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Abstract: In this work, the design of a novel Ka-band miniaturized bandpass filter with broad
bandwidth is demonstrated by using inversely coupled U-shaped transmission lines. In the proposed
filter, two transmission zeros can be generated within a cascaded U-shaped structure and it can also be
proven that, by inversely coupling two stacked U-shaped transmission lines, the notch frequency at
the upper stopband can be shifted to a lower frequency, which results in a smaller chip size. The key
parameters affecting the performance of the proposed filter are investigated in detail with the effective
lumped-element circuit illustrated. Fabricated in a 0.13-µm SiGe BiCMOS process, the proposed filter
achieves an insertion loss of 3.6 dB at a frequency of 28.75 GHz and the measured bandwidth is from
20.75 GHz to 41 GHz. The return loss is better than −10 dB from 20.5 GHz to 39 GHz. The lower
transmission zero is located at 11.75 GHz with a suppression of 54 dB while the upper transmission
zero is around 67 GHz with an attenuation of 34.6 dB. The measurement agrees very well with the
simulation results and the overall chip size of the proposed filter is 176 × 269 µm2.

Keywords: bandpass filter; 5G technology; Ka-band; broad bandwidth; SiGe BiCMOS

1. Introduction

The bandpass filters (BPF) become more and more significant with the emergence of 5G technology,
which utilizes millimeter-wave (mm-Wave) as its carrier frequency. Serving as a key block in radio
frequency (RF) front-end, the mm-Wave BPF is required to be integrated on-chip for low insertion loss.
Besides, it also dominates the images and spurs within the overall communication systems. As the
transceiver is commonly implemented in an integrated circuit (IC), the most critical specification for
on-chip filters is their footprint due to the expensive process cost. The conventional on-chip filters
employ the passive inductors and capacitors, which are usually realized by the lumped components
or transmission lines, and hence resulting in large die area even at mm-Wave region. In addition,
a large filter size also leads to deteriorated Ohm loss associated with the length of the metal traces.
The general idea of a BPF is illustrated in Figure 1 whereby two transmission zeros (TZs) could be
introduced as the lower and upper stopband frequencies, respectively. The frequency between the
stopband frequencies is the passband.

There is an immense amount of research carried out to achieve TZs in a small area. The conventional
method is to use transmission lines based resonators such as stub-loaded resonators [1,2] or
stepped-impedance resonators [3–5] at the cost of large areas. In [6–9], the folded micro-strip lines
are utilized, which bend the overall length in a small area to form the resonators. However, it does
not reduce the actual length of the transmission line required. Therefore, the insertion loss is not
improved. To further reduce the length, the slow-wave structures [10,11] and the co-planar waveguide
(CPW) [12,13] are proposed though the overall size is still relatively large. In recent years, the coupled
transmission lines based resonator is extensively explored due to its compact size [14–27]. It makes use
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of the parasitic capacitance between the coupling metal traces to form a resonator, implementing the
transmission zeros at the required frequency. Consequently, the chip area is reduced to a large extent.
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Figure 1. Illustration of how to form a passband by using two transmission zeros.

In this work, a novel miniaturized bandpass filter with wide bandwidth is demonstrated by using
inversely coupled U-shaped transmission lines. In the proposed filter, two transmission zeros can
be implemented within a cascaded U-shaped structure and it can also be proven that, by inversely
coupling two stacked U-shaped transmission lines, the transmission zero frequency of the upper
stopband can be shifted to a lower frequency, thus leading to a reduced chip size. Fabricated in
a 0.13-µm SiGe BiCMOS process, our proposed filter achieves a minimum insertion loss of 3.6 dB
at 28.75 GHz and the measured bandwidth is from 20.75 GHz to 41 GHz. The return loss is better
than −10 dB from 20.5 GHz to 39 GHz. The first transmission zero is located at 11.75 GHz with an
attenuation of 54 dB while the second transmission zero is around 67 GHz with an attenuation of
34.6 dB. In addition, the overall chip size of the proposed filter consumes an area of 176 × 269 µm2.

2. Circuit Analysis

2.1. Analysis of Coupled Transmission Lines Based Resonators

We begin our proposed design by examining two coupled transmission lines based resonators as
shown in Figure 2a,b by using lumped components formed models. La and Lb denote the inductance
of the transmission lines and k is the mutual coupling factor between the metal trances. Ca and Cb
represent the parasitic capacitance within the transmission lines and port 1 and 2 are the input and
output nodes, respectively.
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In order to calculate their resonance frequencies without considering the impedance matching
network effect, the output port is assumed to be an open circuit [20]. The input admittance of the
schematic illustrated in Figure 2a can be calculated as:

Y1 =
sCa ·

[
s2(La + Lb)CaCb + 2s2k

√
LaLbCaCb + Ca + Cb

]
s2(La + Lb)CaCb + 2s2k

√
LaLbCaCb + Ca

(1)

where s = jω denotes the Laplace transform factor. Therefore, the resonance frequency (transmission
zero frequency) can be obtained by making the imaginary part of Y1 to be zero:

ω1 =

√
Ca + Cb(

La + Lb + 2k
√

LaLb
)
CaCb

(2)

Repeating the same process, the input admittance of the schematic shown in Figure 2b can be
calculated as well:

Y2 =
sCa ·

[
s2(La + Lb)CaCb − 2s2k

√
LaLbCaCb + Ca + Cb

]
s2(La + Lb)CaCb − 2s2k

√
LaLbCaCb + Ca

(3)

The resonance frequency (transmission zero frequency) of the non-inversely coupled transmission
lines based resonator reflected in Figure 2b can be derived:

ω2 =

√
Ca + Cb(

La + Lb − 2k
√

LaLb
)
CaCb

(4)

which is higher than the frequency of the inversely coupling scheme as calculated in Equation (2).
This is also verified by the simulation results shown in Figure 3 with La and Lb of 150 pH, Ca and Cb of
50 fF, and k value of 0.7. In other words, by adopting the inversely coupled transmission lines based
resonator, the required transmission zero frequency can be implemented with a reduced area.
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2.2. Proposed Bandpass Filter

To demonstrate how the inversely coupled transmission lines based resonator can be applied to
our proposed design, please refer to the 3-D view of the proposed filter illustrated in Figure 4. The two
topmost metals are adopted for the transmission line traces due to their relatively large thickness.
The transmission lines are implemented by employing a U-shaped structure, which are stacked in
alignment with each other to achieve a tight coupling factor.
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To better understand the operation principle of the proposed BPF, the equivalent circuit model
using lumped components is plotted in Figure 5 with the top views of the patterns on top metal 1 and
2 illustrated in Figure 6.

Electronics 2020, 9, x FOR PEER REVIEW 4 of 11 

 

2.2. Proposed Bandpass Filter 

To demonstrate how the inversely coupled transmission lines based resonator can be applied to 

our proposed design, please refer to the 3-D view of the proposed filter illustrated in Figure 4. The 

two topmost metals are adopted for the transmission line traces due to their relatively large thickness. 

The transmission lines are implemented by employing a U-shaped structure, which are stacked in 

alignment with each other to achieve a tight coupling factor. 

 

Figure 4. Layout of (a) proposed filter, (b) two topmost metal traces without ground. 

To better understand the operation principle of the proposed BPF, the equivalent circuit model 

using lumped components is plotted in Figure 5 with the top views of the patterns on top metal 1 

and 2 illustrated in Figure 6. 

 

Figure 5. Equivalent circuits for the structure presented in Figure 4. 

It can be seen that to further utilize the metal traces to save die area, the U-shaped transmission 

lines on the top metal 1 and 2 are divided into three sections, namely L1a, L2a, L3a and L1b, L2b, L3b, 

respectively. The coupled L1a and L1b together form an effective L1-eff, which can be found in Figure 5, 

and serve as a part of the impedance matching network. The effective inductor L2-eff, which consists 

of coupled L2a and L2b, can be employed to form an L-C-L π-type network with C2 to realize the first 

transmission zero. Besides, the L3a and L3b with their parasitic coupling capacitance form the inversely 

Figure 5. Equivalent circuits for the structure presented in Figure 4.



Electronics 2020, 9, 1608 5 of 11

Electronics 2020, 9, x FOR PEER REVIEW 5 of 11 

 

coupled transmission line resonator so that the second transmission zero can be obtained. Therefore, 

a Ka-band BPF can be implemented by choosing proper transmission zero frequencies. Although 

each transmission line pattern shown in Figure 6 has its own length and width, it will lead to a very 

complex optimization procedure, if we try to adjust them one by one. Instead, four parameters, W1, 

W2, W3, and W4, can be defined in the view of independent freedom degrees. It is evident that the 

required specifications of the designed BPF can be achieved by adjusting these four parameters. In 

addition, the coupling factor k in Figure 2 is inherently pre-determined by the process metal stack 

and shall not be discussed here. 

 

Figure 6. Top view of the patterns on (a) top metal 1, (b) top metal 2. 

2.3. Case Studies of the Designed BPF 

In this section, the four parameters will be studied in detail to demonstrate how they could 

influence the transmission zero of the proposed BPF. Figure 7 shows the insertion loss variations 

(S21) as the values of W1, W2, W3, and W4 are changed. Since a small value of W1 could result in an 

increased inductance of the associated transmission line as well as a large value of W2 and W3, the 

corresponded transmission zero will be decreased according to Equation (2), which is also proven by 

the simulation in Figure 7. Besides, a wide W4 indicates an enhanced fringed capacitance, which 

further decreases the transmission zero frequency. 

It can also be observed that changing the value of W1 only influences the upper stopband 

transmission zero to a restricted limit but it mainly has an impact on the suppression, while W2 is the 

only parameter that can coarsely tune the frequency. Furthermore, the variation of W3 and W4 could 

lead to a fine-tuning of the second transmission zero frequency as indicated in Figure 7c,d. In general, 

the adjustment of W4 is preferred since it would help to save the overall area due to their stacked 

topology. 

In order to tune the impedance matching and the first transmission zero frequency, the 

capacitances of C1 and C2 can be varied, as plotted in Figure 8. It can be seen that C1 dominates the 

impedance matching at both the input and output of the proposed BPF, while the selection of C2 

determines the lower stopband frequency. Please note that under different values of C2, the insertion 
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It can be seen that to further utilize the metal traces to save die area, the U-shaped transmission
lines on the top metal 1 and 2 are divided into three sections, namely L1a, L2a, L3a and L1b, L2b, L3b,
respectively. The coupled L1a and L1b together form an effective L1-eff, which can be found in Figure 5,
and serve as a part of the impedance matching network. The effective inductor L2-eff, which consists of
coupled L2a and L2b, can be employed to form an L-C-L π-type network with C2 to realize the first
transmission zero. Besides, the L3a and L3b with their parasitic coupling capacitance form the inversely
coupled transmission line resonator so that the second transmission zero can be obtained. Therefore,
a Ka-band BPF can be implemented by choosing proper transmission zero frequencies. Although each
transmission line pattern shown in Figure 6 has its own length and width, it will lead to a very complex
optimization procedure, if we try to adjust them one by one. Instead, four parameters, W1, W2, W3,
and W4, can be defined in the view of independent freedom degrees. It is evident that the required
specifications of the designed BPF can be achieved by adjusting these four parameters. In addition,
the coupling factor k in Figure 2 is inherently pre-determined by the process metal stack and shall not
be discussed here.

2.3. Case Studies of the Designed BPF

In this section, the four parameters will be studied in detail to demonstrate how they could
influence the transmission zero of the proposed BPF. Figure 7 shows the insertion loss variations (S21)
as the values of W1, W2, W3, and W4 are changed. Since a small value of W1 could result in an increased
inductance of the associated transmission line as well as a large value of W2 and W3, the corresponded
transmission zero will be decreased according to Equation (2), which is also proven by the simulation
in Figure 7. Besides, a wide W4 indicates an enhanced fringed capacitance, which further decreases the
transmission zero frequency.
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It can also be observed that changing the value of W1 only influences the upper stopband
transmission zero to a restricted limit but it mainly has an impact on the suppression, while W2 is
the only parameter that can coarsely tune the frequency. Furthermore, the variation of W3 and W4

could lead to a fine-tuning of the second transmission zero frequency as indicated in Figure 7c,d.
In general, the adjustment of W4 is preferred since it would help to save the overall area due to their
stacked topology.

In order to tune the impedance matching and the first transmission zero frequency, the capacitances
of C1 and C2 can be varied, as plotted in Figure 8. It can be seen that C1 dominates the impedance
matching at both the input and output of the proposed BPF, while the selection of C2 determines
the lower stopband frequency. Please note that under different values of C2, the insertion loss varies
within a relatively large range. Therefore, the choice of C2 must be optimized in coordination with the
optimization of W1, W2, W3. and W4. Although changing the values of W1, W2, W3, and W4 could
certainly affect the impedance matching and the lower stopband frequency, the capacitance values of
C1 and C2 could be overwhelmed and thus be regarded as the dominant components in determining
the matching network as well as the first transmission zero point.
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In summary, in order to implement the proposed BPF with required specifications, the value of
W2 should be firstly chosen to place the second transmission zero approximately around the required
upper stopband frequency. Thereafter, the widths of W3 and W4 should be selected to fine-tune the
frequency. Besides, the width of W1 should be determined so that it is capable of carrying out the
current based on the signal power target. Lastly, the values of C1 and C2 should be decided according to
the required impedance matching and the lower stopband frequency. In our proposed design, all these
parameters are optimized simultaneously by using Keysight Momentum simulation and the values of
W1, W2, W3, W4, C1, and C2 are 8 µm, 233 µm, 56 µm, 28 µm, 83 fF, and 380 fF, respectively. The lower
stopband frequency is around 11 GHz, while the upper stopband frequency is about 64 GHz.

3. Experimental Results

The proposed BPF is fabricated in a commercial 0.13-µm SiGe BiCMOS process. Besides the two
top metal traces, the capacitor in the proposed filter is also implemented in a metal-insulator-metal
capacitor (MIMCAP) form, which make use of the silicon nitride layer provided by the process. The die
microphotograph is shown in Figure 9 and the overall chip size is 176 × 269 µm2 excluding the test
pads. The chip is measured on a probe station using Keysight N5247A vector network analyzer (VNA)
as illustrated in Figure 10.

The measured results are plotted in Figure 11. The proposed filter achieves a minimum insertion
loss of 3.6 dB at the frequency of 28.75 GHz. The measured bandwidth from 20.75 GHz to 41 GHz is
at a fractional bandwidth of 65.6%, which is the second highest among all reported works as shown
in Table 1. The return loss is better than −10 dB from 20.5 GHz to 39 GHz. In addition, the first
transmission zero is located at 11.75 GHz with a suppression of 54 dB and the second transmission
zero is around 67 GHz with the suppression of 34.6 dB. The measurement agrees conclusively with the
simulation results as suggested in Figure 11.

Table 1 summaries the performance compared to other state-of-the-art works. It can be concluded
that our proposed BPF achieves a very good performance among the state-of-the-art designs.
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Table 1. Performance summary and comparison with other published works.

Ref.
Center

Frequency
(GHz)

Insertion
Loss (dB)

Fractional
Bandwidth (%)

Suppression at
Lower

Stopband (dB)

Suppression at
Upper

Stopband (dB)

Area
(mm2)

[15] 35 1.7 21.9 N.A. 20 0.039
[17] 30 1.66 23.4 N.A. 25.4 0.009
[18] 31 3.9 51 N.A. 45 0.075
[19] 26.5 3.8 50.9 N.A. 36 0.176
[20] 29 3.5 26.7 47 24 0.028
[21] 26.6 2.6 70 45 32 0.066
[23] 31 3.2 11.4 >25 >25 0.024
[23] 31 2.7 17.5 >25 >25 0.044
[24] 31 2.4 23 N.A. 20 0.024
[25] 33 2.6 18 N.A. 44 0.038

This Work 30.8 3.6 65.6 54 34.6 0.047

4. Conclusions

A novel Ka-band miniaturized bandpass filter with broad bandwidth is demonstrated by using
inversely coupling U-shape transmission lines in this work. In the proposed filter, two transmission
zeros can be generated using a cascaded U-shaped structure and it can also be proven that, by inversely
coupling two stacked U-shaped transmission lines, the notch frequency at the upper stopband can be
shifted to a lower frequency, which results in a more compact design. The key parameters affecting the
performance of the proposed filter are investigated in detail with the effective lumped-circuit model.
Fabricated in a 0.13 µm SiGe BiCMOS process, our proposed filter achieves a minimum insertion loss
of 3.6 dB at a frequency of 28.75 GHz and the measured bandwidth is from 20.75 GHz to 41 GHz.
The return loss is better than −10 dB from 20.5 GHz to 39 GHz. The lower stopband frequency is
located at 11.75 GHz with a suppression of 54 dB and the upper stopband frequency is around 67 GHz
with an attenuation of 34.6 dB. The measurement agrees very well with the simulation results and the
overall chip size of the proposed filter is 176 × 269 µm2. Furthermore, our proposed design occupies a
comparable area with most designs listed in the comparison table, which have a lower order. To achieve
a similar level of out-of-band suppression, those designs need to cascade two lower-order filter cells
together. Consequently, their physical sizes would become relatively large.
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