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Abstract: High-performance n-type organic semiconducting polymers are key components of
next-generation organic electronics. Here, we designed and synthesized two electron deficient
organic polymers composed of benzodifurandione-based oligo (p-phenylenevinylene) (BDOPV)
and benzothiadiazole by Stille coupling polycondensation. BDOPV-benzothiadiazole-based
copolymer (PBDOPV-BTT) possesses a D-A1-D-A2 type backbone with intramolecular charge–transfer
interactions, while PBDOPV-BTTz is an all-acceptor polymer. The former has a higher molecular
weight (Mn) of 109.7 kg·mol−1 than the latter (Mn = 20.2 kg·mol−1). The structural difference
of these polymers was confirmed by the optical absorption spectra. PBDOPV-BTT showed a
more bathochromically shifted absorption spectrum than PBDOPV-BTTz. The longer wavelength
absorption of PBDOPV-BTT was due to the intramolecular charge transfer. Therefore, PBDOPV-BTT
had a narrower band gap than PBDOPV-BTTz. However, this feature was not reflected by the
lowest unoccupied molecular orbital (LUMO) levels. Both polymers displayed almost the same
LUMO level of −3.8 eV. Accuracy of this observation was cross-verified by density functional theory
(DFT) calculations. The electron-transporting properties were investigated by thin film transistors.
PBDOPV-BTT showed an electron mobility (µe) of 1.02 × 10−2 cm2 V−1 s−1 under the optimized
annealing conditions. PBDOPV-BTTz exhibited poorer transistor performances with the optimized
µe of 9.54 × 10−6 cm2 V−1 s−1. Finally, the grazing-incidence wide angle X-ray scattering (GIWAXS)
measurements of both polymer films revealed the higher crystallinity of PBDOPV-BTT with the
edge-on orientation.

Keywords: BDOPV; electron transport; n-channel transistors; organic transistors

1. Introduction

Organic semiconducting polymers are promising candidates for the construction of low-cost and
flexible electronic devices [1–11]. Ambipolar semiconducting polymers are among the most common
organic semiconductors [12]. However, as they transfer both holes and electrons in thin film electronic
devices, low-power consumption complementary devices such as photovoltaics and thermoelectrics
have not been achieved. Tailoring of molecular design of organic semiconductors or optimization of
device architectures alleviate this problem. The former is a synthetic approach, and synthetic chemists
have devoted significant efforts to produce p-type semiconducting polymers with hole mobilities
of over 1 cm2 V−1 s−1. The use of common organic dyes, such as diketopyrrolopyrrole (DPP) and
isoindigo (IID), is effective for producing high-mobility p-type semiconducting polymers [13–21].
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In contrast, the development and current status of n-type semiconducting polymers lag far
behind the corresponding p-type counter polymers. In order to block hole injection and transport,
organic chromophores with deep highest occupied molecular orbital (HOMO) levels must be introduced
into the polymer backbone. At the same time, the lowest unoccupied molecular orbital (LUMO)
levels should also be deep, facilitating electron injection and transport. Naphthalenediimide (NDI)
is one of the chromophores satisfying such requirements. NDI-based polymers, as represented by
N2200, are thus often employed as high-performance n-type semiconductors [22–33]. Previously,
NDI-benzothiadiazole copolymer (pBTT in Figure 1) was synthesized with the D-A1-D-A2 backbone
sequence, where D represents an electron donor and an electron acceptor [34,35]. This polymer
exhibited the electron-dominant ambipolar charge transport properties in the bottom-gate top-contact
thin film transistor with a hole mobility (µh) of 0.19 cm2 V−1 s−1 and electron mobility (µe) of 0.92 cm2

V−1 s−1. Embedding the sp2-nitrogen atom into the benzothiadiazole could form an electron-accepting
imine structure and enhance the n-type character. The thin film transistor based on pPTT displayed
unipolar electron transport properties with a µe of 2.11 cm2 V−1 s−1. Furthermore, converting the
benzothiadiazole moiety into a triply fused ring structure with the additional sp2-nitrogen atoms
produced pSNT, which showed a significant increase in the µe to 4.87 cm2 V−1 s−1. It is noteworthy
that when the dielectric surface was functionalized with amine groups, electrons were accumulated,
and the µe was improved to 5.35 cm2 V−1 s−1. This is the previously mentioned optimization through
device architecture to increase the unipolar charge transport properties.
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Figure 1. Chemical structures of high-performance naphthalenediimide (NDI)-based polymers and
benzodifurandione-based oligo(p-phenylenevinylene) (BDOPV)-based polymers.

Although NDI is the most common building block of n-type semiconducting polymers, pursuing
other electron-accepting units is scientifically significant. In this study, benzodifurandione-based
oligo(p-phenylenevinylene) (BDOPV) is explored as another potent electron-accepting building
block. There are many reports about the excellent n-channel organic transistors and n-type
thermoelectronics using BDOPV-based polymers [36–46]. However, copolymers based on the
BDOPV and benzothiadiazole have not yet been reported. We now report the synthesis of the
BDOPV-benzothiadiazole-based copolymer (PBDOPV-BTT) with the D-A1-D-A2 backbone sequence.
In addition, the electron-donating thiophene was replaced by electron-accepting thiazole to produce an
all-acceptor copolymer (PBDOPV-BTTz). Electron transporting properties and thin film morphology
of these two polymers were investigated by thin film transistors, X-ray diffraction (XRD) analysis,
and atomic force microscopy (AFM).
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2. Materials and Methods

2.1. Materials and Synthesis

All chemicals were purchased from Tokyo Chemical Industry (TCI), Kanto Chemical, and Sigma
Aldrich and used as received unless otherwise noted. Polymers were synthesized as follows: a mixture
of BDOPV (150 mg, 0.0868 mmol), 4,7-bis(5-trimethylstannyl-2-thienyl)-2,1,3-benzothiadiazole (54.3 mg,
0.0868 mmol), Pd2(dba)3 (2.4 mg, 2.6× 10−3 mmol) and P(o-tolyl)3 (4.2 mg, 0.014 mmol) in chlorobenzene
(10 mL) was refluxed at 130 ◦C for 36 h under nitrogen atmosphere. After cooling to room
temperature, the reaction mixture was poured into methanol. After stirring for 20 min, the precipitate
was collected by filtration and purified with Soxhlet extraction using methanol, acetone, hexane,
a mixture of hexane and dichloromethane (10:1), and chloroform. The chloroform soluble fraction was
concentrated and reprecipitated into methanol, affording PBDOPV-BTT as a dark blue solid (57.0 mg,
27.9%). Similar to this, PBDOPV-BTTz was synthesized from BDOPV (157 mg, 0.0910 mmol) and
4,7-bis(5-(trimethylstannyl)thiazol-2-yl)benzo[c][1,2,5] thiadiazole (80 mg, 0.091 mmol) in 51.9% yield.

2.2. General Measurements

Nuclear magnetic resonance (NMR) spectra were recorded using a JEOL model AL300 (300 MHz)
at room temperature. Deuterated CHCl3 was used as the solvent. Chemical shifts of NMR were
reported in ppm (parts per million) relative to the residual solvent peak at 7.26 ppm for 1H NMR
spectroscopy. Coupling constants (J) were given in Hz. Fourier transform infrared (FT-IR) spectra
were recorded on a JASCO FT/IR-4100 spectrometer in the range from 4000 to 600 cm−1. MALDI−TOF
mass spectra were measured by a Shimadzu/Kratos AXIMACFR mass spectrometer equipped with a
nitrogen laser (λ = 337 nm) and pulsed ion extraction, which was operated in the linear-positive ion
mode at an accelerating potential of 20 kV. CHCl3 solutions containing 2 g L−1 of a sample, 20 g L−1

of dithranol, and 1 g L−1 of sodium trifluoroacetate were mixed at a ratio of 1:1:1; then, 1 µL aliquot
of this mixture was deposited onto a sample target plate. Gel permeation chromatography (GPC)
was measured on a JASCO GULLIVER 1500 equipped with a pump (PU-2080 Plus), an absorbance
detector (RI-2031 Plus), and two Shodex GPC KF-803 columns (8.0 mm I.D. × 300 mm L) based on a
conventional calibration curve using polystyrene standards. 1,2-Dichlorobenzene (40 ◦C) was used
as a carrier solvent at the flow rate of 0.5 mL min−1. The ultraviolet (UV)-vis-near infrared (NIR)
spectra were recorded on a JASCO V-670 spectrophotometer. Thermogravimetric analysis (TGA) and
differential scanning calorimetry (DSC) measurements were carried out on a Rigaku TG8120 and a
Rigaku DSC8230, respectively, under nitrogen flow at a scan rate of 10 ◦C min−1. Electrochemistry
measurements were carried out on a BAS electrochemical analyzer model 612C at 20 ◦C in a classical
three-electrode cell. The working, reference, and auxiliary electrodes were a glassy carbon electrode,
Ag/AgCl/CH3CN/(nC4H9)4NClO4, and a Pt wire, respectively. The polymer films for electrochemical
measurements were coated on the working electrode from a 1,2-dichlorobenzene solution (ca. 3 g L−1).
For calibration, the redox potential of ferrocene/ferrocenium (Fc/Fc+) was measured under the same
conditions, and it was located at 0.10 V vs. the Ag/AgCl electrode. Assuming that the redox potential
of Fc/Fc+ has an absolute energy level of −4.80 eV to vacuum, the highest occupied molecular orbital
(HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels were calculated according to
the following equations:

EHOMO = −(ϕox + 4.70) (eV) (1)

ELUMO = −(ϕred + 4.70) (eV) (2)

where ϕox is the onset oxidation potential vs. Ag/AgCl, and ϕred is the onset reduction potential
vs. Ag/AgCl.
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2.3. Thin Film Transistors

Top-contact/bottom-gate polymer thin film transistors were fabricated on a heavily n-doped Si
wafer (n+-Si) with the thermally grown SiO2 layer where n+-Si and SiO2 were used as the gate electrode
and gate dielectric, respectively (Figure S4). The substrates were subjected to cleaning by sonication
with detergent, deionized water, acetone and isopropanol for 10 min. The cleaned substrates were
then treated with UV-ozone for 20 min and then modified with octadecyltrimethoxysilane (OTMS) to
form a self-assembled monolayer (SAM). Thin films of the polymers were deposited on the treated
substrate by spin-coating a polymer solution (ca. 3 g L−1) in 1,2-dichlorobenzene at 2000 rpm for 60 s,
followed by optional thermal annealing from 150 ◦C to 240 ◦C in an Ar-filled glovebox. After polymer
thin film deposition, ~40 nm thick gold was deposited as source and drain contacts using a shadow
mask. The thin film transistor devices had a channel length (L) of 100 µm and a channel width (W)
of 1 mm. After 1 week storage in an Ar-filled glovebox, the transistor performances were measured
in a vacuum chamber (ca. 10–5–10−4 mbar) using a Keithley 4200 parameter analyzer on a probe
stage. The carrier mobilities, µ, were calculated from the data in the saturated regime according to the
following equation:

ISD = (W/2L)Ciµ(VGS − Vth)2 (3)

where ISD is the source–drain current in the saturated regime, W and L are the semiconductor channel
width and length, respectively, Ci (Ci = 13.7 nF cm−2) is the capacitance per unit area of the gate
dielectric layer, and VGS and Vth are the gate voltage and threshold voltage, respectively.

2.4. X-ray Diffraction

XRD patterns were obtained using a Bruker AXS D8 DISCOVER with GADDS (Cu Kα,
wavelength = 0.154 nm) operated at 50 kV and 22 mA. The samples were exposed to the X-ray beam
for 5 min with a sample-to-film distance of 200 mm.

2.5. Atomic Force Microscopy

Tapping-mode AFM measurements were performed on a Seiko Instruments SPA-400 with a Seiko
Instruments DF20 cantilever.

3. Results and Discussion

3.1. Synthesis

The target polymers, PBDOPV-BTT and PBDOPV-BTTz, were synthesized by Stille coupling
polycondensation (Figure 2). To ensure sufficient solubilities of the polymers, branched long alkyl chains
were introduced into the BDOPV unit. Details about monomer synthesis are shown in the Supporting
Information. Equimolar amounts of the benzodiadiazole and NDI monomers in chlorobenzene were
refluxed at 130 ◦C for 36 h under nitrogen atmosphere. After purification by Soxhlet extraction with
methanol, acetone, hexane, followed by a mixture of hexane and dichloromethane (10:1) to remove
the impurities and low-molecular-weight fractions, PBDOPV-BTT and PBDOPV-BTTz were obtained
in 27.9 and 51.9% yields, respectively. The molecular weights of chloroform extracts were evaluated
by gel permeation chromatography (GPC) using polystyrene standards and 1,2-dichlorobenzene as the
eluent at 40 ◦C. PBDOPV-BTT showed a number-average molecular weight (Mn) of 109.7 kg·mol−1 and
polydispersity index (PDI) of 3.0, while PBDOPV-BTTz displayed an Mn of 20.2 kg·mol−1 and PDI of 2.4.
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Thermogravimetric analysis (TGA) was carried out under nitrogen flow at the heating rate
of 10 ◦C min−1 in order to evaluate the thermal stability of the BDOPV-benzothiadiazole-based
semiconducting polymers (Figure S1). The 5% weight loss temperature (Td) of PBDOPV-BTT was
396 ◦C, while PBDOPV-BTTz showed a Td of 366 ◦C. This may reflect the different molecular weights.
In addition, thermal transition properties were investigated by differential scanning calorimetry (DSC).
Both polymers exhibited a similar glass transition temperature (Tg) of 215–216 ◦C (Figure S2). All these
thermal studies suggested that they are thermally stable enough for their application.

3.2. Optical and Electrochemical Properties

UV-vis-NIR absorption spectra of the BDOPV-based polymers were measured. The optical
absorption spectra in dilute 1,2-dichlorobenzene and as thin films are shown in Figure 3, and the data are
summarized in Table 1. Both polymers showed narrow band gap absorption peaks. However, there was
a noticeable difference in the peak position. PBDOPV-BTT displayed the longest wavelength absorption
maximum (λmax_sol) of 836 nm, while the λmax_sol of PBDOPV-BTTz hypsochromically shifted by 74 nm.
This was attributed to two factors: One is an intramolecular electronic interaction. PBDOPV-BTT is
composed of D-A1-D-A2 repeat unit structures, and accordingly, the intramolecular charge–transfer
interactions often produce a longer wavelength absorption. In contrast, PBOPV-BTTz is an all
acceptor polymer that does not possess such intramolecular interactions. Secondly, an intermolecular
packing interaction could have led to a shift in the absorption peak. Higher molecular weight and
planar semiconducting polymers usually provide very narrow absorption bands in this film states.
Since PBDOPV-BTT has much higher molecular weights than PBDOPV-BTTz, this difference may have
caused the different electronic states in their thin films. The thin film spectra of the BDOPV-based
polymers were indeed similar to those of the corresponding solution spectra. The as-cast films were
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slightly hypsochromically shifted as compared to the solution spectra, indicating that both polymers
were amorphous. The optical band gaps (Eg

opt) of PBDOPV-BTT and PBDOPV-BTTz were 1.33 and
1.43 eV, respectively. However, thermal annealing resulted in the bathochromic shift of the onset
wavelengths due to the partial ordering of polymer chains.
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Figure 3. Normalized UV-vis-NIR absorption spectra of (a) BDOPV-benzothiadiazole-based copolymer
(PBDOPV-BTT) and (b) PBDOPV-BTTz in dilute 1,2-dichlorobenzene solution and thin film states with
optional thermal annealing.

Table 1. Summary of physical properties of BDOPV-based polymers.

λmax_sol
(nm) 1

λmax_film
(nm)

λonset
(nm)

Eg
opt

(eV) 3
Eox
(V)

Ered
(V)

EHOMO
(eV) 4

ELUMO
(eV) 4

Eg
CV

(eV)

PBDOPV-BTT 836 828 930 1.33 0.85 −0.92 −5.55 −3.78 1.72
PBDOPV-BTTz 762 2 757 2 865 1.43 1.10 −0.90 −5.80 −3.80 2.00

1 In 1,2-dichlorobenzene; 2 shoulder peak; 3 optical band gap (Eg
opt) estimated from the onset wavelength of the

as-cast films; 4 highest occupied molecular orbital (HOMO; EHOMO) and lowest unoccupied molecular orbital
(LUMO; ELUMO) energy levels measured for the polymer thin films in CH3CN solution with 0.1 M (nC4H9)4NClO4
at the scan rate of 0.1 V s−1. For calibration, the redox potential of ferrocene/ferrocenium (Fc/Fc+) was measured
under the same conditions, and it was 0.10 V vs. the Ag/AgCl electrode.

Cyclic voltammograms (CVs) of the polymer thin films were measured in dry CH3CN with 0.1 M
(nC4H9)4NClO4, and related data are summarized in Table 1. Both polymers displayed irreversible
oxidation and reduction waves (Figure 4). Accordingly, the onset potentials were employed to estimate
the frontier molecular orbital energy levels after they were calibrated with respect to the standard
ferrocene/ferrocenium redox couple potential (Fc/Fc+: E1/2 = +0.10 V vs. Ag/AgCl). The HOMO levels
(EHOMO) of both polymers, estimated from the first oxidation potentials (Eox), were slightly different.
PBDOPV-BTT showed an EHOMO of −5.55 eV, while the EHOMO of PBDOPV-BTTz became deeper
to −5.80 eV. This was reflected by the replacement of the thiophene rings of PBDOPV-BTT by the
electron-accepting thiazole rings of PBDOPV-BTTz. However, the LUMO levels (ELUMO), estimated
from the first reduction potentials (Ered), were almost the same (−3.78 eV for PBDOPV-BTT and
−3.80 eV for PBDOPV-BTTz). The current intensity of the reduction peaks of PBDOPV-BTTz was
stronger than that of PBDOPV-BTT due to the all-acceptor structure.
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glassy carbon electrode, measured in CH3CN with 0.1 M (nC4H9)4NClO4 at the scan rate of 0.1 V s−1.

3.3. Computational Calculations

The dihedral angle between monomers and frontier orbital energy levels were computationally
obtained after geometry optimization by implementing density functional theory (DFT) with the B3LYP
functional and the 6-31G(d) basis set using Gaussian 16 [47]. Optimized structures of dimers, tetramers
and hexamers were verified by vibrational analysis, seeing that equilibrium structures do not possess
imaginary frequencies.

Dihedral angles between monomer units were analyzed as conjugation length greatly influences
charge mobility and conjugation is broken at high dihedral angles. Although frontier orbital energy
levels have been experimentally obtained, theoretical results will serve to reinforce these results.
By incorporation of the sp2-nitrogen atom in thiazole in PBDOPV-BTTz, it was postulated that the
HOMO and LUMO energy levels would be deeper compared to PBDOPV-BTT. This hypothesis is
confirmed by the UV-vis-NIR and CV results, though the difference is not substantial: a lowering of the
HOMO energy level by 0.25 eV is observed, while the LUMO is only stabilized by an additional 0.02 eV.
Computational calculations were used to ensure experimental observations are in line with theory.
The BDOPV moiety is generally reported as flat due to its conjugation, however, it is noteworthy that
both its flat and its twisted structure are stable conformers. These adopted conformers are considered
in the dimers, which are denoted as A and B, respectively (Figure 5). During synthesis of the polymer
and upon casting the film, either conformation is adopted, and interchange between the conformations
is unlikely attributed to the high rotational energy barrier of 150–200 kJ mol−1 for both polymers.

Dihedral angles between monomers only had a marginal disparity for all polymers: values ranged
from 18◦ to 21◦, indicating that it is likely that conjugation is maintained between monomer units
(Table S1). Calculated HOMO and LUMO energy levels were slightly higher in energy than the
experimentally obtained values, however, HOMO–LUMO gaps were in good agreement with the
experimental results. Although it also has coefficients on BDOPV, the HOMO energy level had the
greatest coefficients and hence localized on BTT and BTTz. In contrast, the LUMO was localized
exclusively on BDOPV. The HOMO energy level of PBDPOV-BTTz was roughly 0.26 eV deeper than
that of PBDOPV-BTT, in line with the experiment. The LUMO energy level of PBDPOV-BTTz was
roughly 0.05 eV deeper than that of PBDOPV-BTT in both stable BDOPV conformations—only a small
increase in stabilization compared to experimentally obtained results (Table S2).
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(analogous for PBDOPV-BTTz). Calculated HOMO and LUMO energy surfaces of the dimer of
PBDOPV-BTT and PBDOPV-BTTz (B3LYP/6-31G(d), long and branched alkyl chains are substituted by
the methyl group).

3.4. Thin Film Transistor Performances

Charge transport properties of BDOPV-based polymers were studied by conventional
bottom-gate/top-contact thin film transistors. Although both polymers displayed electron-dominant
ambipolar charge transport behavior, especially when thermal annealing temperature was not
sufficiently high, we mainly focused on electron transporting behavior in this study. The transfer
curves are shown in Figure 6, Figure S3-1 and Figure S3-2, and the relevant data are listed in Table 2.
The electron mobilities (µe) were extracted from the saturation regime. Transistor performances
were improved when the polymer films were thermally annealed. The average µe of the as-cast
film of PBDOPV-BTT was 2.92 × 10−3 cm2 V−1 s−1. The optimized annealing temperature of this
polymer was 240 ◦C, giving µe of 1.02 × 10−2 cm2 V−1 s−1. The optimized device also had an
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excellent Ion/Ioff ratio of 103–105 and the smallest threshold voltage (Vth) of 18 V. Despite the slightly
deeper LUMO level, PBDOPV-BTTz displayed poorer electron-transporting properties compared to
PBDOPV-BTT. The as-cast film of PBDOPV-BTTz exhibited a µe of 2.88 × 10−6 cm2 V−1 s−1. The µe

value gradually increased by thermal annealing, and the highest µe was 9.54 × 10−6 cm2 V−1 s−1 at
the optimized annealing temperature of 210 ◦C. It should be noted that the transistor measurements
were carried out one week after the devices were fabricated. Although they were stored in an Ar-filled
glovebox, the intrinsic instability of n-type organic semiconductors could have influenced the n-channel
transistor performance.
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Figure 6. Transfer characteristics of thin film transistors based on polymer thin films of (a) PBDOPV-BTT
after annealing at 240 ◦C and (b) PBDOPV-BTTz after annealing at 210 ◦C (L = 100 µm and W = 1000 µm).

Table 2. Summary of thin film transistor performances (best performance hence highlighted).

Annealing Temp. (◦C) µe max
(cm2 V−1 s−1)

µe average
(cm2 V−1 s−1) 1 Ion/Ioff

V th
(V)

PBDOPV-BTT

- 5.00 × 10−3 (2.92 ± 1.19) × 10−3 102–103 45 ± 7
150 5.21 × 10−3 (3.61 ± 1.27) × 10−3 103–105 41 ± 6
180 6.44 × 10−3 (5.02 ± 1.37) × 10−3 102–104 27 ± 7
210 3.97 × 10−3 (2.24 ± 0.78) × 10−3 103–104 36 ± 9
240 1.25 × 10−2 (1.02 ± 0.14) × 10−2 103–105 18 ± 12

PBDOPV-BTTz

- 4.09 × 10−6 (2.88 ± 0.79) × 10−6 10–102 12 ± 8
150 4.33 × 10−6 (3.13 ± 0.98) × 10−6 10 4 ± 7
180 7.40 × 10−6 (4.86 ± 1.30) × 10−6 10–102 13 ± 7
210 1.06 × 10−5 (9.54 ± 0.73) × 10−6 10–102 13 ± 10
240 6.81 × 10−6 (4.42 ± 1.70) × 10−6 10 25 ± 13

1 Average mobilities were calculated from five devices. Errors are given as mean absolute deviation from the
average values.

3.5. Thin Film Morphology

In order to correlate the transistor performances with polymer thin film morphology,
grazing-incidence wide angle X-ray scattering (GIWAXS) measurements were performed. The polymer
films were prepared by spin-coating on OTMS-treated Si/SiO2 substrates and subjected to thermal
annealing at optimized temperatures. PBDOPV-BTT showed some peaks in the out-of-plane direction,
while there were no well-defined in-plane patterns (Figure 7a). In contrast, PBDOPV-BTTz displayed no
noticeable peaks in both out-of-plane and in-plane directions, suggesting amorphous microstructures.
The lamellar packing distance of PBDOPV-BTT was calculated to be 26.7 Å (2θ = 3.31◦). The other
weak peaks ascribed to either higher-order, or different packing patterns provided the distance of
20.9 Å (2θ = 4.23◦) and 15.2 Å (2θ = 5.83◦). However, no π–π stacking peaks were observed. All these
results suggested that PBDOPV-BTT has a higher crystallinity with an edge-on orientation suitable for
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transistor applications, while PBDOPV-BTTz forms an amorphous film. This difference may have been
caused by the molecular weights and intermolecular interactions.
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Figure 7. (a) Out-of-plane grazing-incidence wide angle X-ray scattering (GIWAXS) patterns of
the polymer thin films of PBDOPV-BTT and PBDOPV-BTTz after thermal annealing at 240 and
210 ◦C, respectively. Tapping-mode atomic force microscopy (AFM) images of (b) PBDOPV-BTT and
(c) PBDOPV-BTTz after thermal annealing at 240 and 210 ◦C, respectively.

AFM images of PBDOPV-BTT thin film prepared at optimized conditions revealed well-defined
and relatively ordered separation of interconnected domains (Figure 7b), which were in good agreement
with the charge transport property. Although the annealed PBDOPV-BTTz film had similar surface
morphology (Figure 7c), there were isolated aggregates of up to 210 nm in width, extending from
the surface to up to ~5 nm. These structures could be the result of preaggregation of the polymer in
1,2-dichlorobenzene or poor polymer-substrate interaction. Nevertheless, the presence of these large
aggregates could have contributed to the limited transistor performances of PBDOPV-BTTz devices.

4. Conclusions

In summary, the copolymers composed of BDOPV and benzothiadiazole units were for the first
time synthesized, and their electron transporting properties were investigated by thin film transistors.
The D-A1-D-A2 type polymer of PBDOPV-BTT showed a higher electron mobility than the all-acceptor
type PBDOPV-BTTz. This was due to the higher molecular weight and dipole-induced intermolecular
interactions. All-acceptor polymers are promising molecular architectures with deep LUMO levels,
but controlling the backbone planarity and intermolecular interactions is also required.
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atmosphere at the heating rate of 10 ◦C min−1; Figure S3-1: Transfer curves of thin film transistors based on
PBDOPV-BTT: (a) as cast, after thermal annealing at (b) 150 ◦C, (c) 180 ◦C, (d) 210 ◦C, and (e) 240 ◦C (L = 100 µm
and W = 1000 µm); Figure S3-2: Transfer curves of thin film transistors based on PBDOPV-BTTz: (a) as cast,
after thermal annealing at (b) 150 ◦C, (c) 180 ◦C, (d) 210 ◦C, and (e) 240 ◦C (L = 100 µm and W = 1000 µm);
Figure S4: Illustration of the thin film transistor structure.
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