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Abstract: Random number generators are used in areas such as encryption and system modeling,
where some of these exhibit fractal behaviors. For this reason, it is interesting to make use of the
memristor characteristics for the random number generation. Accordingly, the objective of this article
is to evaluate the performance of a chaotic memristive system as a random number generator with
fractal behavior and long-range dependence. To achieve the above, modeling memristor and its
corresponding chaotic systems is performed, from which a random number generator is constructed.
Subsequently, the Hurst parameter for the detection of long-range dependence is estimated and
a fractal analysis of the synthesized data is performed. Finally, a comparison between the model
proposed in the research and the β-MWM algorithm is made. The results obtained show that the data
synthesized from the proposed generator have a variable Hurst parameter and both monofractal and
multifractal behavior. The main contribution of this research is the proposal of a new model for the
synthesis of traces with long-range dependence and fractal behavior based on the non-linearity of
the memristor.

Keywords: chaotic systems; long range dependence; memristor; multifractal analysis and random
number generator

1. Introduction

Random number generators (RNGs) are currently used to encrypt information and model natural
processes. In the encryption area, RNGs allow to encoding information that is transmitted from one
point to another without running the risk of being deciphered by an external agent. To achieve this,
complex encryption processes are required to decipher the information only through the encryption
key. In most cases, this encryption key is a combination of a data sequence with the information to
be transmitted [1]. These sequences must be sufficiently long and random enough, in addition to
presenting independence between the generated values [2]. For the generation of independent random
numbers, the inverse transformation method can be used: a uniformly distributed random number is
generated, with parameters 0 and 1, and it is evaluated in the desired quantile function (the inverse of
the cumulative function). Now, although the inverse transformation method solves the problem of the
type of distribution, it only allows the generation of independent random numbers and, consequently,
it is not suitable for modeling natural processes that are highly correlated and that show dependencies
between the different scales; for example: detection of climate zones [3], market behavior [4] and video
traffic in Moving Picture Experts Group 4 (MPEG-4) [5].
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It has been found that some algorithms for the random traces generation show similar behavior
to natural processes, especially in traffic networks [3–7]. Strict self-similarity is very restrictive in
adequately characterizing many types of signals that exhibit long range dependence (LRD). For example,
Ethernet traffic [8] has LRD, but shows short-term correlations and scale behavior inconsistent with
strict or monofractal self-similarity, in which a single parameter: Hurst’s, is sufficient to characterize
the whole set of data [9]. Furthermore, the scaling behavior of the moments, when the Ethernet
traffic is aggregated, is a non-linear function of the order of the moments [10]. When the traffic
exhibits such characteristics, it is considered multifractal. Multifractal signals are positive measures or
distributions that possess self-similarity with inhomogeneous scalability [10]. Multifractal behavior
has been detected in the traffic: transmission control protocol (TCP) [9], wide area network (WAN)
Internet [11], variable bit rate (VBR) video [12] and MPEG-4 video [5], among others.

An important contribution to this area is the multifractal wavelet model (MWM), by Riedi et al. [10].
The MWM uses a multiplicative structure based on the Haar wavelet transform to synthesize N samples
of a traffic trace with computational complexity O(N). The model captures not only the power
spectrum (hence the LRD), but also the higher order statistics. The MWM has been explored in [10] for
the generation of discrete multifractal sequences, with success, and has been applied by two of the
authors in the area of cognitive radio [13].

Despite the advantages that MWM offers, it is desired to propose a method that not only generates
discrete multifractal sequences, and that therefore can be applied to other areas, such as bioengineering,
in which monofractality has been detected [14]. Specifically, the authors are interested in developing a
synthetic electrocardiographic (ECG) signal generator [15], with LRD, in which the cardiac rhythm
values are fed by the monofractal RNG and thus the dependence between the consecutive cardiac
rhythms is guaranteed. The proposed generator would facilitate the correct evaluation of the algorithms
that help to detect changes in cardiac rhythm (as occurs in arrhythmias), while allowing us to compare
the model with real hardware.

Additionally, MWM presents another disadvantage, when it is desired to transfer its implementation
to hardware. The MWM requires the generation of the complete data set, of length N = 2n, with n ≥ 20,
when it is desired to specify the sample multifractal characteristics, within acceptable confidence
intervals [16]. The memory waste is unacceptable when it is evidenced that to get only m random
numbers, it is required to throw away the remaining 2n

−m. Therefore, this article presents the
search and characterization of a versatile random number generator (RNG) that, unlike the inverse
transformation method, presents LRD; and that, unlike MWM, exhibits both monofractal and
multifractal behavior. Additionally, it is desired to solve the problem of inefficiency for the generation
of a few random numbers.

To solve the last, we must focus on the chaotic dynamical systems: the description in difference
equations could generate the next sample, based on the current sample and the dynamics of
the non-linear system. Furthermore, for LRD to occur, the system would have to be chaotic,
since self-similarity is related to it [17]. It is in this sense that the memristor is presented as the
suitable candidate to be the core of a random number generator with LRD (this research shows
evidence that validates this hypothesis, although other chaotic systems are not ruled out, which also
allow it).

In 1971, Chua [18] proposed the memristor as a non-linear device with two terminals that allows
to directly relate the flux and charge variables of the faraday’s law of induction. In 2010, Muthuswamy
and Chua [19] designed and implemented a chaotic circuit using the memristor, evidencing the
application of this as a RNGs. Although the use of the memristor as a random number generator is
not new, the possibility of using it as a source of Hardware random-number generator (since it is a
non-linear device sensitive to initial conditions) in conjunction with a versatile structure that allows
adjusting the Hurst parameter, choose monofractality/multifractality, or even adjust the width of
the multifractal spectrum, has not been evidenced in the literature reviewed to date. In this article,
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the existence of the monofractal/multifractal behavior of a memristor-based RNG is detected, it is
shown that its characteristics can be modified and it is shown what could be done to achieve it.

The rest of the article is structured as follows. Section 2 mentions some of the works related to the
topic of RNGs, long-range dependence and multifractal analysis. Section 3 describes the methodology
used. Subsequently, Section 4 presents the results achieved in the investigation. And finally, Section 5
presents the conclusions and future work.

2. Related Work

In the field of chaotic systems, several works describing different memory circuits and functions
have been published. In principle, Cruz and Chua [20] mathematically develop a chaotic system using
a device which was called the Chua diode. Subsequently, Muthuswamy and Chua [19] generated
another chaotic oscillator using a memristor. From this, several authors have made modifications both
in the memory function memconductance and in the circuit for specific applications. For example,
in [21,22] new functions are implemented to generate chaotic systems. In 2016 and 2017 new circuits
were proposed for encryption and decryption of images and texts [23].

Through the previous investigations, several RNGs have been built. Some of these proposals can
be studied in [24,25], where RNGs are implemented based on a chaotic signal emulated by an FPGA
and sampling the signal presented in [19]. The result of both articles is the implementation of a system
capable of approving the National Institute of Standards and Technology (NIST) test bench for its
application in computer security systems.

Other generators are exposed by Melgarejo and Piraján [26], who propose a random number
generator from a noisy signal emanating from a Zener diode, obtaining a generator with normal or
uniform distribution and with particular statistical characteristics; and Li et al. [27], who built a RNGs
based on a chaotic signal emanated by a laser, with the possibility of generating random bits every
10 Gb/s.

On the other hand, Leland et al. [7] observed the self-similar nature of Ethernet traffic, showing
that such traffic is statistically self-similar and showing that the degree of self-similarity is an indication
of traffic variability, estimated in terms of the Hurst parameter. What was stated by [7] allowed to
conclude that the models used until that moment were incapable of capturing this property, opening the
way to the characterization and modeling of modern traffic. This need led to the study of fractal
traffic through the Wavelet transform [18–21,28–31]. For this reason, Riedi et al. [10] proposed a
wavelet multifractal model (WMM) which characterizes and synthesizes positive data with long-range
dependence (LRD) and Tuberquia et al. [32] made an algorithm to generate multifractal time series
with Hurst parameter and multifractal spectrum width, sample and adjustable.

As evidenced in the previous paragraphs, there are no works that generate random numbers
based on a chaotic system with LRD and that exhibit fractal behavior. Related investigations allow
the generation of random numbers without performing the fractal analysis of the synthesized traces.
In this research a proposal of a model that starts from a physical signal to generate traces with said
behaviors is developed.

3. Materials and Methods

The scheme of Figure 1 represents the methodology used in this investigation. Initially, the memristor
device is introduced, which allows it (from its non-linear behavior) to generate the chaotic systems
implemented as physical signals for the proposed RNG model, which synthesizes the traces of data to
be analyzed. Subsequently, the NIST test bench is used to measure the degree of randomness of the
synthesized data [7]. Some sequences were estimated with the Hurst parameter (H) for the detection
of LRD from two tools: the variance-time diagram (VT) and the log-scale diagram (LD). The first
calculates the moments of aggregation and the autocovariance of the process X[k] [33]. The second
computes the average of the detail coefficients of the discrete wavelet transform [25,26]. If these traces
have long-range dependence, they can be classified as single—or multifractal with multiscale (MD) and
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linear multiscale (LMD) diagrams [25,27]. Similarly, the multifractal spectrum (MS) allows analyzing
fractal processes from the Legendre transform [10], providing information on the data trace, such as its
fractal dimension, spectrum width and information dimension, among others [34–37].
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3.1. Memristor

In the decade of the 60s research was started on a device that would represent the link lost in the
relation of the four circuital variables exposed in the deduction of Faraday’s law of induction: voltage
v, current i, flux φ and charge q [38]. It was then that Widrow [39] developed a new device called a
memistor. This is a three-terminal device, for which the conductance between two of its terminals is
controlled by the time integral of the current at the third terminal, and its resistance by the charge.
Chua [18], who is considered the father of non-linear circuits, predicted the existence of a missing
element that would relate the charge to the flux. To this element Professor Chua called it memristor.
The memristor is a nonlinear two terminal device that directly relates flux and charge. There are two
models of memristor: one controlled by charge and another controlled by flux, which are described in
Equations (1) and (2).

charge− controlled Memristor


V(t) = M(q(t))i(t)[V]

M(q) = dϕ(q)/dq [Ω]

p(t) = M(q(t))i2(t)[W]

(1)

flux− controlled Memristor


i(t) = W(ϕ(t))v(t)[A]

W(ϕ) = dq(ϕ)/dϕ [S]
p(t) = W(ϕ(t))v2(t)[W]

(2)

Chua [18] named the function M(q(t)) as the memristive and W(ϕ(t)) as the memductance. For a
device to be considered memristor, it must comply with the following characteristics [31,32]:
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• The device must exhibit a pinched hysteresis loop in the voltage-current plane for some period of
excitation signal.

• The area of the pinched hysteresis lobe should decrease monotonically with excitations of
increments in frequency.

• The pinched hysteresis loop must shrink to a simple function value when the frequency tends
to infinity.

Memristors have a wide range of applications: memristor based on RRAM memories [40–42],
sinusoidal oscillators [33–35,43], random number generators [44,45], programmable analog circuits [45],
adaptive filters [37,38,46,47], neuromorphic circuits [48], and chaotic systems [7,11,12].

3.2. Chaotic Systems

In this section, the chaotic systems that synthesize the input signals for the random number
generator, based on memristor as a device that provides the non-linearity, are presented. Each system
displays the phase diagram of two electrical variables measured in their respective electrical circuit,
in addition to presenting the system of equations that describe it.

3.2.1. System 1

One of the first circuits proposed by Cruz and Chua [20] as a generator of chaotic systems is
shown in Figure 2a, with the phase diagram of Figure 2b. Cruz and Chua [20] used the Chua diode for
this purpose, which emulates a linear piecewise function in the form of a current that depends on the
potential differential between its two terminals. The mathematical development of Figure 2a is shown
in Equation (3). 

C2
d
dt VC2 =

VC1
R −

VC2
R − iD

(
VC2

)
C1

d
dt VC1 =

VC2
R −

VC1
R + iL

L d
dt iL = −VC1

(3)
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3.2.2. System 2

Chaotic generators have been used for the encryption and decryption of information.
Yang et al. [23] designed and implemented a chaotic circuit (Figure 3a) in which the memristive
is a piecewise linear function, similar to the one exposed in the Chua diode. Yang et al. [23] describe
the steps to encrypt and decrypt text and images. The structure of the circuit is presented in Figure 3b,
which is generated by Equation (4). 

C2
d
dt VC2 = iL −VC2W(ϕ)

C1
d
dt VC1 = GVC1 − iL

L d
dt iL = VC1 −VC2

d
dtϕ = VC2

(4)
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3.3. Random Number Generator (RNG)

Below the procedure for generating a sequence of random numbers from a chaotic input signal
is explained. The starting point lies in the model presented by Li et al. [27] (Figure 4), to which
modifications have been made including the proposal of Corinto et al. [25] to synthesize data with
greater randomness. The degree of randomness is measured with the NIST test bench.

The block diagram of Figure 4 shows the process for an RNG dependent on a chaotic signal (for
example, emitted by a laser beam) [27]. In this investigation the chaotic signal will be generated by the
two systems presented previously.

The resolution of the analog to digital converter (ADC) block depends on the n-bits of the converter,
allowing to distinguish values closer to each other with a larger number of bits. This suggests that
at a high sampling rate, an ADC with low resolution will allow the conversion of consecutive equal
data, decreasing the randomness of the generator. Therefore, it is necessary to add an intermediate
block that reduces the sampling rate depending on the number of bits of the converter to eliminate
unnecessary information from the chaotic signal sampled. A normalization block is also added in
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order to decrease the sampling rate of the multitasking processor. The calculation of this rate is shown
in Equations (5) and (6).

TN =
(maxXk −minXk)Ts

(2n − 1)max
∣∣∣X[k] −X[k− 1]

∣∣∣ (5)

N = [TN/TS] (6)

The intention of the Equation (5) is to find the biggest difference between consecutive data of the
sampled signal and normalized input, in order to reduce the sampling rate using the limit values of
the signal and this difference, without neglecting the number of bits of the ADC. This value must be
calculated a priori and reduced to a constant. The modifications are presented in Figure 5.
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3.4. NIST Tests

The NIST test bench, described in [49,50] consists of fifteen (15) statistical tests to prove the
randomness of binary (arbitrarily long) sequences produced by random or pseudo-random generators
based on software or hardware, to be implemented in applications of information encryption. The data
synthesized by the generator is subjected to these tests in order to discard traces with low approval
rate. The tests that the bank performs are:

• The frequency (monobit) test;
• Frequency test within a block;
• The cumulative sums (cusums) test;
• The runs test;
• Tests for the longest-run-of-ones in a block;
• The binary matrix rank test;
• The discrete Fourier transform (spectral) test;
• The overlapping template matching test;
• Maurer’s “universal statistical” test;
• The approximate entropy test;
• The serial test;
• The linear complexity test;
• The random excursions test;
• The random excursions variant test;
• The non-overlapping template matching test.

Each test assumes that the data is random. This hypothesis is rejected if the result of the p-value
(mathematical result of each test) is lower than a constant α. By default α = 0.01. indicating that only
an error equal to or less than 1% is accepted. The NIST test bench is rigorous because its focus is on
sequences used for information encryption. The documentation and source files to execute them can
be downloaded [51].

Below the procedure for generating a sequence of random numbers from a chaotic input signal
is explained. The starting point lies in the model presented by Li et al. [27] (Figure 4), to which
modifications have been made including the proposal of Corinto et al. [25] to synthesize data with
greater randomness. The degree of randomness is measured with the NIST test bench.

3.5. Diagram Variance-Time

In this section the procedure to detect the LRD from the estimation of the Hurst parameter by
means of the VT diagram is outlined. Then an example trace is exposed and the Hurst parameter is
estimated with this tool. For a stochastic discrete time process X[k], k ∈ N its aggregate process X(m) is
defined, with an aggregation level m, as shown in Equation (7) [33]:

X(m)[i] =
1
m

mi∑
k=m(i−1)+1

x[k] (7)

If the autocovariance function of X is asymptotically self-similar of second order (Equation (8)):

lim
m→∞

ym[k] =
σ2

x
2

[
(k + 1)2H

− 2k2H + (k− 1)2H
]

(8)

If γ is the autocovariance function and the Hurst parameter H is between 0.5 < H < 1, it is said that
the stochastic process X has long-range dependence. This shows a relationship of stochastic process
data, since for values of H < 0.5, the autocovariance of X[k] becomes close to zero. While for H = 1,
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the autocovariance is equal to the variance, thus presenting a particular case [33]. Furthermore, if the
process X[k] is exact or asymptotically self-similar, the sample variance of the aggregate process is
found from Equation (9).

S2
X(m) = σ2

Xm2H−2 (9)

Now, when applying the logarithm function on both sides of the Equation (9), get Equation (10):

log S2
X(m) = log σ2

x + (2H − 2) log m (10)

Thus, if it is assumed in a graph that y = log S2
x (m) and x = log (m), the Hurst parameter could be

estimated by means of a linear regression. In the literature this graph is known as the variance-time
diagram [36].

Sheluhin et al. [36] show the performance of the VT diagram and explain that it is a tool used as a
diagnosis, since it is biased and, in addition, the bias increases with the growth of H. On the other hand,
the use of the wavelet transform for parameter estimation of Hurst is not parametric and the estimator
of its variance is not biased [33]. For this reason, tools such as the log-scale diagram are used.

3.6. Diagram Log-Scale

In this section the mathematical model for the construction of the LD is presented. The basis of
this tool is the discrete wavelet decomposition of the stochastic process X[k], calculating the detail
coefficients by means of a filter bank with multiple sampling rates.

The continuous wavelet decomposition (CWT) of a signal X(t) is a linear transformation defined
by Equation (11) [34].

Tx(a, b)
∫
∞

−∞

X(t)Ψ((t− b)/a)dt, a, b ∈ R (11)

A fundamental characteristic of the CWT is its redundancy, since neighboring coefficients share
information about X(t). To reduce this redundancy, the discrete wavelet transform is introduced into
the Equation (12) [36]:

dX( j, k) = TX
(
2 j, 2 jk

)
, j, k ∈ Z+ (12)

Being dX(j,k) the detail coefficients of the wavelet transform. The respective scale function is
obtained with a bank of multi-tasking filters [25,26]. A temporal estimator has a small variance when
there is a lack of correlation between the detail coefficients. This can be estimated for the process dX(j,•)
by Equation (13) [26,27].

µ j =
1
n j

n j∑
k=1

‖ dX( j, k) ‖2 (13)

where nj is the number of detail coefficients in the octave j and µj ≈ E [|dx(j,k)|2]. Since the second
moment of the detail coefficients follows a power law with exponent 2H − 1, it is possible to estimate
the Hurst parameter, using the estimator (Equation (14)) [36]:

y j = log2 µl = (2H − 1) j + log2 C (14)

The graph of j versus y j is nown as the log-scale diagram [35]. The value of H is an approximation
that depends on the amount of detail coefficients used and the number of octaves used in the linear
regression. Taking the plot exposed in [52], in Figure 7 shows the series of times with LRD (Figure 7a)
and the estimation of the Hurst parameter with the LD between octaves 3 and 14 (Figure 7b).
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3.7. Multiscale Diagram and Linear Multiscale

Now the MD and LMD tools used as the first approach to the multifractal analysis are shown,
explaining in a rough way the mathematical basis of each diagram and illustrating the implementation
of each tool with two traces as an example. The estimator of order q of a process dx(j,•) show
in Equation (15) as an extended concept of the estimator of the Equation (13) to higher order
moments [25,27].

µ
q
j =

1
n j

n j∑
k=1

‖ dX( j, k) ‖q (15)

For processes with LRD, the estimator of Equation (15) follows the law of powers shown in
Equation (16) [34].

µ
q
j ≈ E

[
‖ dX( j, k) ‖q

]
= Cq2 j(ζ(q)−q/2) (16)

where Cq is a function that depends on the order of the estimator and ζ(q) is a function that allows
to distinguish between monofractal and multifractal processes. If the estimator of Equation (13) is
equal to that of Equation (15), the expression ζ(q) = qH is satisfied, with which it is deduced that said
process is monofractal [36]. Thus, in a similar way to the analysis carried out in Equation (10) and
Equation (14), the multiscale diagram is obtained when performing the graph of the Equation (17).

ζ(q) = αq + q/2 (17)

where αq can be computed by Equation (18).

log2 µ
q
j = log2

(1/n j
) n j∑

k=1

‖ dX( j, k) ‖q
 ≈ αq j + log2 Cq (18)

Two processes with LRD are analyzed: interarrival times of BCpAu89 trace with multifractal
behavior and Fractional gaussian noise with monofractal. For q > 0 the time series with multifractal is
convex, but empirically determining this fact is complex. For this reason, the linear multiscale diagram
described by Equation (19).

H(q) = αq/q + 1/2 (19)
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If the process with LRD presents monofractal behavior, the Equation (19) satisfies the expression
h(q) = H and therefore, this process presents the same parameter of Hurst in all orders.

3.8. Multifractal Spectrum

As a last tool, the Legendre transform is introduced as the main foundation for the built of the
multifractal spectrum. The process of transforming the mass exponents to their local dimension is
briefly exposed, allowing to differentiate multifractal sequences of monofractals.

By means of the Legendre transform, the multifractality can be analyzed in a process with LRD,
for which it is necessary to know the exponents of mass τ(q) (Equation (20)).

τ(q) = qH(q) − 1 (20)

From Equation (20) the singular exponent α(q) is defined (Equation (21)).

α(q) =
d
dq
τ(q) (21)

At this point, the Legendre transform defined by the Equation (22), which represents the local
dimension of the multifractal set [53].

f (α(q)) = qα(q) − τ(q) (22)

Finally, the multifractal spectrum is obtained by plotting the singular exponent versus the local
dimension of the multifractal set. The result is a long concave bow down where the difference between
the minimum of α(q) and its maximum is called the multifractal spectrum width [54] for multifractional
processes and a local point for monofractal processing. For a more detailed explanation, consult [32].

In principle, the exponents of mass τ(q) are calculated to find the singular exponent α(q) and after,
the Legendre transform of the time series. Finally, the multifractal behavior of the traces is observed,
concluding the multifractal nature of the trace Interarrival times of BCpAu89 and the monofractal
nature of Fractional gaussian noise.

3.9. Multiplicative Cascades

The multifractal wavelet model (MWM) proposed by [10] provides an algorithm for the synthesis
of data with LRD by means of a binomial conservative cascade of computational complexity O(N).
This algorithm is used as a reference point in the investigation. Riedi et al. [10] establishes the possibility
of generating traces of multifractal data with LRD, assuming that the multiplying coefficients p and
p − 1 must be random variables, identically distributed, with a mean of 0.5, that take values in the
interval [0, 1] and have a beta probability distribution defined in Equation (23) [55].

fX(x;α, β) =
{

Γ(α+ β)/Γ(α)Γ(β) xα−1(1− x)β−1

0
0 < x < 1 α, β > 0 x < (0, 1)

(23)

When the parameters α and β are equal (Equation (24)), the density function beta is symmetric
with respect to 0.5 and therefore, the average takes the value of 0.5. Riedi et al. [10] shows that using
a symmetric beta density function as expressed in Equation (24) for the multipliers of the Wavelet
coefficients (called the β-MWM model) it is possible to control the Hurst parameter when modifying the
β parameter of the multipliers. The relationship proposed by Riedi et al. [10] is shown in Equation (25).

fX(x; β, β) =
{

Γ(2β)/Γ(β)2 xβ−1(1− x)β−1

0
0 < x < 1 β > 0 x < (0, 1)

(24)
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β = (22H−1
− 1)/

(
2− 22H−1

)
(25)

An example of implementation of the β-MWM algorithm is shown in Figure 8 for a data length
220, condition of U0,0 = 100 and Hurst parameter H = 0.9.
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Figure 9. (a) Multiscale diagram (MD) for the trace synthesized by the β-MWM algorithm; (b) linear
multiscale diagram (LMD) for the trace synthesized by the β-MWM algorithm; (c) multifractal spectrum
(MS) for the trace synthesized by the β-MWM algorithm.

The estimate of the Hurst parameter for this trace is shown in Figure 10a,b. Note the estimation of
the Hurst parameter with respect to the one introduced in the algorithm.
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4. Results

The results show the combinations of the RNG used to synthesize the different random sequences
submitted to the NIST tests. Then, the result of the tools applied to the data for the detection of LRD
and multifractal analysis is displayed. Finally, a brief comparison is made between the proposed
generator and the β-MWM algorithm.

4.1. Random Number Generator

Using the RNG shown in Figure 6 for the chaotic signals of the six (6) systems, random sequences
of length 1 × 106 were synthesized by varying the parameters of the generator, such as the quantity of
n-bits used in the ADC, the quantity m-LSBs taken from the ADC and the number of b-bits used in
the DAC, where b = 0 is the output of the RNG a purely binary data sequence (the DAC is not used).
When synthesizing the different sequences, it was shown that some combinations had a deterministic
behavior or LRD was not detected, where it was necessary to implement the threshold function
(Equation (26)) to the traces generated with b , 0, because the NIST tests are only implemented for
binary data.

f
h(x)=

{
0 Para x < 0.5
1 Para x ≥ 0.5

(26)

Each sequence was submitted to the first fourteen NIST tests, with parameters chosen according
to Table 1 (in those tests that needed an external parameter).
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Table 1. Adjusted parameters for tests p2, p8, p10–p14 of the NIST test.

Test Parameter

p2 M = 10,500
p8 m = 5

p10 m = 6
p11 m = 2
p12 M = 500
p13 x = +1
p14 x = +1

From Tables 2 and 3, the p-value computation is shown for each combination defined by each
NIST test. The default value of α is taken to discriminate the sequences, with p-value < α a failed test.
The possible causes of a p-value < α are due to the correlated data or that the threshold function does
not adapt to the data. It is observed that the tests with the lowest approval rate are: frequency test
within a block, the discrete Fourier transform (spectral) test and the overlapping template matching
test, while the tests with the highest approval rate are: the random excursions variant test, the random
excursions test and the linear complexity test.

Table 2. Results table for the system 1.

Interval H 0.5 < H < 0.6 0.6 < H < 0.7 0.7 < H < 0.8 0.8 < H < 0.9

Parameter H 0.5218 0.5756 0.651 0.6757 0.6913 0.7196 0.7738 0.7958 0.8171 0.8253

RNG Param
b 8 16 12 16 10 8 0 8 0 0

Approval rateN 8 8 8 10 10 12 12 10 10 10
M 4 7 7 9 8 10 9 10 8 9

NIST Tests

p1 0.3638 0.0784 0.0000 0.6369 0.0000 0.0341 0.1795 0.3756 0.4629 0.0000 7/10
p2 0.7665 0.6337 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2/10
p3 0.4384 0.1069 0.0000 0.4135 0.0000 0.2635 0.0310 0.0000 0.0120 0.0000 6/10
p4 0.0000 0.0169 0.0000 0.4853 0.0000 0.9980 0.0000 0.0000 0.1137 0.0000 4/10
p5 0.0000 0.0002 0.0000 0.0580 0.0000 0.0578 0.2928 0.0000 0.0000 0.0000 3/10
p6 0.7192 0.4932 0.4457 0.3003 0.0000 0.3979 0.6861 0.0000 0.0000 0.0000 6/10
p7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0/10
p8 0.9999 0.9999 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2/10
p9 0.0000 0.0000 0.0000 0.1358 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1/10

p10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0108 0.0001 0.0000 0.0000 0.0000 1/10
p11 0.0000 0.0123 0.0000 0.7001 0.0000 0.1061 0.1527 0.0000 0.2178 0.0000 5/10
p12 0.8905 0.1969 0.5713 0.5318 0.0605 0.6755 0.1527 0.2339 0.2952 0.5528 10/10
p13 0.3062 0.8364 0.7000 0.3845 0.0553 0.4942 0.8007 0.4128 0.4972 0.5544 10/10
p14 0.2602 0.7119 0.8875 0.5600 0.6490 0.2850 0.8162 0.0453 0.6462 0.7806 10/10

Total tests approved 8/14 10/14 4/14 10/14 3/14 10/14 8/14 4/14 7/14 3/14

The NIST tests are rigorous, since its approach is to evaluate systems for information encryption.
However, because in general the synthesized data approve several tests, the randomness of the
sequences can be evidenced for its use in systems modeling and not for encryption. Tables 2 and 3
present data sequences with a higher approval rate. The combinations selected in Tables 2 and 3
exceeds half of the approved tests and were chosen to expose the LRD process and its multifractal
analysis. For convenience, the combination chosen in Table 3 will be named Synthesis of monofractal
data and the sequence chosen from Table 2 will be named Synthesis of multifractal data.

Figure 11a,b shows the traces Synthesis of monofractal data and Synthesis of multifractal data in a
time interval of 4.5 × 105 < k < 4.55 × 105. The length of each trace is one million data.
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Table 3. Results table for the system 2.

Interval H 0.5 < H < 0.6 0.6 < H < 0.7 0.7 < H < 0.8 0.8 < H < 0.9

Parameter H 0.5458 0.5998 0.6666 0.6726 0.6938 0.7456 0.7718 0.7845 0.8104 0.8614

RNG Param.
B 12 16 8 8 10 8 8 8 16 0

Approval rateN 12 16 12 16 16 10 16 12 12 10
M 3 9 5 9 11 5 13 9 9 6

NIST Tests

p1 0.5286 0.0000 0.0000 0.0010 0.0074 0.0000 0.0185 0.0000 0.0000 0.0000 2/10
p2 0.0000 0.0046 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0/10
p3 0.1292 0.0079 0.0000 0.0015 0.0020 0.0000 0.0020 0.0000 0.0000 0.0000 1/10
p4 0.7436 0.5809 0.0000 0.1419 0.0262 0.0000 0.1488 0.0000 0.0000 0.0000 5/10
p5 0.0000 0.2046 0.1259 0.4249 0.5282 0.0497 0.4171 0.0035 0.0000 0.0000 6/10
p6 0.0686 0.8804 0.8603 0.0413 0.4437 0.0022 0.2841 0.8427 0.0508 0.0000 7/10
p7 0.0000 0.0034 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0/10
p8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0/10
p9 0.0000 0.7511 0.0000 0.5834 0.5741 0.0000 0.0022 0.0000 0.0000 0.0000 3/10

p10 0.0000 0.1902 0.0001 0.0441 0.0085 0.0000 0.0000 0.0000 0.0000 0.0000 2/10
p11 0.7349 0.0155 0.0148 0.1453 0.0266 0.7398 0.0223 0.1713 0.0000 0.0283 9/10
p12 0.8879 0.7832 0.6853 0.6494 0.6990 0.0206 0.3344 0.6419 0.9085 0.0000 9/10
p13 1835 0.7439 0.0700 0.8801 0.9194 0.0752 0.2596 0.4906 0.4964 0.2667 10/10
p14 0.3337 0.5930 0.2636 10.000 0.5023 0.1336 0.0868 0.6817 0.3428 0.5930 10/10

Total tests approved 8/14 9/14 6/14 9/14 8/14 5/14 8/14 4/14 4/14 3/14
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In Figure 12 the VT diagram applied to the two traces is observed with a confidence interval for the
first trace of 0.77007 < H < 0.77347 and for the second trace of 0.71737 < H < 0.72174. Then long-range
dependence is detected in the two traces because the Hurst parameter is estimated between the values
0.5 < H < 1.0, and the two synthesized sequences present correlation between their data because
they are generated by means of a physical signal in which the value x[k] at time k depends on the
previous states x[k − 1], x[k − 2], . . . , x[0] of the signal. It is at this point that the concept of long-range
dependency in the sequence is actually observed.
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To perform the diagram shown in Figure 13 the analysis octaves j1 = 3 and j2 = 14 for Synthesis
of monofractal data and the octaves j1 = 5 and j2 = 13 for Synthesis of multifractal data were chosen,
in order to take values so that the regression was as linear as possible. In addition, the estimated Hurst
parameter is close to the values proposed in Tables 2 and 3. Consequently, the octaves defined by
means of this diagram will be those used for the multifractal analysis.

In order to analyze the type of multifractality present in the data, the diagrams of Figure 14 are
made. In Figure 14a there is no notable difference between the data Synthesis of monofractal data
and Synthesis of multifractal data, so Figure 14b is performed, where it is shown that for the data
Synthesis of monofractal data a horizontal line is drawn at q > 0 indicating that the Hurst parameter
remains constant at a value of ≈0.76, thus demonstrating the monofractality of the trace. In contrast,
the Synthesis of multifractal data traces a gentle downward curve because the Hurst parameter is
altered through the orders, suggesting the presence of multifractality. It is appreciated that when q = 2
the value of H ≈ 0.7784.

The MS is drawn from the Legendre transform (Figure 15). The trace Synthesis of monofractal
data is reduced to its fractal dimension value which coincides with the estimate of the Hurst parameter,
since the singular exponent in this case is a constant (H). On the other hand, the trace Synthesis of
multifractal data presents a downward concave MS, whose fractal dimension (maximum value) is the
estimate of the Hurst parameter. Additionally, f(min(α)) > f(max(α)), representing the existence of a
higher concentration of high values compared to the concentration of low values. Another measure is
the width of the spectrum, which is approximately between 0.7 to 1.7.

It is possible, by altering the initial conditions of the system of equations, the circuital conditions
and the parameters of the memristive function in the chaotic system, to modify the properties of the
multifractal spectrum of the synthesized sequences (Figure 16). However, these parameters do not
significantly change the estimation of the Hurst parameter (Figure 16).
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A summary of the type of multifractality found for all combinations of Tables 2 and 3 is shown in
Tables 4 and 5, where the symbol • represents a monofractal trace and the symbol ∩ a multifractal
trace. In the tables it is observed that 6 of 20 cases have multifractality.

Table 4. Results of multifractal analysis of system 1.

System 1

Combinations Result

Bits n m -
8 8 4 ∩

16 8 3 •

16 10 9 ∩

12 8 7 •

10 10 8 •

8 12 10 ∩

0 12 9 •

8 10 10 ∩

0 10 8 •

0 10 9 •
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Table 5. Results of multifractal analysis of system 2.

System 2

Combinations Result

Bits n m -
12 12 3 ∩

16 16 9 •

8 12 5 •

8 16 9 •

10 16 11 •

8 10 5 •

8 16 13 •

8 12 9 •

16 16 15 •

0 10 6 ∩

4.2. Comparation with the Multiplicative Cascades

To make the comparison, the example shown in Figure 8 was used. The NIST tests were applied
to this trace (Table 6) by implementing the function of the threshold equation (Equation (27)) using its
mean as the discriminant value, finding that the approval rate is 2/14. Then, the VT diagram was used
to estimate the Hurst parameter, computing H = 0.8792.

Table 6. Results of the NIST tests for the synthesis of data with the β-MWM algorithm and its
Hurst parameter.

Parameter H 0.8792

NIST Tests

p1 0.0000
p2 0.0000
p3 0.0000
p4 0.0000
p5 0.0000
p6 0.0000
p7 0.0000
p8 0.0000
p9 0.0000

p10 0.0000
p11 0.0000
p12 0.0000
p13 0.1051
p14 0.8744

Total approved tests 2/14

To have another vision of the results, the binary format of decimal numbers with simple floating
point of the IEEE [56] was used in order to represent the data synthesized by the β-MWM algorithm,
reaching similar results.

f
h(x)=

{
0 Para x < 1.6911× 10−15

1 Para x ≥ 1.6911× 10−15

(27)

In contrast to the research carried out, the synthesis of sequences using the β-MWM algorithm
presents a lower approval rate when applying the NIST tests. This suggests a disadvantage in relation to
the data synthesized in the investigation, since combinations with a higher approval rate are presented.
However, the cause could be the threshold function necessary for the development of NIST tests. On the
other hand, the data synthesized by the multiplicative cascades are characterized in such a way that they
vary the width of the spectrum and the estimation of the Hurst parameter. In this investigation, it was
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possible to alter the spectrum width and to vary H in an empirical way, without being characterized.
Another difference between the two models is their construction, given that the β-MWM algorithm is
recursive and uses a random number generator, unlike the one proposed in the research that starts
from a physical signal that depends on the initial conditions of the system of equations.

5. Conclusions

In the research, a random number generator with long range dependence was developed from
different input chaotic signals, allowing the variation of H through the parameters of the RNG
(such as the number of bits in the ADC, DAC and the number of less significant bits taken from the
ADC). It was found that the combinations analyzed (Tables 2–6) have mostly monofractal properties,
with the possibility of implementing multifractal sequences, allowing the study of data synthesis with
fractal behavior.

Another aspect to consider is that when discarding combinations that had a deterministic behavior
or without LRD it was not possible to model the Hurst parameter through a mathematical expression,
and therefore parameterize the generator (as the multiplicative cascade algorithm does using β-MWM).
This raises the possibility of implementing in the future a neural network that allows to emulate the
global system having the possibility of varying the Hurst parameter to a desired value and altering
the properties of the multifractal spectrum, obtaining a more general model comparable with the
algorithm β-MWM and that allows the synthesis of traces both monofractal and multifractal, giving rise
to its physical implementation by means of electronic devices, achieving a more versatile system in
comparison with the algorithm β-MWM.

Although this research has direct application in telecommunications network traffic, its main
product can be usefully exploited in different disciplines where monofractal/multifractal signals are
common phenomena (financial analysis, geophysics, hydrology, etc.). Of course, this is an ongoing
research project for which there is a lot of additional work to be done. For example, we can still play
with the parameters of the circuit elements that are part of chaotic systems, explore other chaotic
systems and other alternatives to converters that complement the generator structure. In this way
it is hoped to capture additional characteristics such as precise multifractal properties or higher
order statistics. In addition, we would like to extend the applicability of our tool to the synthesis
of electrical biopotentials that, according to the preliminary tests that have been developed in the
research, have shown monofractal/multifractal characteristics. In particular, the proposed model
would capture the dependence present in the cardiac rate that until now has only been modeled with
distributions generated by the inverse transformation method (that is, assuming independence). In this
way, the proposed generator would facilitate the correct evaluation of the algorithms that help to detect
changes in the cardiac rhythm (as occurs in arrhythmias) while allowing us to compare the model with
real hardware.

Author Contributions: Conceptualization, H.L.; methodology, M.T., J.M. and C.H.; software, M.T. and J.M.;
validation, H.L. and C.H.; formal analysis, H.L. and C.H.; data curation, M.T. and J.M.; writing—original draft
preparation, M.T. and J.M.; writing—review and editing, M.T., J.M., H.L. and C.H.; project administration, H.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Centro de Investigaciones y Desarrollo Científico (CIDC) of the Universidad
Distrital Francisco José de Caldas.

Acknowledgments: We express our gratitude to CIDC of the Universidad Distrital Francisco José de Caldas for
the support of this research project.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ditto, W.; Munakata, T. Principles and applications of chaotic systems. Commun. ACM 1995, 38, 11. [CrossRef]
2. Menezes, A.J.; Vanstone, S.A.; Oorschot, P.C.V. Handbook of Applied Cryptography; CRC Press, Inc.: Boca Raton,

FL, USA, 1996; ISBN 0-8493-8523-7.

http://dx.doi.org/10.1145/219717.219797


Electronics 2020, 9, 1607 21 of 23

3. Das, M.; Ghosh, S.K. Detection of climate zones using multifractal detrended cross-correlation analysis:
A spatio-temporal data mining approach. In Proceedings of the 2015 Eighth International Conference on
Advances in Pattern Recognition (ICAPR), Kolkata, India, 4–7 January 2015; pp. 1–6.

4. Mandelbrot, B.; Hudson, R.L. The (Mis)behavior of Markets: A Fractal View of Financial Turbulence; Basic Book:
New York, NY, USA, 2004; ISBN 978-0-465-04357-6.

5. Wang, S.; Qiu, Z. A novel multifractal model of MPEG-4 video traffic. In Proceedings of the IEEE International
Symposium on Communications and Information Technology, Beijing, China, 12–14 October 2005; ISCIT
2005; pp. 97–100. [CrossRef]

6. Beran, J.; Taqqu, M.S.; Sherman, R.; Willinger, W. Long-Range Dependence in Variable-Bit-Rate Video Traffic.
IEEE Trans. Commun. 1995, 43, 1566–1579. [CrossRef]

7. Leland, W.E.; Taqqu, M.S.; Wilson, D.V. On the Self-Similar Nature of Ethernet Traffic (Extended Version).
IEEE/ACM Trans. Netw. 1994, 2, 1–15. [CrossRef]

8. ACM SIGCOMM. Traces Available in the Internet Traffic Archive. Available online: http://ita.ee.lbl.gov/html/
traces.html (accessed on 20 May 2008).

9. Riedi, R.H.; Vehel, L. Multifractal Properties of TCP Traffic: A Numerical Study. Available online: https:
//hal.inria.fr/inria-00073560/document (accessed on 20 January 2019).

10. Riedi, R.H.; Crouse, M.S.; Ribeiro, V.J.; Baraniuk, R.G. A multifractal wavelet model with application to
network traffic. IEEE Trans. Inf. Theory 1999, 45, 992–1018. [CrossRef]

11. Feldmann, A.; Gilbert, A.; Willinger, W. Data Networks as Cascades: Investigating the Multifractal Nature of
Internet WAN Traffic. In Proceedings of the ACM SIGCOMM ’98 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, Vancouver, BC, Canada, 2–4 September 1998.

12. Gao, J.; Rubin, I. Multifractal Analysis and Modelling of VBR Video Traffic. Electron. Lett. 2000, 36, 278–279.
[CrossRef]

13. Tuberquia-David, L.; López, H.; Hernández, C. Multifractal Model for Cognitive Radio Networks; Primera, Ed.;
UDistrital: Bogotá, Colombia, 2019.

14. Rangayyan, R.M. Biomedical Signal. Analysis, 2nd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2015.
15. McSharry, P.E.; Clifford, G.D.; Tarassenko, L.; Smith, L.A. A dynamical model for generating synthetic

electrocardiogram signals. IEEE Trans. Biomed. Eng. 2003, 50, 289–294.
16. López, H.I.; Alzate, M. Generation of LRD Traffic Traces with Given Sample Statistics. In Proceedings of the

IEEE 2012 Workshop on Engineering Applications, Bogota, Columbia, 2–4 May 2012; pp. 1–6. [CrossRef]
17. Akhmet, M.; Alejaily, E.M. Abstract similarity, fractals and chaos. Discret. Contin. Dyn. Syst. B 2017, 22, 1–19.
18. Chua, L.O. Memristor—The Missing Circuit Element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [CrossRef]
19. Muthuswamy, B.; Chua, L.O. Simplest Chaotic Circuit. Int. J. Bifurc. Chaos 2010, 20, 1567–1580. [CrossRef]
20. Cruz, J.M.; Chua, L.O. A CMOS IC Nonlinear Resistor for Chua’s Circuit. IEEE Trans. Circuits Syst. I Fundam.

Theory. Appl. 1992, 39, 985–995. [CrossRef]
21. Li, Y.; Zhao, L.; Chi, W.; Lu, S.; Huang, X. Implementation of a New Memristor Based Chaotic System.

In Proceedings of the 2012 Fifth International Workshop on Chaos-fractals Theories and Applications, Dalian,
China, 18–21 October 2012; pp. 92–96. [CrossRef]

22. Li, Y.; Huang, X.; Guo, M. The generation, analysis, and circuit implementation of a new memristor based
chaotic system. Math. Probl. Eng. 2013. [CrossRef]

23. Yang, C.; Hu, Q.; Yu, Y.; Zhang, R.; Yao, Y.; Cai, J. Memristor-Based Chaotic Circuit for Text/Image Encryption
and Decryption. In Proceedings of the 2015 8th International Symposium on Computational Intelligence and
Design, ISCID, Hangzhou, China, 12–13 December 2015; pp. 447–450. [CrossRef]

24. Tlelo-Cuautle, E.; Rangel-Magdaleno, J.; de la Fraga, L.G. Engineering Applications of FPGAs; Springer
International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-34113-2.

25. Corinto, F.; Krulikovskyi, O.V.; Haliuk, S.D. Memristor-based chaotic circuit for pseudo-random sequence
generators. In Proceedings of the 18th Mediterranean Electrotechnical Conference: Intelligent and Efficient
Technologies and Services for the Citizen, Lemesos, Cyprus, 18–20 April 2016; pp. 18–20. [CrossRef]

26. Melgarejo, M.; Piraján, A. Diseño y realización hardware de un generador de números aleatorios. Rev. Ing.
2002, 7, 97–100.

27. Li, X.; Cohen, A.B.; Murphy, T.E.; Roy, R. Scalable parallel physical random number generator based on a
superluminescent LED. Opt. Lett. 2011. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/ISCIT.2005.1566808
http://dx.doi.org/10.1109/26.380206
http://dx.doi.org/10.1109/90.282603
http://ita.ee.lbl.gov/html/traces.html
http://ita.ee.lbl.gov/html/traces.html
https://hal.inria.fr/inria-00073560/document
https://hal.inria.fr/inria-00073560/document
http://dx.doi.org/10.1109/18.761337
http://dx.doi.org/10.1049/el:20000208
http://dx.doi.org/10.1109/WEA.2012.6220077
http://dx.doi.org/10.1109/TCT.1971.1083337
http://dx.doi.org/10.1142/S0218127410027076
http://dx.doi.org/10.1109/81.207719
http://dx.doi.org/10.1109/IWCFTA.2012.75
http://dx.doi.org/10.1155/2013/398306
http://dx.doi.org/10.1109/ISCID.2015.156
http://dx.doi.org/10.1109/MELCON.2016.7495319
http://dx.doi.org/10.1364/OL.36.001020
http://www.ncbi.nlm.nih.gov/pubmed/21403762


Electronics 2020, 9, 1607 22 of 23

28. Alzate Monroy, M.A. Uso de la Transformada Wavelet para el Estudio de Tráfico Fractal en Redes de
Comunicaciones. Rev. Ing. 2002, 7, 11–24.

29. Chen, H.C.H.; Cai, H.C.H.; Li, Y.L.Y. The multifractal property of bursty traffic and its parameter estimation
based on wavelets. In Proceedings of the TENCON ’97 Brisbane—Australia. Proceedings of IEEE
TENCON ’97. IEEE Region 10 Annual Conference. Speech and Image Technologies for Computing and
Telecommunications (Cat. No.97CH36162), Brisbane, Queensland, Australia, 4 December 1997. [CrossRef]

30. Shimizu, J. A Multifractal Traffic Generation Method using Wavelet and Volterra Filtering. In Proceedings
of the IEEE International Symposium on Communications and Information Technology, 2004. ISCIT 2004,
Sapporo, Japan, 26–29 October 2004. [CrossRef]

31. Lashermes, B.; Jaffard, S.; Abry, P. Wavelet leader based multifractal analysis. In Proceedings of the
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Philadelphia, PA, USA,
23 March 2005.

32. Tuberquia, M.; Vela, F.; López, H.; Hernández, C. A multifractal wavelet model for the generation of
long-range dependency traffic traces with adjustable parameters. Expert Syst. Appl. 2016, 62, 373–384.
[CrossRef]

33. Park, K.; Willinger, W. Self-Similar Network Traffic and Performance Evaluation; John Wiley and Sons: Hoboken,
NJ, USA, 2000.

34. Abry, P.; Flandrin, P.; Taqqu, M.S.; Veitch, D. Wavelets for the Analysis, Estimation, and Synthesis of Scaling
Data. In Self-Similar Network Traffic and Performance Evaluation; John Wiley & Sons, Inc.: New York, NY, USA,
2000; pp. 39–88.

35. Abry, P.; Gonçalves, P.; Véhel, J.L. Scaling, Fractals and Wavelets; ISTE: London, UK, 2009; ISBN 978-0-470-61156-2.
36. Sheluhin, O.I.; Smolskiy, S.M.; Osin, A.V. Principal Concepts of Fractal Theory and Self-Similar Processes.

In Self-similar Processes in Telecomunications; John Wiley & Sons Ltd.: Chichester, UK, 2007; pp. 1–47,
ISBN 978-0-470-01486-8.

37. Feder, J. Fractals; Springer: Boston, MA, USA, 1988; ISBN 978-1-4899-2126-0.
38. Radwan, A.G.; Fouda, M.E. On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor; Studies

in Systems, Decision and Control; Springer International Publishing: Cham, Switzerland, 2015; Volume 26,
ISBN 978-3-319-17490-7.

39. Widrow, B. An Adaptive “Adaline” Neuron Using Chemical “Memistors”. Stanford Electronics Laboratories
Technical Report 1553-2. 1960. ISBN Technical Report No. 1553-2. Available online: https://isl.stanford.edu/

~{}widrow/papers/t1960anadaptive.pdf (accessed on 20 January 2019).
40. Adhikari, S.P.; Sah, M.P.; Kim, H.; Chua, L.O. Three fingerprints of memristor. IEEE Trans. Circuits Syst. I

Regul. Pap. 2013. [CrossRef]
41. Biolek, D.; Biolek, Z.; Biolkova, V.; Kolka, Z. Some fingerprints of ideal memristors. In Proceedings of the

2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), Beijing, China, 19–23 May 2013;
pp. 201–204.

42. Talukdar, A.; Radwan, A.G.; Salama, K.N. Time domain oscillating poles: Stability redefined in Memristor
based Wien-oscillators. In Proceedings of the Proceedings of the International Conference on Microelectronics,
ICM, Cairo, Egypt, 19–22 December 2010.

43. Talukdar, A.; Radwan, A.G.; Salama, K.N. Generalized model for Memristor-based Wien family oscillators.
Microelectron. J. 2011. [CrossRef]

44. Talukdar, A.; Radwan, A.G.; Salama, K.N. Non linear dynamics of memristor based 3rd order oscillatory
system. Microelectron. J. 2012. [CrossRef]

45. Shin, S.S.S.; Kim, K.K.K.; Kang, S.-M.K.S.-M. Memristor-based fine resolution programmable resistance and
its applications. 2009 Int. Conf. Commun. Circuits Syst. 2009. [CrossRef]

46. Kozma, R.; Pino, R.E.; Pazienza, G.E. Are Memristors the Future of AI? In Advances in Neuromorphic Memristor
Science and Applications; Springer: Dordrecht, The Netherlands, 2012; pp. 9–14, ISBN 978-94-007-4491-2.

47. Driscoll, T.; Quinn, J.; Klein, S.; Kim, H.T.; Kim, B.J.; Pershin, Y.V.; Di Ventra, M.; Basov, D.N. Memristive
adaptive filters. Appl. Phys. Lett. 2010. [CrossRef]

48. Pershin, Y.V.; Di Ventra, M. Experimental demonstration of associative memory with memristive neural
networks. Neural Netw. 2010. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TENCON.1997.648542
http://dx.doi.org/10.1109/ISCIT.2004.1412890
http://dx.doi.org/10.1016/j.eswa.2016.05.010
https://isl.stanford.edu/~{}widrow/papers/t1960anadaptive.pdf
https://isl.stanford.edu/~{}widrow/papers/t1960anadaptive.pdf
http://dx.doi.org/10.1109/TCSI.2013.2256171
http://dx.doi.org/10.1016/j.mejo.2011.07.001
http://dx.doi.org/10.1016/j.mejo.2011.12.012
http://dx.doi.org/10.1109/ICCCAS.2009.5250376
http://dx.doi.org/10.1063/1.3485060
http://dx.doi.org/10.1016/j.neunet.2010.05.001
http://www.ncbi.nlm.nih.gov/pubmed/20605401


Electronics 2020, 9, 1607 23 of 23

49. Hu, Q.; Yu, Y.; Men, L.; Lei, F.; Zhang, H. Memristor-based chaotic circuit design on image En/decryption.
In Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation,
YAC, Wuhan, China, 11–13 November 2016; pp. 56–60.

50. Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E.; Leigh, S.; Levenson, M.; Vangel, M.; Banks, D.;
Heckert, A.; et al. A Statistical Test. Suite for Random and Pseudorandom Number Generators for Cryptographic
Applications; Lawrence E Bassham III; Special Publication 800-22 Revision 1a; National Institute of Standards &
Technology: Gaithersburg, MD, USA, 2010.

51. Barker, E.; Bassham, L. Random Bit Generation; Institute of standards and technology: Gaithersburg, MD,
USA, 2018.

52. Kant, K. On aggregate traffic generation with multifractal properties. Globecom 1999, 1179–1183. [CrossRef]
53. Chen, Y. Zipf’s law,1/f noise, and fractal hierarchy. ChaosSolitons Fractals 2012, 45, 63–73. [CrossRef]
54. Ihlen, E.A.F. Introduction to Multifractal Detrended Fluctuation Analysis in Matlab. Front. Physiol. 2012, 3.

[CrossRef] [PubMed]
55. Canavos, G. Algunas distribuciones continuas de probabilidad. In Probabilidad y Estadistica Aplicaciones y

Métodos; McGraw-Hill: Ciudad de Mexico, Mexico, 1998; pp. 130–184, ISBN 978-968-451-856-8.
56. Standards, M.; Society, C. IEEE Std 754-2008, IEEE Standard for Floating-Point Arithmetic (Revision of IEEE

Std 754-1985). IEEE Comput. Soc. 2008, 1–58. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/GLOCOM.1999.829958
http://dx.doi.org/10.1016/j.chaos.2011.10.001
http://dx.doi.org/10.3389/fphys.2012.00141
http://www.ncbi.nlm.nih.gov/pubmed/22675302
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Materials and Methods 
	Memristor 
	Chaotic Systems 
	System 1 
	System 2 

	Random Number Generator (RNG) 
	NIST Tests 
	Diagram Variance-Time 
	Diagram Log-Scale 
	Multiscale Diagram and Linear Multiscale 
	Multifractal Spectrum 
	Multiplicative Cascades 

	Results 
	Random Number Generator 
	Comparation with the Multiplicative Cascades 

	Conclusions 
	References

