thevenin or Norton equivalents from EMI 
measurements [6]. 

In all the approaches mentioned above, conducted EMI are modeled as the superposition of 
differential-mode (DM) and common-mode (CM) noise. Such separation is essential in EMI modeling 
and filter design [13–18]. It is well-known; however, that such sharp separation between DM and CM 
noise is possible only under the assumption that the converter is perfectly symmetrical with respect 
to the ground. In fact, system asymmetries lead to DM–CM noise transformation (i.e., noise 
conversion between the two noise components) [6,19]. 

Several papers can be found about this point when single-phase converters are considered 
[19,20]. As an example, Figure 1 shows measured DM–CM noise transformation due to asymmetries 
in an EMI filter [19]. As far as three-phase converters are studied, however, few analytical 
contributions are available in the literature. Nevertheless, mode conversion in three-phase converters 
is well documented by experiments. For example, the experimental results reported in [21] show 
clearly that the three-phase LC filter is a critical component. In fact, in case of slight filter asymmetry, 
the DM resonances can be measured as resonances in the CM current. As an example, Figure 2 shows 
the amplitude spectrum of the measured CM current in the three-phase motor drive system reported 
in [21]. The blue curve was measured without filter, whereas the green and the magenta curves were 
measured for two different values of the DM inductances (i.e., 3.5 and 2.5 μH, respectively) of a DM–
CM LC filter. The resonances of the DM circuit (i.e., 380 and 450 kHz corresponding to the two values 
of the DM inductance, and 50 nF capacitance) were clearly measured in the spectrum of the CM 
current. This is a clear experimental evidence of DM-to-CM noise conversion. Recognizing this point 
is crucial for a proper filter design. In fact, if DM-to-CM noise conversion is not recognized, 
unnecessary overdesign of the CM filter could be implemented. 

 
Figure 1. Measured S parameters of an EMI filter [19]. The transmission coefficient 𝑆஼஽ଶଵ (mixed-
mode S parameter) provides CM response with DM excitation and it is due to filter asymmetries. It is 
compared with measured 𝑆஼஼ଶଵ  with CM excitation and CM response. 𝑆஼஽ଶଵ  is even higher than 𝑆஼஼ଶଵ above 13 MHz. 
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Figure 2. Measured amplitude spectrum of AC-side CM current without filter (blue curve), CM LC 
filter with 3.5 μH DM inductance (green curve) and with 2.5 μH DM inductance (magenta curve) [21]. 
The corresponding DM resonances, with 50 nF DM capacitance, are 380 and 450 kHz, respectively. 
The DM resonances are clearly observed in the CM current spectrum due to DM-to-CM noise 
conversion. 

Although the general idea of noise mode conversion due to three-phase asymmetry is well 
established, to the Author’s knowledge a rigorous analytical description of differential-to-common-
mode noise conversion in three-phase systems is still a challenging point. The main novelty 
introduced in this paper is the mathematical derivation and explanation of differential-to-common-
mode noise transformation in asymmetrical three-phase systems by resorting to the Clarke 
transformation and the eigenvalue analysis. In particular, differential-to-common-mode noise 
conversion due to a slightly asymmetrical LC filter will be investigated. The proposed methodology, 
however, has general validity. Thus, the analytical results derived in the paper can be used to describe 
the impact on the CM circuit of any three-phase asymmetry (e.g., asymmetrical cable parameters). It 
will be shown that, in case of three-phase asymmetry, the CM circuit is affected by the DM circuit on 
the whole frequency axis, but the main impact is due to the DM resonances injected into the CM 
circuit. Thus, the spectral lines corresponding to the DM resonances appear in the amplitude 
spectrum of the CM current with shifted frequency. The proposed analytical derivations provide the 
magnitude and the frequency location of the CM current peaks due to noise conversion, as functions 
of the filter asymmetry. 

A second novelty introduced in the paper is a statistical analysis based on the assumption that, 
due to component tolerances, the filter parameters can be treated as random variables. Randomness 
in the filter parameters results in randomness in the frequency location of the CM current peaks due 
to differential-to-common-mode noise conversion. A complete statistical characterization of the 
frequency shift of the CM current peaks due to noise conversion is derived in terms of probability 
density function, mean value, and variance. 

The relevance of the analytical results derived in the paper can be summarized in two points. 
First, the differential-to-common-mode noise conversion in an asymmetrical three-phase system is 
rigorously described in terms of theoretical properties and circuit equivalents. Second, the derived 
models allow quantitative prediction and explanation of the impact of noise conversion on frequency-
domain measurements of CM currents. 

The paper is organized as follows. In Section 2 the Clarke transformation is recalled, and its 
relationship with the well-known symmetrical component transformation in the frequency-domain 
is clarified. In Section 3 the impact of asymmetrical parameters of the LC filter on the differential-to-
common-mode noise conversion in a three-phase motor drive system is described in analytical terms. 
To this aim, the equations in terms of Clarke variables are decoupled through the eigenvalue analysis. 
The magnitude and frequency location of the CM current spectral lines due to DM resonances are 
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provided in closed form. In Section 4, specific three-phase motor drive system is implemented in 
Simulink to provide numerical validation of the analytical results. Section 5 is devoted to the 
statistical analysis of differential-to-common-mode noise conversion. In particular, by treating the 
asymmetrical parameters of the LC filter as random variables, the probability density function, the 
mean value, and the standard deviation of the frequency location of the CM current peaks from noise 
conversion are derived in closed form. Finally, conclusions are drawn in Section 6. 

2. The Clarke Transformation 

The analytical derivations proposed in the next Sections are based on the well-known Clarke 
transformation, which is a mathematical transformation broadly used in the analysis of three-phase 
power converters [22]. In fact, under the common assumption of circuit symmetry between the three 
phases, the Clarke transformation allows the introduction of voltage/current space vectors able to 
provide a compact and meaningful description of the three-phase system. 

The Clarke transformation operates on a triplet a, b, c, of time-domain phase variables (e.g., phase 
voltages and currents) to obtain a triplet of transformed variables named α, β, and 0. For example, by 
considering phase currents, the Clarke transformation operates as: 

቎𝑖ఈ𝑖ఉ𝑖଴቏  =  𝑻 ൥𝑖௔𝑖௕𝑖௖൩  =  ඨ23 ቎ 1 −1 2⁄ −1 2⁄0 √3 2⁄ −√3 2⁄1 √2⁄ 1 √2⁄ 1 √2⁄ ቏ ൥𝑖௔𝑖௕𝑖௖൩ (1) 

It is worth noticing that the transformation defined in (1) is in its rational form (i.e., the 
transformation matrix T is orthogonal (𝑻ି𝟏  =  𝑻𝒕)). This property guarantees power conservation 
across the transformation and allows consistent derivation of equivalent circuits in the transformed 
domain. 

In case of circuit symmetry between the three phases, the transformation matrix T operates 
diagonalization of parameter matrices. For example, by considering the inductance matrix L of a 
three-phase component with symmetrical phases: 

𝑳𝑻  =  𝑻𝑳𝑻ି𝟏  =  𝑻 ൥ 𝐿 𝑀 𝑀𝑀 𝐿 𝑀𝑀 𝑀 𝐿 ൩𝑻ି𝟏  =  ൥𝐿 − 𝑀 0 00 𝐿 −𝑀 00 0 𝐿 + 2𝑀൩  =  ቎𝐿ఈ 0 00 𝐿ఉ 00 0 𝐿଴቏. (2) 

Similar results can be obtained for capacitance/resistance matrices. Matrix diagonalization is a 
crucial point since it results in decoupled equations in the transformed variables. Notice that α and β 
parameters in the transformed matrix take the same values (i.e., 𝐿ఈ  =  𝐿ఉ in (2)). This means that the 
α and β equations have the same structure and the same parameters. Therefore, the α and β circuits 
can be treated as a single circuit with the α and β variables combined to form complex space vectors. 
Each space vector has a real part given by the α component and imaginary part given by the β 
component. Thus, the current space vector corresponding to (1) is defined as: 𝑖ሺ𝑡ሻ  =  𝑖ఈሺ𝑡ሻ + 𝑗𝑖ఉ(𝑡) (3) 

where 𝑗 =  √−1. Notice that since the Clarke transformation operates in the time domain, it can be 
used to analyze three-phase systems under transient conditions. However, when distorted steady-
state conditions are considered, the same transformation in (1) operates on the phasor quantities at 
each frequency. In this case, the Clarke transformation can be put in relation with the well-known 
symmetrical component transformation [23]. The following relationship between phasors can be 
readily derived: 

቎𝐼ఈ𝐼ఉ𝐼଴቏  =  1√2 ቎ 1 1 0−𝑗 𝑗 00 0 √2቏ ቎ 𝐼௣𝐼௡𝐼଴௦቏ (4) 

where 𝐼௣, 𝐼௡, and 𝐼଴௦ are the positive, negative, and zero-sequence phasor components, respectively. 
Notice that from (4) we obtain that the α component is proportional to the sum of the positive-
sequence and negative-sequence components, whereas the β component is proportional to the 
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difference between the same quantities. The zero-component 𝐼଴ of the Clarke transformation equals 
the zero-sequence component 𝐼଴௦. Thus, the α and β components can be identified as the common 
mode (CM) and the differential mode (DM) of the pure three-phase system, respectively, whereas the 
zero-component can be identified as the conventional CM resulting from the interconnection of a 
three-phase circuit with a single-phase circuit. That is the usual condition of a three-phase inverter 
where the so-called CM current circulates in a single-phase circuit consisting mainly in the system 
parasitic elements. 

Finally, it is worth highlighting that the diagonalization property (2) of the Clarke 
transformation holds only in case of circuit symmetry between the three phases. In case of 
asymmetrical phases, the straightforward use of (2) leads to a full matrix (i.e., to circuit coupling 
between the Clarke variables α, β, 0) [24]. In particular, since the zero components correspond to the 
conventional CM variables, asymmetrical phases result in injection of α and β component currents 
into the CM circuit. The theoretical investigation of such phenomenon is presented in the next 
Sections where the spectral lines of the CM current due to phase asymmetry are characterized in 
analytical and statistical terms. 

3. Differential-to-Common-Mode Conversion Due to LC Filter Asymmetry 

Let us consider the three-phase motor drive system represented in Figure 3 and consisting in a 
dc-fed three-phase inverter, a line impedance stabilization network (LISN), a dc-link capacitor, a 
CM/DM LC filter, a shielded cable, and an induction motor. The LC filter is realized by means of a 
CM choke whose leakage inductance provides DM filtering, and three star-connected grounded 
capacitors [21]. The following derivations, however, have general validity and can be readily adapted 
to different filter realizations. The cable is represented by a lumped RLC circuit, whereas each motor 
phase is represented by a series RL connection and a parallel capacitor to take into account high-
frequency effects of windings. 

 
Figure 3. The structure of the three-phase motor drive system, including the main parasitic elements, 
analyzed in this paper. 

The main parasitic elements are also included in the model, that is, the series resistance 𝑅ௗ௖ and 
inductance 𝐿ௗ௖ of the link capacitor 𝐶ௗ௖, the capacitances 𝐶௣ and 𝐶௡ from the dc-bus to the ground, 
the three capacitances 𝐶଴ from each inverter phase to the ground, the motor input capacitances 𝐶௠, 
and the capacitance 𝐶௚ between motor windings and frame. 

The following analysis considers the impact of asymmetrical values of the LC filter parameters 
on the differential-to-common-mode noise conversion. The proposed methodology, however, can be 
readily used to investigate the impact on noise conversion of other asymmetrical parameters (e.g., 
the three-phase cable parameters). 
  



Electronics 2020, 9, 1612 6 of 19 

 

3.1. Circuit Modeling and Analytical Derivations 

The three-phase system depicted in Figure 3 can be analyzed through the Clarke transformation 
recalled in Section 2. In case of ideal circuit symmetry between the three phases, the α and β circuits 
show the same topology and the same parameter values (see Figure 4a). To this aim it is worth 
recalling that the topology of α and β circuits follows the same rules as the positive- and negative-
sequence circuits for the symmetrical components, that is, a short circuit connects all the star centers 
of the three-phase system (notice that the delta-connected capacitors 𝐶௠ can be first transformed into 
star connected capacitors 3𝐶௠) [23]. As far as the zero-component circuit is considered, however, a 
different circuit topology is obtained (see Figure 4b). In fact, by following the same rules valid for the 
zero-sequence component in the symmetrical components framework, the interaction between the 
three-phase and the single-phase parts of the system must be taken into account. In particular, in 
previous works it was shown that a single-phase circuit connected to the star centers of a three-phase 
circuit can be moved, with unchanged topology, to the three-phase side through a multiplication by 
3 of single-phase impedances and by √3 of single-phase voltage sources, and division by √3 of 
single-phase current sources [23,24]. 

 
(a) 

 
(b) 

Figure 4. Clarke equivalent circuits of the three-phase motor drive system represented in Figure 3. 
The α and β circuits have the same topology (a), whereas the zero-component circuit (b) takes into 
account the interconnection of the three-phase circuit with the single-phase part of the system. 

In case of circuit symmetry between the three phases, the α, β, and zero circuits are uncoupled. 
In particular, the resonances of the α and β circuits have no impact on the zero circuit. It can be easily 
observed that the main resonance in the α and β circuits is given by the filter components. In fact, the 
low-level impedance corresponding to the large filter capacitance 𝐶 is only slightly affected by the 
high-level cable and motor impedances due to capacitances much smaller than 𝐶 . Thus, the 
differential-mode inductance 𝐿ௗ௠ of the filter can be approximately considered in series with the 
filter capacitance 𝐶. The resulting series resonance is located at the frequency 𝑓଴  =  1 2𝜋ඥ𝐿ௗ௠𝐶⁄ . In 
case of asymmetrical filter components, it is expected that such resonance is injected into the zero-
component circuit (i.e., the CM circuit). The impact of asymmetry in filter capacitances and 
inductances on the CM circuit is analyzed in the following Subsections. 

  



Electronics 2020, 9, 1612 7 of 19 

 

3.1.1. Asymmetrical Filter Capacitors 

As far as the filter capacitors 𝐶 are considered, the simple case of a small perturbation 𝛿𝐶௔ of 
the capacitance connected to the phase a is first investigated. The voltage–current relationship for the 
phasor Clarke components is given by [25]: 

቎𝐼஼ఈ𝐼஼ఉ𝐼஼଴቏  =  𝑗𝜔𝑻 ൥𝐶 + 𝛿𝐶௔ 0 00 𝐶 00 0 𝐶൩𝑻ି𝟏 ቎𝑉஼ఈ𝑉஼ఉ𝑉஼଴቏ (5) 

After simple algebra the following equations can be obtained from (5): 𝐼஼ఈ  =  𝑗𝜔 ቈ൬𝐶 + 23 𝛿𝐶௔൰𝑉஼ఈ + √23 𝛿𝐶௔𝑉஼଴቉ (6a) 

𝐼஼ఉ  =  𝑗𝜔𝐶𝑉஼ఉ (6b) 

𝐼஼଴  =  𝑗𝜔 ቈ√23 𝛿𝐶௔𝑉஼ఈ + ൬𝐶 + 13 𝛿𝐶௔൰𝑉஼଴቉ (6c) 

where it is apparent that the β circuit is not affected by the capacitance perturbation. 
The interaction between α and 0 circuits can be investigated by introducing two reasonable 

approximations in (6a) and (6c). First, under normal conditions the zero-component variables are 
much smaller than the α and β variables. Moreover, the impact of α and β circuits on the zero-
component circuit is large around the resonances of α and β circuits. Therefore, in (6a) it is reasonable 
to assume |𝑉஼଴| ≪ |𝑉஼ఈ| (i.e., no feedback is assumed from the zero to the α circuit). Second, the small 
perturbation assumption |𝛿𝐶௔| ≪ 𝐶  allows for neglecting the term 𝛿𝐶௔ 3⁄  in (6c). Therefore, the 
approximate versions of (6a)–(6c) are given by: 𝐼஼ఈ ≅ 𝑗𝜔 ൬𝐶 + 23 𝛿𝐶௔൰𝑉஼ఈ (7a) 𝐼஼ఉ  =  𝑗𝜔𝐶𝑉஼ఉ (7b) 

𝐼஼଴ ≅ 𝑗𝜔 ቈ√23 𝛿𝐶௔𝑉஼ఈ + 𝐶𝑉஼଴቉ (7c) 

From (7a) we observe that the equivalent α capacitance is changed by the additive term 2𝛿𝐶௔ 3⁄ . 
As a consequence, the resonance in the α circuit is shifted to the value 𝑓ఈ  =  12𝜋ට𝐿ௗ௠ ቀ𝐶 + 23 𝛿𝐶௔ቁ ≅ 12𝜋ඥ𝐿ௗ௠𝐶 ൬1 − 𝛿𝐶௔3𝐶 ൰ (8) 

Such resonance has impact on the zero-component circuit through (7c): 𝐼஼଴ ≅ 𝑗𝜔 ቈ√ଶଷ 𝛿𝐶௔ ூ಴ഀ௝ఠቀ஼ାమయఋ஼ೌቁ + 𝐶𝑉஼଴቉ ≅ √ଶଷ ఋ஼ೌ஼ 𝐼஼ఈ + 𝑗𝜔𝐶𝑉஼଴. (9) 

Thus, the resonance in the α circuit is injected into the CM circuit. The frequency location of the 
corresponding spectral line is given by (8), and both the frequency location shift and the magnitude 
of the spectral line are proportional to the capacitance deviation 𝛿𝐶௔. 

The above analytical results hold in the case of capacitance deviation of the phase a. It is expected 
that similar results hold in case the capacitance deviation is placed on the phase b or c. By writing (5) 
for 𝛿𝐶௕ or 𝛿𝐶௖, however, the equations corresponding to (6a)–(6c) do not allow a straightforward 
interpretation as in the case of 𝛿𝐶௔  because a further coupling is introduced between α and β 
variables. Moreover, from both theoretical and practical viewpoint, the general case of simultaneous 
deviation of all the three parameters 𝛿𝐶௔, 𝛿𝐶௕, and 𝛿𝐶௖ would be of interest. To this aim, a more 
general analytical approach is derived. 
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In case of simultaneous deviation of the three capacitances with respect to the nominal value 𝐶, 
the Clarke transformation: 

቎𝐼஼ఈ𝐼஼ఉ𝐼஼଴቏  =  𝑗𝜔𝑻 ൥𝐶 + 𝛿𝐶௔ 0 00 𝐶 + 𝛿𝐶௕ 00 0 𝐶 + 𝛿𝐶௖൩𝑻ି𝟏 ቎𝑉஼ఈ𝑉஼ఉ𝑉஼଴቏ (10) 

provides the three equations: 

𝐼஼ఈ  =  𝑗𝜔 ൥൭𝐶 + 23 ൬𝛿𝐶௔ + 𝛿𝐶௕ + 𝛿𝐶௖4 ൰൱𝑉஼ఈ + −𝛿𝐶௕ + 𝛿𝐶௖2√3 𝑉஼ఉ
+ √23 ൬𝛿𝐶௔ − 𝛿𝐶௕ + 𝛿𝐶௖2 ൰𝑉஼଴൩ (11a) 

𝐼஼ఉ  =  𝑗𝜔 ቈ−𝛿𝐶௕ + 𝛿𝐶௖2√3 𝑉஼ఈ + ൬𝐶 + 𝛿𝐶௕ + 𝛿𝐶௖2 ൰𝑉஼ఉ + √32√2 (𝛿𝐶௕ − 𝛿𝐶௖)𝑉஼଴቉ (11b) 

𝐼஼଴  =  𝑗𝜔 ቂ√ଶଷ ቀ𝛿𝐶௔ − ఋ஼್ାఋ஼೎ଶ ቁ 𝑉஼ఈ + √ଷଶ√ଶ (𝛿𝐶௕ − 𝛿𝐶௖)𝑉஼ఉ + ቀ𝐶 + ఋ஼ೌାఋ஼್ାఋ஼೎ଷ ቁ 𝑉஼଴ቃ. (11c) 

By introducing the same approximation used above (i.e., negligible feedback from the zero-
component circuit to the α and β circuits), for the α and β variables we obtain the following 
approximate expressions: 

𝐼஼ఈ ≅ 𝑗𝜔 ൥൭𝐶 + 23 ൬𝛿𝐶௔ + 𝛿𝐶௕ + 𝛿𝐶௖4 ൰൱𝑉஼ఈ + −𝛿𝐶௕ + 𝛿𝐶௖2√3 𝑉஼ఉ൩ (12a) 

𝐼஼ఉ ≅ 𝑗𝜔 ൤−𝛿𝐶௕ + 𝛿𝐶௖2√3 𝑉஼ఈ + ൬𝐶 + 𝛿𝐶௕ + 𝛿𝐶௖2 ൰𝑉஼ఉ൨ (12b) 

In matrix form: 

൤𝐼஼ఈ𝐼஼ఉ൨ ≅ 𝑗𝜔⎝⎜
⎛ቂ𝐶 00 𝐶ቃ + ⎣⎢⎢⎢

⎡23 ൬𝛿𝐶௔ + 𝛿𝐶௕ + 𝛿𝐶௖4 ൰ −𝛿𝐶௕ + 𝛿𝐶௖2√3−𝛿𝐶௕ + 𝛿𝐶௖2√3 𝛿𝐶௕ + 𝛿𝐶௖2 ⎦⎥⎥⎥
⎤
⎠⎟
⎞൤𝑉஼ఈ𝑉஼ఉ൨ (13) 

Therefore, the problem can be reformulated as the diagonalization of a matrix: 𝑨 =  ቂ𝑎 𝑐𝑐 𝑏ቃ (14) 

where: 𝑎 =  ଶଷ ቀ𝛿𝐶௔ + ఋ஼್ାఋ஼೎ସ ቁ,  𝑏 =  ఋ஼್ାఋ஼೎ଶ ,  𝑐 =  ିఋ஼್ାఋ஼೎ଶ√ଷ . (15) 

It can be readily shown that the eigenvalues of A are given by: 

𝜆ଵ,ଶ  =  𝑎 + 𝑏 ± ඥ(𝑎 − 𝑏)ଶ − 4𝑐ଶ2  (16) 

By substituting (15) into (16), after simple algebra we obtain the eigenvalues 𝜆஼ଵ,ଶ of the full 
matrix in (13): 𝜆஼ଵ,ଶ  =  13 (𝛿𝐶௔ + 𝛿𝐶௕ + 𝛿𝐶௖) ± 13√2ඥ(𝛿𝐶௔ − 𝛿𝐶௕)ଶ + (𝛿𝐶௕ − 𝛿𝐶௖)ଶ + (𝛿𝐶௖ − 𝛿𝐶௔)ଶ (17) 

It is worth noticing that in (17) the term in the first bracket is the mean value of the capacitance 
deviations, whereas the square-root term represents the root mean square value of the capacitance 
deviations. 

The matrix P of the eigenvectors, corresponding to the eigenvalues (17), when applied to (13) 
leads to transformed variables: 
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൤𝐼஼ଵ𝐼஼ଶ൨  =  𝑷ି𝟏 ൤𝐼஼ఈ𝐼஼ఉ൨,   ൤𝑉஼ଵ𝑉஼ଶ൨  =  𝑷ି𝟏 ൤𝑉஼ఈ𝑉஼ఉ൨ (18) 

and matrix diagonalization: 

𝑷ି𝟏 ⎣⎢⎢⎢
⎡23 ൬𝛿𝐶௔ + 𝛿𝐶௕ + 𝛿𝐶௖4 ൰ −𝛿𝐶௕ + 𝛿𝐶௖2√3−𝛿𝐶௕ + 𝛿𝐶௖2√3 𝛿𝐶௕ + 𝛿𝐶௖2 ⎦⎥⎥⎥

⎤ 𝑷 =  ൤𝜆஼ଵ 00 𝜆஼ଶ൨ (19) 

Therefore, we obtain decoupled equations in the transformed variables: ൤𝐼஼ଵ𝐼஼ଶ൨  =  𝑗𝜔 ൤𝐶 + 𝜆஼ଵ 00 𝐶 + 𝜆஼ଶ൨ ൤𝑉஼ଵ𝑉஼ଶ൨ (20) 

The fundamental result in (20) provides two different shift values to the nominal capacitance 𝐶 
in case of distinct eigenvalues (17). This means that under the general condition of two or three 
capacitance deviations, two different resonances are generated in the α and β circuits, and they are 
coupled into the zero-component circuit through (11c). The frequencies of the two resonances are 
given by: 𝑓஼ଵ,ଶ =  12𝜋ට𝐿ௗ௠൫𝐶 + 𝜆஼ଵ,ଶ൯ ≅ 12𝜋ඥ𝐿ௗ௠𝐶 ൬1 − 𝜆஼ଵ,ଶ2𝐶 ൰ (21) 

Notice that in the special case of only one capacitance deviation (i.e., any phase, a,b, or c), one of 
the two eigenvalues (17) is zero, whereas the second is given by 2𝛿𝐶௔,௕,௖ 3⁄ . Null eigenvalue means 
no circuit interaction (i.e., only the resonance corresponding to 2𝛿𝐶௔,௕,௖ 3⁄  is injected into the zero-
component circuit). Therefore, only one spectral line due to mode conversion is present in the CM 
current in case of one capacitance deviation, whereas two spectral lines are expected in case of two 
or three capacitance deviations. 

Finally, in case of equal capacitance deviations 𝛿𝐶௔  =  𝛿𝐶௕  =  𝛿𝐶௖  from (17), we have one 
double eigenvalue, but from (11c) there is no interaction with α and β circuits. This is consistent with 
the fact that 𝛿𝐶௔  =  𝛿𝐶௕  =  𝛿𝐶௖ means symmetrical capacitance values. 

3.1.2. Asymmetrical Filter Inductors 

A CM choke can be modeled as a coupled three-phase inductor according to (2). In the 
symmetrical case the DM inductance is 𝐿ௗ௠  =  𝐿 −𝑀 , and the CM inductance 𝐿௖௠  =  𝐿 + 2𝑀 . 
Notice that small asymmetrical self-inductances 𝐿 can result in large relative deviations of the DM 
inductance 𝐿ௗ௠, because usually 𝐿 and 𝑀 take close values. 

By assuming simultaneous deviations of the three self-inductances with respect to the nominal 
value 𝐿, the Clarke transformation: 

቎𝑉௅ఈ𝑉௅ఉ𝑉௅଴቏  =  𝑗𝜔𝑻 ൥𝐿 + 𝛿𝐿௔ 𝑀 𝑀𝑀 𝐿 + 𝛿𝐿௕ 𝑀𝑀 𝑀 𝐿 + 𝛿𝐿௖൩ 𝑻ି𝟏 ቎𝐼௅ఈ𝐼௅ఉ𝐼௅଴቏ (22) 

provides the following equations: 

𝑉௅ఈ =  𝑗𝜔 ൥൭𝐿ௗ௠ + 23 ൬𝛿𝐿௔ + 𝛿𝐿௕ + 𝛿𝐿௖4 ൰൱ 𝐼௅ఈ + −𝛿𝐿௕ + 𝛿𝐿௖2√3 𝐼௅ఉ
+ √23 ൬𝛿𝐿௔ − 𝛿𝐿௕ + 𝛿𝐿௖2 ൰ 𝐼௅଴൩ (23a) 

𝑉௅ఉ  =  𝑗𝜔 ቈ−𝛿𝐿௕ + 𝛿𝐿௖2√3 𝐼௅ఈ + ൬𝐿ௗ௠ + 𝛿𝐿௕ + 𝛿𝐿௖2 ൰ 𝐼௅ఉ + √32√2 (𝛿𝐿௕ − 𝛿𝐿௖)𝐼௅଴቉ (23b) 
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𝑉௅଴  =  𝑗𝜔 ቈ√23 ൬𝛿𝐿௔ − 𝛿𝐿௕ + 𝛿𝐿௖2 ൰ 𝐼௅ఈ + √32√2 (𝛿𝐿௕ − 𝛿𝐿௖)𝐼௅ఉ+ ൬𝐿௖௠ + 𝛿𝐿௔ + 𝛿𝐿௕ + 𝛿𝐿௖3 ൰ 𝐼௅଴቉ (23c) 

By introducing the same approximation used in the previous Subsection (i.e., negligible 
feedback from the zero circuit to the α and β circuits), for the α and β variables we obtain the following 
approximate expressions in matrix form: 

൤𝑉௅ఈ𝑉௅ఉ൨ ≅ 𝑗𝜔⎝⎜
⎛൤𝐿ௗ௠ 00 𝐿ௗ௠൨ + ⎣⎢⎢⎢

⎡23 ൬𝛿𝐿௔ + 𝛿𝐿௕ + 𝛿𝐿௖4 ൰ −𝛿𝐿௕ + 𝛿𝐿௖2√3−𝛿𝐿௕ + 𝛿𝐿௖2√3 𝛿𝐿௕ + 𝛿𝐿௖2 ⎦⎥⎥⎥
⎤
⎠⎟
⎞൤𝐼௅ఈ𝐼௅ఉ൨ (24) 

The full matrix in (24) has the same structure as (14). Therefore, the matrix diagonalization can 
be obtained by using the same results already shown in Subsection 3.1.1. In particular, from (16) we 
obtain the eigenvalues: 𝜆௅ଵ,ଶ  =  13 (𝛿𝐿௔ + 𝛿𝐿௕ + 𝛿𝐿௖) ± 13√2ඥ(𝛿𝐿௔ − 𝛿𝐿௕)ଶ + (𝛿𝐿௕ − 𝛿𝐿௖)ଶ + (𝛿𝐿௖ − 𝛿𝐿௔)ଶ (25) 

Thus, the corrected values of the inductance in the α and β circuits are given by 𝐿ௗ௠ + 𝜆௅ଵ and 𝐿ௗ௠ + 𝜆௅ଶ. The corresponding frequencies of the resonances injected into the zero-component circuit 
are given by: 𝑓௅ଵ,ଶ  =  12𝜋ට൫𝐿ௗ௠ + 𝜆௅ଵ,ଶ൯𝐶 ≅ 12𝜋ඥ𝐿ௗ௠𝐶 ൬1 − 𝜆௅ଵ,ଶ2𝐿ௗ௠൰ (26) 

The same remarks already highlighted for (21) hold for (26). In particular, it is worth noticing 
that, in general, two spectral lines are generated in the CM circuit, and the frequency displacement 
with respect to the ideal location 𝑓଴  =  1 2𝜋ඥ𝐿ௗ௠𝐶⁄  depends on ఒಽభ,మ௅೏೘ . 

Finally, the case of asymmetrical mutual inductances 𝑀  can be included into the above 
derivations. Starting from the Clarke transformation of a completely asymmetrical inductance matrix: 

቎𝑉௅ఈ𝑉௅ఉ𝑉௅଴቏  =  𝑗𝜔𝑻 ൥ 𝐿 + 𝛿𝐿௔ 𝑀 + 𝛿𝑀௔௕ 𝑀 + 𝛿𝑀௔௖𝑀 + 𝛿𝑀௔௕ 𝐿 + 𝛿𝐿௕ 𝑀 + 𝛿𝑀௕௖𝑀 + 𝛿𝑀௔௖ 𝑀 + 𝛿𝑀௕௖ 𝐿 + 𝛿𝐿௖ ൩ 𝑻ି𝟏 ቎𝐼௅ఈ𝐼௅ఉ𝐼௅଴቏ (27) 

by simple algebra and by using the approximation of no-feedback from the zero-component circuit 
to the α and β circuits we obtain: ൤𝑉௅ఈ𝑉௅ఉ൨ ≅ 𝑗𝜔 ൬൤𝐿ௗ௠ 00 𝐿ௗ௠൨ + 

+቎ଶଷ ൬𝛿𝐿௔ + ఋ௅್ାఋ௅೎ସ − ቀ𝛿𝑀௔௕ + 𝛿𝑀௔௖ − ଵଶ 𝛿𝑀௕௖ቁ൰ ିఋ௅್ାఋ௅೎ାଶ(ఋெೌ್ିఋெ್೎)ଶ√ଷିఋ௅್ାఋ௅೎ାଶ(ఋெೌ್ିఋெ್೎)ଶ√ଷ ఋ௅್ାఋ௅೎ଶ − 𝛿𝑀௕௖ ቏ቍ ൤𝐼௅ఈ𝐼௅ఉ൨. (28) 

The eigenvalues 𝜆௅ெଵ,ଶ of the full matrix in (28) can be still evaluated through (16). Explicit 
expressions are not reported here for the sake of simplicity. Also in this case the eigenvalues result, 
in general, in two inductance shifts 𝐿ௗ௠ + 𝜆௅ெଵ  and 𝐿ௗ௠ + 𝜆௅ெଶ , and the related resonance 
frequencies 𝑓௅ெଵ,ଶ  =  ଵଶగට൫௅೏೘ାఒಽಾభ,మ൯஼ injected into the zero-component circuit. 

4. Numerical Validation 

The three-phase motor drive system represented in Figure 3 was implemented in Simulink. The 
three-phase voltage source inverter (VSI) was controlled with pulse width modulation (PWM) with 
50 Hz modulating frequency and 1650 Hz carrier frequency (i.e., the frequency-modulation ratio was 
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33), whereas the amplitude-modulation ratio m was 0.95. 𝑉ௗ௖ was 100 V, 𝑅௅ூௌே = 50 Ω, and the dc-
link capacitor was represented by a high-frequency equivalent circuit consisting in the series 
connection of 𝐶ௗ௖ = 1 mF, 𝐿ௗ௖ = 10 nH, and 𝑅ௗ௖ = 10 mΩ. The VSI parasitic capacitors were 𝐶௣  = 𝐶௡ = 1 nF and 𝐶଴ = 0.1 nF. The LC filter was implemented by a CM choke with 𝐿ௗ௠ = 2.5 μH and 𝐿௖௠ = 200 μH , and star-connected capacitors with 𝐶 = 50 nF  [21]. Thus, the DM and CM cutoff 
frequencies were 𝑓଴ = 450 kHz and 𝑓௖௠ = 50 kHz, respectively. The shielded cable was represented 
by a lumped equivalent circuit (see Figure 4) with 𝐿௖ௗ = 1 μH, 𝐿௖଴ = 2.8 μH, 𝐶௖ௗ  =  𝐶௖଴  =  0.1 nF, 
and 𝑅௖ௗ  =  𝑅௖଴ = 10 𝑚Ω . Thus, the DM and CM cable resonance frequencies were 15.9  and 9.5 MHz , respectively. The motor phases were represented by 𝑅௅ = 1 𝑘Ω , 𝐿௅ = 1 mH , and 𝐶௪ =0.1 nF, whereas the motor parasitic capacitances were 𝐶௠ = 10 pF and 𝐶௚ = 3 nF. 

The time-domain simulations were performed with sampling frequency 𝑓௦ = 100 MHz, and the 
samples of the CM current (see Figure 3) were processed through the fast Fourier transform (FFT) to 
obtain the amplitude spectrum within the ሾ0, 50 MHzሿ  frequency range. Figure 5 shows the 
amplitude spectrum of the CM current (limited to 30 MHz, according to the conducted emissions 
standards [21]) in case of filter symmetry. The impact of the CM filter with 50 kHz cutoff frequency 
is clearly apparent. Moreover, no resonance frequencies can be identified (i.e., no peaks), even in 
proximity of the DM resonance located at 450 kHz. This means that, according to the theory, in case 
of symmetrical parameters there is no interaction between DM and CM circuits. 

 
Figure 5. Amplitude spectrum of the CM current in case of filter with symmetrical components. 

Figure 6 shows the effect of a deviation 𝛿𝐶௔  of the filter capacitance 𝐶௔  with respect to its 
nominal value 𝐶. According to (8), a negative deviation 𝛿𝐶௔ results in a positive relative increase ቚఋ஼ೌଷ஼ ቚ in the resonance frequency of the α circuit. Moreover, according to (9) such resonance is injected 
into the CM circuit with increasing magnitude with the deviation |𝛿𝐶௔|. This is confirmed in Figure 
6, where three different percent values of 𝛿𝐶௔/𝐶 were selected (i.e., −5%, −10%, and −20%). The 
corresponding shift in the DM resonance frequency (i.e., 𝑓଴ = 450 kHz) are given by 7.5, 15, and 30 kHz, respectively. According to the eigenvalue analysis derived in Subsection 3.1.1, similar results 
can be obtained when the asymmetrical capacitance is either 𝐶௕ or 𝐶௖. 
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Figure 6. Resonance peaks in the CM current amplitude spectrum due to three different percent 
values of 𝛿𝐶௔/𝐶 (i.e., −5%, −10%, and −20%). Negative deviations result in resonance peaks with 
increased frequency with respect to the nominal value 𝑓଴ = 450 kHz  (i.e., the DM resonance 
frequency in case of symmetrical filter, represented by the dashed vertical line). 

Figure 7 shows the case of two simultaneous deviations 𝛿𝐶௔ and 𝛿𝐶௕. The deviation 𝛿𝐶௕ was 
selected such that 𝛿𝐶௕ = −𝛿𝐶௔ . According to (17) and (21), the two eigenvalues are 𝜆஼ଵ,ଶ  = ± ଵ√ଷ |𝛿𝐶௔|, and the two resonance frequencies 𝑓஼ଵ,ଶ ≅ 𝑓଴ ቀ1 ± ଵଶ√ଷ |ఋ஼ೌ|஼ ቁ. Thus, the two peaks have 

frequency separation 𝑓଴ ଵ√ଷ |ఋ஼ೌ|஼ . Three different percent values were assumed for 𝛿𝐶௔/𝐶 (i.e., −5%, −10%, and −20%). The corresponding frequency separation of each couple of peaks are 13 kHz, 26, 
kHz, and 52 kHz. This point is confirmed by Figure 7. Notice that for ఋ஼ೌ஼ = −20% the two peaks 
(blue line) are not perfectly symmetrical with respect to 𝑓଴ . This is because the formula 𝑓஼ଵ,ଶ ≅𝑓଴ ቀ1 ± ଵଶ√ଷ |ఋ஼ೌ|஼ ቁ is approximate, and it provides better results for small values of |ఋ஼ೌ|஼ . 

 
Figure 7. Amplitude spectrum of the CM current in case of asymmetrical filter capacitances 𝐶௔ and 𝐶௕. Opposite deviations between a and b were assumed (i.e., 𝛿𝐶௕ = −𝛿𝐶௔). Three different percent 
values for the relative deviations were considered (i.e., ఋ஼ೌ஼ = −5%, −10%, and −20%). 
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Figure 8 shows the case of simultaneous deviations of the inductances 𝐿௔ and 𝐿௕. By selecting, 
as in the previous case, 𝛿𝐿௕ = −𝛿𝐿௔ , according to (25) and (26), the two eigenvalues are 𝜆௅ଵ,ଶ  = ± ଵ√ଷ |𝛿𝐿௔|, and the two resonance frequencies 𝑓௅ଵ,ଶ ≅ 𝑓଴ ቀ1 ± ଵଶ√ଷ |ఋ௅ೌ|௅೏೘ ቁ. Thus, the two peaks have 

frequency separation 𝑓଴ ଵ√ଷ |ఋ௅ೌ|௅೏೘ . Three different percent values were assumed for 𝛿𝐿௔/𝐿ௗ௠  (i.e., −5%, −10%, and −20%). The corresponding frequency separation of each couple of peaks are 13, 
26, and 52 kHz. This point is confirmed by Figure 8. The same remark mentioned in the previous case 
holds for the location of peaks when ఋ௅ೌ௅೏೘ = −20%. 

 
Figure 8. Amplitude spectrum of the CM current in case of asymmetrical filter inductances 𝐿௔ and 𝐿௕. Opposite deviations between a and b were assumed (i.e., 𝛿𝐿௕ = −𝛿𝐿௔). Three different percent 
values for the relative deviations were considered (i.e., ఋ௅ೌ௅೏೘ = −5%, −10%, and −20%). 

Figure 9 shows the impact of simultaneous deviations of both filter inductances and 
capacitances. Two cases can be put into evidence. First, the deviations of components a (i.e., 𝐶௔ and 𝐿௔) have the same sign (i.e., ఋ௅ೌ௅೏೘  =  ఋ஼ೌ஼ ), as well as the deviations of components b (i.e., ఋ௅್௅೏೘  =  ఋ஼್஼ ). 

In this case, the two peaks are reinforced by the two filter components. In the second case, the 
deviations of components a have opposite sign (i.e., ఋ௅ೌ௅೏೘  =  −ఋ஼ೌ஼ ), as well as the deviations of 

components b (i.e., ఋ௅್௅೏೘  =  −ఋ஼್஼ ). In this case, the action of the two filter components are in the 

opposite directions, resulting in a contrast to the frequency shift of the peaks. To highlight this 
phenomenon, a first simulation was performed with ఋ௅ೌ௅೏೘ =  ఋ஼ೌ஼ = −10% and ఋ௅್௅೏೘  =  ఋ஼್஼ = +10% 

(green curve). The effect of each deviation is doubled. In particular, the frequency separation between 
the two peaks is doubled with respect to Figure 8. A second simulation (blue curve) was performed 
by doubling the relative deviations (and keeping the same signs as before). The frequency separation 
of the two peaks is doubled with respect to Figure 8. Finally, a simulation with opposite sign was 
performed (red curve) (i.e., ఋ௅ೌ௅೏೘  =  −ఋ஼ೌ஼ = −10% and ఋ௅್௅೏೘  =  −ఋ஼್஼ = +10%). Since the deviations of 

the two filter components act in opposite directions, the result is only one peak with small magnitude 
and negligible frequency shift. 
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Figure 9. Amplitude spectrum of the CM current in case of asymmetry in the filter inductances and 
capacitances. The green and blue curves show the cases of deviations resulting in a decrease in 𝐿௔ 
and 𝐶௔ , and increase in 𝐿௕  and 𝐶௕ . The red curve shows the case of 𝐿௔  and 𝐶௔  changing in the 
opposite direction (same for 𝐿௕ and 𝐶௕). In this case the asymmetries tend to compensate each other. 

Figure 10 shows the amplitude spectrum of the cable CM current (see 𝐼஼ெ௖௔௕௟௘ in Figure 3) for 
different deviations of the cable self-inductances. This set of simulations was performed to show how 
the DM circuit can inject current into the CM circuit at any system asymmetry (i.e., not only the LC 
filter). In case of cable asymmetry, the DM resonance involving the cable leads to current injection 
into the cable CM circuit. According to Figure 4a, the cable is responsible of a DM resonance 
corresponding to its DM inductance 𝐿௖ௗ  (i.e., the difference between the self and the mutual 
inductances) and the total capacitance consisting in the sum of the cable capacitance 𝐶௖ௗ and the 
parasitic capacitances 3𝐶௠ and 𝐶௪ (in fact, at high frequencies the branch 𝑅௅ − 𝐿௅ can be ignored). 
Thus, the frequency of the DM resonance is given by 𝑓ௗ଴  =  1 ൫2𝜋ඥ𝐿௖ௗ(𝐶௖ௗ + 3𝐶௠ + 𝐶௪)൯⁄ ≅10.5 MHz. The self-inductance deviations were selected such that 𝛿𝐿௖௕ = −𝛿𝐿௖௔, and three different 
values were selected for 𝛿𝐿௖௔ 𝐿௖ௗ⁄ (i.e., −5% , −10% , and −20% ). According to 𝑓௅ଵ,ଶ ≅ 𝑓ௗ଴ ቀ1 ±ଵଶ√ଷ |ఋ௅೎ೌ|௅೎೏ ቁ, the corresponding frequency separation of each couple of peaks were 300 kHz, 600 kHz, 

and 1.2 MHz. This is confirmed by Figure 10, where another spectral line can be clearly seen at 6.9 
MHz. Such spectral line is independent of cable asymmetry since it is related to the resonance of the 

CM circuit (see Figure 4b): 𝑓௖଴  =  1 ቆ2𝜋ට𝐿௖଴൫𝐶௖଴ + 𝐶௪௚൯ቇൗ = 6.9 MHz, where 𝐶௪௚  =  ஼ೢ಴೒య஼ೢା಴೒య . 
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Figure 10. Amplitude spectrum of the cable CM current in case of cable with asymmetrical self-
inductances. The spectral line at 6.9 MHz is not affected by cable asymmetry since it is due to the CM 
circuit resonance. 

5. Statistical Analysis 

Analytical results derived in Section 3 allow accurate evaluation of DM resonances injected into 
the CM circuit in case of known asymmetrical values of the filter components. When we are interested 
in the effects of component tolerance, however, a statistical approach is more suited to the objective. 
The statistical analysis of the eigenvalues (17) and (25), and the related resonance frequencies (21) 
and (26), will be derived in this Section by treating all the deviations 𝛿 (i.e., 𝛿𝐶௔,௕,௖ and 𝛿𝐿௔,௕,௖) as 
random variables. Two cases will be investigated, corresponding to two different statistical 
distributions for the random variables 𝛿: Gaussian and Uniform distributions. In order to obtain 
unitary and normalized results, the following transformation of random variables will be 
investigated: 𝑥ଵ,ଶ  =  13 (𝛿𝑎 + 𝛿𝑏 + 𝛿𝑐) ± 13√2ඥ(𝛿𝑎 − 𝛿𝑏)ଶ + (𝛿𝑏 − 𝛿𝑐)ଶ + (𝛿𝑐 − 𝛿𝑎)ଶ = 𝑢 ± 𝑣 (29) 

where 𝛿𝑎 =  𝛿𝐶௔ 𝐶⁄ , 𝛿𝑏 =  𝛿𝐶௕ 𝐶⁄ , 𝛿𝑐 =  𝛿𝐶௖ 𝐶⁄  for capacitances, and 𝛿𝑎 =  𝛿𝐿௔ 𝐿ௗ௠⁄ , 𝛿𝑏 = 𝛿𝐿௕ 𝐿ௗ௠⁄ , 𝛿𝑐 =  𝛿𝐿௖ 𝐿ௗ௠⁄  for inductances. The corresponding normalized resonance frequencies are 
given by: 𝑦ଵ,ଶ  =  ௙భ,మ௙బ  =  ଵඥଵା௫భ,మ. (30) 

5.1. Gaussian Distribution 

Let us assume 𝛿𝑎, 𝛿𝑏,𝛿𝑐  as uncorrelated Gaussian random variables with zero mean and 
variance 𝜎ఋଶ. The transformation (29) requires first the analysis of the random variable: 𝑣 =  13√2ඥ(𝛿𝑎 − 𝛿𝑏)ଶ + (𝛿𝑏 − 𝛿𝑐)ଶ + (𝛿𝑐 − 𝛿𝑎)ଶ  =  =  ଵ ଷ √𝛿𝑎ଶ + 𝛿𝑏ଶ + 𝛿𝑐ଶ − 𝛿𝑎 𝛿𝑏 − 𝛿𝑏 𝛿𝑐 − 𝛿𝑐 𝛿𝑎  =  ଵଷ √𝑤. 

(31) 

By taking into account that 𝐸ሼ𝛿ଶሽ  =  𝜎ఋଶ, for the mean value and the variance of 𝑤 we obtain 
[26]: 𝜇௪  =  3𝜎ఋଶ,  𝜎௪ଶ  =  9𝜎ఋସ. (32) 

Therefore, the mean value and the variance of 𝑣 can be approximated as: 
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𝜇௩ ≅ ଻଼ ଵ√ଷ 𝜎ఋ,  𝜎௩ଶ ≅ ൬ ଵ଺ඥఓೢ൰ଶ 𝜎௪ଶ  =  ଵଵଶ 𝜎ఋଶ (33) 

where the approximations through the first and second order derivatives were used (i.e., the Taylor 
series approach) [26,27]. 

From (29) and (33) the mean values and the variance of 𝑥ଵ,ଶ are given by: 𝜇௫భ,మ  =  ± ଻଼ ଵ√ଷ 𝜎ఋ,  𝜎௫భ,మଶ =  ଵଷ 𝜎ఋଶ + 𝜎௩ଶ  =  ହଵଶ 𝜎ఋଶ (34) 

Notice that since 𝑥ଵ  and 𝑥ଶ are defined as the sum of uncorrelated random variables, their 
distribution can be approximated as a Gaussian distribution with mean values and variance given by 
(34). 

Finally, the mean value and variance of the normalized resonance frequencies (30) can be 
approximated as: 𝜇௬భ,మ ≅ ଵටଵ±ళఴ భ√యఙഃ,  𝜎௬భ,మଶ ≅ ଵସቀଵ±ళఴ భ√యఙഃቁయ ହଵଶ 𝜎ఋଶ. (35) 

The probability density function (PDF) of (30) can be obtained through the theorem of the 
transformation of random variables [26]. By taking into account that, as mentioned before, 𝑥ଵ,ଶ can 
be approximated by Gaussian random variables, the PDF of the two normalized resonance 
frequencies are given by: 

𝑝௬భ,మ  =  2𝑦ଵ,ଶଷ 1√2𝜋𝜎௫భ,మ 𝑒𝑥𝑝ቌ− ൣ1 − 𝑦ଵ,ଶଶ ൫1 + 𝜇௫భ,మ൯൧ଶ2𝜎௫భ,మଶ 𝑦ଵ,ଶସ ቍ (36) 

where 𝜇௫భ,మ and 𝜎௫భ,మଶ  are given by (34). 
Figure 11 shows the behavior of the two PDFs (36) for three values of 𝜎ఋ (i.e., 0.05, 0.10, and 

0.20). The analytical curves corresponding to (36) (solid curves) are compared with numerical results 
obtained by repeated run analysis (dotted curves). Notice that for each 𝜎ఋ the two PDFs show one 
peak on the left and one peak on the right side of the normalized frequency 1. By increasing 𝜎ఋ, the 
two peaks decrease in magnitude and move away from 1, whereas the PDF spread increases. For 𝜎ఋ = 0.05 the left resonance can decrease till about 0.94𝑓଴, whereas the right resonance can increase 
till about 1.07𝑓଴. For 𝜎ఋ = 0.10 the left resonance can decrease till about 0.90𝑓଴, whereas the right 
resonance can increase till about 1.15𝑓଴. For 𝜎ఋ = 0.20, the left resonance can decrease till about 0.80𝑓଴, whereas the right resonance can increase till about 1.30𝑓଴. 

 
Figure 11. Probability density functions of the normalized resonance frequencies 𝑦ଵ,ଶ  of the DM 
current injected into the CM circuit. The normalized deviations of the filter parameters (i.e., 
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capacitances or self-inductances) are treated as random variables with zero-mean Gaussian 
distribution and normalized standard deviation 𝜎ఋ equal to 0.05, 0.10, and 0.20. Analytical results 
(solid lines) are compared with numerical repeated-run results (dotted lines). 

5.2. Uniform Distribution 

Let us assume 𝛿𝑎, 𝛿𝑏,𝛿𝑐  as uncorrelated Uniform random variables with zero mean and 
variance 𝜎ఋଶ  =  ∆ଶ 3⁄ , where 2∆ is the range of each random variable (i.e., the interval ±∆). 
By taking into account that 𝐸ሼ𝛿ଶሽ  =  𝜎ఋଶ, for the mean value and the variance of 𝑤 we obtain: 𝜇௪  =  ∆ଶ,  𝜎௪ଶ  =  ଷହ ∆ସ (37) 

Therefore, the mean value and the variance of 𝑣 can be approximated as: 𝜇௩ ≅ ଷ଻ଵଶ଴ ∆,  𝜎௩ଶ ≅ ൬ ଵ଺ඥఓೢ൰ଶ 𝜎௪ଶ  =  ∆మ଺଴ (38) 

where the approximations through the first and second order derivatives were used [26,27]. 
From (29) and (33) the mean values and the variance of 𝑥ଵ,ଶ are given by: 𝜇௫భ,మ  =  ± ଷ଻ଵଶ଴ ∆,  𝜎௫భ,మଶ  =   ଵଷ ∆మଷ + ∆మ଺଴  =  ଶଷଵ଼଴ ∆ଶ (39) 

Notice that since 𝑥ଵ  and 𝑥ଶ are defined as the sum of uncorrelated random variables, their 
distribution can be approximated as a Gaussian distribution with mean values and variance given by 
(39). In this case, however, a worse approximation is obtained with respect to the Gaussian case 
because Uniform distributions have limited range. 

Finally, the mean value and variance of the normalized resonance frequencies (30) can be 
approximated as: 𝜇௬భ,మ ≅ ଵටଵ± యళభమబ∆,  𝜎௬భ,మଶ ≅ ଵସቀଵ± యళభమబ∆ቁయ ଶଷଵ଼଴ ∆ଶ. (40) 

Figure 12a,b shows the behavior of the mean value and the standard deviation of 𝑦ଵ,ଶ  as 
functions of ∆ (red lines). Analytical results (40) (solid lines) are compared with numerical results 
obtained through repeated runs (dashed lines). The same figure shows the behavior of the mean 
value and the standard deviation of 𝑦ଵ,ଶ in the Gaussian case (35) (blue lines) for 𝜎ఋ in the same 
range of ∆. Gaussian distribution results clearly in larger spread of the resonance frequencies. 

(a) (b) 

Figure 12. Mean value (a) and standard deviation (b) of the normalized resonance frequencies 𝑦ଵ,ଶ as 
functions of 𝜎ఋ (Gaussian case) and Δ (Uniform case) of the random deviations 𝛿. Analytical results 
(solid lines) are compared with numerical repeated-run results (dotted lines). 

The PDF of (30) could be readily obtained through the theorem of the transformation of random 
variables as in the Gaussian case. By taking into account that 𝑥ଵ,ଶ can be approximated by Gaussian 
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random variables, the PDF of the two normalized resonance frequencies are given by (36), where 𝜇௫భ,మ and 𝜎௫భ,మଶ  are given by (40). 

6. Conclusions 

DM-to-CM-noise conversion in a three-phase system was investigated in the frequency-domain 
by deriving in analytical form the interaction between the α, β, and zero circuits of the Clarke 
transformation due to phase circuit asymmetries. In particular, the frequency location of DM 
resonances injected into the CM circuit was derived in closed form as function of the asymmetry in 
the LC filter parameters. Usually, engineers are aware about this phenomenon because it can be 
observed in frequency-domain measurements of CM current, but a theoretical and quantitative 
description was still missing in the literature concerning three-phase systems. Since circuit 
asymmetry is usually due to component tolerances, a statistical analysis was also derived in the paper 
by treating the filter parameters as random variables. Selection of proper probability distributions of 
input parameters can be made on the basis of available information for the specific problem under 
analysis. The complete statistical characterization of the frequency location of CM current peaks due 
to DM-to-CM noise conversion was derived in analytical form in terms of probability density 
function, mean value, and standard deviation. Future work will be devoted to the analysis of more 
general three-phase systems and the related impact of further system asymmetries on noise 
conversion. 
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