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Abstract: The aluminum electrolytic capacitor (AEC) is one of the most vulnerable parts in power
electronic converters and its reliability is crucial to the whole system. With the growth of service
time, the equivalent series resistance (ESR) increases and the capacitance (C) decreases due to the
loss of electrolytes, which will result in extra power loss and even damage to transistors. To prevent
significant damages, the AEC must be replaced at an optimal period and online health monitoring is
indispensable. Through the analysis of degradation parameters (ESR and C), ESR is proved to be a
better health indicator and therefore is determined as the monitoring parameter for AEC. From the
capacitor perspective, ESR estimation schemes of output capacitors for a Buck converter are studied.
Based on the voltage–current characteristics, two ESR calculation models are proposed, which are
applicable for both continuous conduction mode (CCM) and discontinuous conduction mode (DCM).
From the point of implementation view, the advantages and disadvantages of the two estimation
schemes are pointed out, respectively. A Buck prototype is built and tested, and simulation and
experimental results are provided to validate the proposed ESR estimation schemes.

Keywords: aluminum electrolytic capacitor (AEC); health monitoring; ESR estimation; Buck converter

1. Introduction

For the advantages of high power, density and efficiency, power electronic converters (PECs)
have been widely used in many different fields such as new energy, industry and aviation [1–4].
However, PECs have synthetic complexities such as high stress and strong nonlinearity, which causes
challenges to their operational reliability. To suppress high-frequency voltage ripples and keep output
voltage steady, power filter capacitors are indispensable for PECs. Owing to the high capacitance per
volume and low cost, aluminum electrolytic capacitors (AECs) are usually the preferred capacitors.
Unfortunately, it is reported that AECs are the most vulnerable parts in PECs [5,6]. The evaporation
of the electrolyte is the main degradation pattern of AECs, which will increase the equivalent series
resistance (ESR) and decrease the capacitance (C) gradually. These degradations will increase voltage
and current ripples, producing more power loss and even device damage. Moreover, prolonged use
of aged capacitors will lead to system failure once the electrolyte is dried up, increasing the cost of
maintenance and affecting the normal production. To prevent significant damages, AECs must be
monitored in real time and replaced at an optimal period. According to the manufactures, C and ESR
can be used to indicate the health status of AECs. Generally, the service life of an AEC is considered to
be over once the C decreases to 80% or the ESR increases to more than twice the initial value under
the same condition [7,8]. Therefore, online ESR or C estimation is critical for condition monitoring
of AECs.

In the literature, a lot of online schemes have been proposed to calculate C and/or ESR for condition
monitoring of AECs. From the perspective of the circuit, the existing methods can be summarized as
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system perspective methods (SPMs) and capacitor perspective methods (CPMs). In SPMs, multiple
components besides AECs are monitored at the same time and parameter identification is often used.
Circuit model is the basis of parameter identification, which determines the accuracy of identification
results. In [9–12], the state-space averaging model is used and the parameter identification is conducted
by the means of signal injection. However, these methods have the shortcomings of high computational
complexity, which restricts its real application. To avoid signal injection, a hybrid model is proposed for
parameter identification by measuring the switch states of a converter in [13,14]. However, the driving
and switching delay time of the actual device increase the difficulty of switch states measurement and
will cause identification error.

Compared to SPMs, CPMs can achieve higher identification precision by fewer sensors. In CPMs,
the ripple voltage and/or current of AEC are needed for ESR and C calculations. Since most of the
switching ripple current flows through the capacitor, this ripple current is directly used to estimate
ESR in [15–17]. In [15], capacitor voltage and current ripples are extracted by a band-pass filter and
ESR is calculated at the centre frequency. In [16], the inductor current derivative is obtained by a
Rogowski coil-based sensor for ESR calculation. In [17], Empirical Mode Decomposition (EMD) is
used to extract ripples for ESR estimation. However, these methods are relatively complex in hardware
or software implementation. To reduce the use of sensors, current-sensorless monitoring methods of C
and ESR are proposed for a continuous conduction mode (CCM) Buck converter, for a CCM flyback
converter and a discontinuous conduction mode (DCM) flyback converter, respectively in [18–20].
Similar methods are applied to a CCM boost converter in [21] and realized for DCM in [22]. However,
these current-sensorless methods are affected by other parameters such as the duty cycle and filter
inductance. If the duty cycle is measured inaccurately or the filter inductance is changed by aging,
estimation error will be produced. Beside these direct methods, power loss is another way to estimate
ESR [23]. Power dissipation is calculated by measuring RMS values of the capacitor current and the
capacitor voltage. However, it is reported that the capacitor voltage is distorted by the capacitor
current sensor in [24]. Moreover, the low-pass filter introduced in the power loss calculation will cause
error [23]. In [25,26], the load current measurement is added for C estimation through the transient
analysis of output voltage.

To address the aforementioned issues, ESR is chosen as the monitoring parameter for AEC and
two ESR calculation models are derived for Buck converters from a capacitor perspective in this paper.
The proposed models apply to both CCM and DCM. This paper is organized as follows. In Section 2,
the degradation parameters (ESR and C) of AECs are analyzed and ESR is determined as the monitoring
parameter for AEC in this paper. In Section 3, ESR estimation schemes are studied from a capacitor
perspective and two ESR estimation models are proposed. Simulation studies are carried out for model
validation on MATLAB in Section 4. Experimental results are presented in Sections 5 and 6 concludes
the paper.

2. Analysis of Degradation Parameters

In general, C and ESR are used as the indicators of degradation AECs. However, the values of
ESR and C are affected not only by aging but also temperature and frequency. Figure 1a,b show the
frequency characteristic curves of C and ESR for capacitor CD297 450V680µF (Jianghai, Nantong, China)
at different temperatures. The frequency characteristic curves of C and ESR are affected by the dielectric
absorption and dielectric dissipation factors of AEC, which are mainly determined by the frequency
characteristics of aluminum oxide film and electrolyte. From Figure 1a, it can be seen that C presents two
different characteristics in high temperature zone (45~85 ◦C) and low temperature zone (−40~25 ◦C).
In the high temperature zone, the capacitance increases as the frequency increases, and in the low
temperature zone, the capacitance decreases as the frequency increases. Moreover, at the same
frequency, the capacitance presents a non-monotonic temperature characteristic. From Figure 1b, it can
be seen that the ESR-f curve has good temperature and frequency monotonicity: ESR decreases as
frequency increases and decreases as temperature increases. If a converter operates at a temperature of
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0~85 ◦C and at a frequency of 10~100 kHz, it can be found that ESR has lower temperature sensibility
and lower frequency sensibility than C. Not only that, ESR also has higher degradation sensibility,
which has been indicated in [7,8]. The accelerated aging test results at 120 Hz are presented in Figure 2,
where it can be found that the relative variations of ESR are much larger than that of C. As a matter of
fact, the evaporation of the electrolyte is the main degradation pattern of AEC. The evaporation of the
electrolyte will cause an increase in ESR directly and C is mainly affected by the thickness of alumina
film. In the service life of an AEC, the variation of C is not permitted beyond 20% but the variation of
ESR usually exceeds 100%. Therefore, ESR is chosen as the optimum degradation parameter for AECs.

Figure 1. The frequency characteristic curves of capacitance (C) and equivalent series resistance (ESR)
for capacitor CD297 450V680µF: (a) C-f ; (b) ESR-f.

Figure 2. The accelerated aging test results of CD297 450V680µF: (a) capacitance data; (b) ESR data.

3. ESR Estimation Schemes

In power electronics converters, voltage ripples and current ripples are the basis for C and ESR
calculation. Therefore, it is necessary to analyze the ripple characteristic. In general, from capacitor
perspective, the output structure of power electronic converter can be illustrated as shown in Figure 3,
where ils is the total current of the capacitor branch and load branch, iC is the current of the capacitor
branch, the electrolytic capacitor Cf is equivalent to a capacitance C in series with a resistance ESR,
and Ro is the output load.

Figure 3. Output structure of power electronic converters.
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In such a structure, the output voltage ripple vo_ac can be divided into two components

vo_ac = vESR + vC_ac, (1)

where vESR and vC_ac are the ripple voltages across ESR and C, respectively.
According to the characteristics of resistance and capacitance, the two components have a

relationship as

C
dvC_ac

dt
=

vESR

ESR
= iC, (2)

If vESR and iC are extracted, ESR can be calculated directly. However, in actual circuit, only
vo_ac (a total of vESR and vC_ac) and iC can be acquired. Therefore, the key of ESR estimation is the
separation of vESR from vo_ac, which can be regarded as a signal processing issue. The existing methods
of signal processing can be classified into frequency-domain approaches and time-domain approaches.
The frequency-domain approaches can only separate different frequency components, which are
difficult to extract vESR from vo_ac at the same frequency. For this reason, time-domain analysis is
carried out in the following.

In general, the impedance of the electrolytic capacitor at the switching frequency is much less
than that of the load. In this situation, almost all the switching frequency ripple current ils_ac flows
through the capacitor, which can be described as

iC ≈ ils_ac, (3)

Notably, this formula is the presupposition of the proposed calculation models in this paper,
which indicates that the following proposed models are applicable as long as the impedance of the
load is much larger than the impedance of AEC at the switching frequency. Additionally, for the sake
of analysis, resistive load is adopted for the following model derivation.

3.1. ESR Estimation Schemes Analysis

The representative waveforms of the Buck converter in CCM and DCM are shown in Figure 4a,b,
respectively, where vgs is the driving signal, vESR represents the voltage across the ESR (the capacitor
current iC), vC represents the voltage across the pure capacitance, and vo is the output voltage.
From Figure 4, two characteristics can be observed: 1. there are two different moments that vC has the
same amplitude; 2. vC_ac is orthogonal to vESR on the interval [0, T].

Figure 4. Representative waveforms of Buck converter: (a) continuous conduction mode (CCM);
(b) discontinuous conduction mode (DCM).
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3.1.1. Scheme 1: Based on the Specific Moments

According to (1) and (2), ESR can be calculated by

∆vo_ac = ∆vESR + ∆vC_ac, (4)

ESR =
∆vESR

∆iC
, (5)

From (4) and (5), it can be seen that ESR can be calculated by ∆vo_ac/∆iC when ∆vC_ac = 0. Therefore,
ESR can be obtained easily if the extracted two moments satisfy ∆vC_ac = 0. In CCM, iC is a triangular
wave and iC(DT/2) is at the midpoint of the rising edge, namely vC(0) = vC(DT). In DCM, t1 is the
zero crossing point of iC and 2t1 is less than DT obviously. As a result, there is also a moment 2t1 that
satisfies vC(0) = vC(2t1) in DCM.

In conclusion, ESR calculation model can be derived as

ESR =
vo_ac(0) − vo_ac(x)

iC(0) − iC(x)
, (6)

where x = DT in CCM and x = 2t1 in DCM.

3.1.2. Scheme 2: Based on the Orthogonality

For the reason that it only contains ac components and satisfies the Dirichlet principle, iC(t) can be
expressed in the form of Fourier as

iC(t) =
∞∑

n=1

(an cos(2nπ fst) + bn sin(2nπ fst)), (7)

where f s represents the switching frequency. Substituting (7) into (2), vC_ac can be obtained as

vC_ac(t) =
1

2π fsC

∞∑
n=1

1
n
(an sin(2nπ fst) − bn cos(2nπ fst)), (8)

It can be found that∫ T

0
iC(t)vC_ac(t)dt =

1
2π fsC

∞∑
n=1

∫ 1
fs

0

1
n

 a2
n−b2

n
2 sin(4nπ fst)

−anbn cos(4nπ fst)

 = 0, (9)

which proves the orthogonality of vC_ac and vESR(iC) on the interval [0, T]. Moreover, similarly, if the
equivalent series inductance (ESL) is considered, the ac voltage across ESL is also orthogonal to vESR(iC)
on the interval [0, T], which means that the ESL of AEC does not affect the results.

Moreover, it can be further derived that∫ T

0
iC(t)vo_ac(t)dt =

∫ T

0
iC(t)(vC(t) + vESR(t))dt =

∫ T

0
iC(t)(vC(t) + ESRiC(t))dt = ESR

∫ T

0
i2C(t)dt, (10)

Thus, the calculation model of ESR can be presented finally as

ESR =

∫ T
0 iC(t)vo_ac(t)dt∫ T

0 i2C(t)dt
, (11)

The numerator of (11) is the ac loss of AEC in one switching cycle. In a power electronic converter,
iC is almost unaffected by ESR variation, which means the ac loss of AEC will increase while ESR
increases and it is important to monitor the ESR variation.
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3.2. ESR Estimation Implementations

Two ESR estimation schemes are revealed by (6) and (11), respectively, and there are various ways
to realize them. In this part, we will provide a simple and efficient solution for each scheme.

3.2.1. Implementation of Scheme 1

In scheme 1, t1 in DCM is difficult to obtain and ils_ac needs to be measured to capture t1. To reduce
the number of measured signals, iC in (6) can be replaced by ils_ac as

ESR =
vo_ac(0) − vo_ac(x)
ils_ac(0) − ils_ac(x)

, (12)

Actually, these specific moments can be obtained by capturing the zero crossing moments of vC_ac

and (12) can be transformed into

ESR =
vo_ac(tz1) − vo_ac(tz2)

ils_ac(tz1) − ils_ac(tz2)
, (13)

where tz1 and tz2 are the two continuous zero crossing points of vC_ac. tz1 and tz2 can be captured by
extracting the zero crossing points of the integral for ils_ac. However, the integral often introduces dc
components, which will lead to the extraction errors. To avoid this defect, Hilbert transform is used
to replace the integral. Hilbert transform is a signal processing method that can achieve a 90-degree
move-phase at all frequencies. Hilbert transform is realized by using the “hilbert” function on MATLAB,
which is used to obtain the analytic signal of ils_ac:

hilbert(ils_ac) = vo_ac + i×Hilbert(ils_ac) (14)

where Hilbert(ils_ac) is the actual Hilbert transform of ils_ac and is acquired by the “imag” function.

3.2.2. Implementation of Scheme 2

To implement scheme 2, the ESR calculation model of (11) can be discretized into

ESR =

N∑
i=1

Ils_ac(i)Vo_ac(i)

N∑
i=1

I2
ls_ac(i)

, (15)

where N is sampling number and N should cover several switching periods.

4. Simulation Study

For verifying effectiveness of the proposed ESR calculation models, the simulation model of Buck
converter is built on MATLAB/SIMULINK, and the circuit parameters are listed in Table 1. Ro = 10 Ω
and Ro = 100 Ω are used for CCM simulation and DCM simulation, respectively.

Table 1. Simulation Parameters of Buck Converter.

Parameters Variable Value

Input voltage Vin/V 24
Inductance Lf/µH 220

Output capacitor Cf/µF 100
Output load resistor Ro/Ω 10(CCM), 100(DCM)

ESR of output capacitor ESR/Ω 0.2
Duty cycle D 0.5

Switching frequency f s/kHz 50
Sampling frequency f sa/MHz 10
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For the proposed two calculation models, the sampled signals are both the inductor ac current
iLf_ac and the output ac voltage vo_ac. The waveforms of iLf_ac and vo_ac in CCM and DCM are shown
in Figure 5, respectively.

Figure 5. Simulation waveforms of Buck converter in ideal condition: (a) CCM; (b) DCM.

4.1. Method 1

Figure 6 shows the signal processing waveforms and Table 2 lists the ESR estimation results
calculated by (13) in CCM and DCM. The estimation error is about 1% and the estimation error in
DCM is a little smaller than that in CCM.

Figure 6. Signal processing waveforms of Buck converter in ideal condition: (a) CCM; (b) DCM.

Table 2. ESR Simulation Results of Buck Converter by Method 1.

Reference Simulation Results

ESR/Ω
CCM (Ro = 10 Ω) DCM (Ro = 100 Ω)

ESR/Ω error/% ESR/Ω error/%

0.2 0.1975 1.25 0.2020 1

The advantages of method 1 is that it only needs to capture two points for a calculation and it can
reserve low computational complexity. However, it is precisely because the data used for calculation
are few that this method is sensitive to noise, which means it requires high-accuracy sampling and a
good de-noising method.

4.2. Method 2

Table 3 lists the ESR estimation results calculated by (15). For each calculation, 1000 data points
(five switching cycles) are acquired and ESR is calculated by 200, 400, 600, 800 and 1000 points,
respectively, from top to bottom. It can be seen that the simulation results are a little smaller than
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the reference, whether in CCM or DCM. This is caused by the approximation of (3). In fact, some of
ils_ac flows through the load resistance and the actual calculation value is ESR//Ro. For the same
ESR, the larger Ro is, the smaller error is. In given Ro circumstance, the calculated results can be
corrected correspondingly.

Table 3. ESR Simulation Results of Buck Converter by Method 2.

Reference Simulation Results

ESR/Ω
CCM (Ro = 10 Ω) DCM (Ro = 100 Ω)

ESR/Ω error/% ESR/Ω error/%

0.2

0.1962 1.9 0.1999 0.05
0.1962 1.9 0.1997 0.15
0.1962 1.9 0.1996 0.20
0.1962 1.9 0.1996 0.20
0.1962 1.9 0.1996 0.20

Compared to method 1, method 2 requires more data for calculation and needs more computation.
However, method 2 can get a better anti-noise property for the use of more sampling data and can
reduce the requirement for the sampling device.

5. Experimental Results

To validate the proposed schemes, a Buck converter is assembled in the laboratory. The Buck
converter is open-loop controlled and the output voltage is regulated by the duty cycle of MOSFET,
which is realized by IC SG3525 (Motorala, Tokyo, Japan). The driving signal of MOSFET is produced
by IC IXDN609PI (IXYS, Milpitas, CA, USA). The main specifications are as follows: input voltage:
24 V; output voltage: 12 V; switching frequency: 44.5 kHz; power diode: IXYS DSEP60-06A (IXYS,
Milpitas, CA, USA); power MOSFET: IXYS IXFK64N50P (IXYS, Milpitas, CA, USA); output AEC:
CAPXON 100V100µF (CapXon, Shenzhen, China); load resistance Ro: 10 Ω/400 Ω. The waveform data
are acquired by Agilent DSO-X 2014a (Agilent Technologies, Santa Clara, CA, USA) and the sampling
frequency is 100MHz. The collected data are uploaded to the computer and ESR is calculated on
MATLAB 2016b (MathWorks, Natick, MA, USA). The reference values are measured offline by LCR
meter at the switching frequency before the capacitor is assembled to the converter at 25 ◦C.

The sampled experimental waveforms are shown in Figure 7. It can be seen that the collected
signals are mixed with much noise, especially vo_ac, which will cause large estimation errors and
even estimation failure. To eliminate the influence of noise on estimation results, a wavelet threshold
de-noising method is adopted. The effect of the wavelet de-noising method mainly depends on
the choice of wavelet generating function, the level of decomposition, and the setting of threshold.
Synthesizing the maximum signal–noise ratio principle and calculation efficiency, Wavelet Coiflets 5 is
chosen, the level of decomposition is set as 3 and fixed threshold mode is adopted. The de-noised
waveforms are shown in Figure 8 and these de-noised waveforms are used for ESR estimation.

Figure 7. Experimental waveforms of Buck converter before de-noising: (a) CCM; (b) DCM.
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Figure 8. Experimental waveforms of Buck converter after de-noising: (a) CCM; (b) DCM.

5.1. Method 1

To calculate ESR by method 1, the Hilbert transform of the inductor ac current is carried out and
the waveforms of CCM and DCM are shown in Figure 9, respectively. The dotted boxes in the figure
depict the zero-crossing points and the actual calculation times (5 times in CCM and 9 times in DCM).
The experimental ESR estimation results of method 1 are listed in Table 4.

Figure 9. The de-noised ac component of the inductor current and its Hilbert transform: (a) CCM;
(b) DCM.

Table 4. ESR Experimental Results of Buck Converter by Method 1 after De-noising.

Reference Experimental Results

ESR/Ω
CCM (Ro = 10 Ω) DCM (Ro = 400 Ω)

ESR/Ω error/% ESR/Ω error/%

0.1922

0.1733 9.8 0.1846 3.9

0.1815 5.6 0.2133 10.9

0.1823 5.2 0.1818 5.4

0.1798 6.5 0.2147 11.7

0.1855 3.5 0.1799 6.4

-

0.2153 12.0

0.1777 7.5

0.2155 12.1

0.1789 6.9

As the results are calculated by the data of two specific moments, the estimation results are easily
affected by the noise and fluctuate obviously. From Figure 8, it can found that the signal–noise ratio of
vo_ac1 in DCM is smaller than that in CCM, which agrees well with the higher volatility in the estimation
results in DCM. By comparing the results of narrow and wide time intervals in DCM, it shows that
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the results in wide time intervals have higher precision and this is because the signals in wide time
intervals have higher signal–noise ratio. Overall, this scheme has bad identification stability in low
signal-to-noise ratio conditions and it is suitable for high-precision sampling and low-complexity
computation occasions.

5.2. Method 2

The experimental results of method 2 are listed in Table 5. ESR is calculated with one cycle
(N = 2247) to eight cycles (N = 8988). In comparison with the results of CCM, the results in DCM are
closer to the reference. This is caused by the approximation of (3), which agrees well with the simulation.
Moreover, the cross correlation coefficient of the noise is usually very small, which means this method
has good noise immunity. To verify the noise immunity, ESR estimation results calculated by using the
signals before de-noising are listed in Table 6. Compared to the results in Table 5, the difference of the
results in Table 6 is small, which verifies the good noise immunity of this method. Overall, this scheme
has good identification precision and stability.

Table 5. ESR Experimental Results of Buck Converter by Method 2 after De-noising.

Reference Experimental Results

ESR/Ω
CCM (Ro = 10 Ω) DCM (Ro = 400 Ω)

ESR/Ω error/% ESR/Ω error/%

0.1922

0.1819 5.3 0.1994 3.7

0.1813 5.7 0.2004 4.3

0.1763 8.3 0.1882 2.1

0.1767 8.1 0.1878 2.3

Table 6. ESR Experimental Results of Buck Converter by Method 2 before De-noising.

Reference Experimental Results

ESR/Ω
CCM (Ro = 10 Ω) DCM (Ro = 400 Ω)

ESR/Ω error/% ESR/Ω error/%

0.1922

0.1810 5.8 0.1917 0.3

0.1802 6.2 0.2002 4.2

0.1751 8.9 0.1879 2.2

0.1755 8.7 0.1875 2.4

5.3. Error Analysis

In addition to the load resistance, the estimation error of the proposed methods is also induced by
other factors:

1. Noise effect. Though the signal-to-noise ratio is greatly improved by the wavelet de-noising
method, noise cannot be completely eliminated and the effective signal is also attenuated.

2. Sampling resolution. The estimation precision is determined by the sampling resolution of
voltage and current ripples. However, the voltage and current ripples are small, which needs
equipment with high resolution.

3. Errors of the reference values. Errors also exist in the measured reference values and only values
at a certain frequency can be measured by LCR meter. However, the used inductor current and
capacitor voltage for ESR estimation not only contain switching-frequency components, but also
an amount of harmonic components, which will lead to different estimation results.
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4. The delay mismatching of the voltage sensor and current sensor. The ESR estimation method is
based on the phase relationship and the different delay time of voltage and current sensors will
result in errors. In this respect, the delay time difference should be minimized so as to achieve
high accuracy.

Although there are some errors in the estimation results, the results have low dispersed degree.
The aim of ESR estimation is to monitor the health of AEC, which is often considered lapsed until its
ESR increases to more than two times of the initial value. Therefore, the estimation error (<10%) is
within the accepted range and the estimation results can be taken as effective indicators.

6. Conclusions

From a capacitor perspective, ESR calculation schemes of output capacitors for a Buck converter
are studied in this paper:

(1) The degradation parameters of AECs are analyzed and ESR is indicated as the optimal
health indicator.

(2) Based on the voltage–current characteristics, two ESR calculation models are proposed.

To reveal the advantages of the proposed methods, a comparison between the two proposed
methods and the existing methods is presented in Table 7.

Table 7. Comparison between the Proposed Methods and the Existing Methods.

Method
The Existing Capacitor
Perspective Methods

(CPMs)
Proposed Method 1 Proposed Method 2

Calculation model simple simple simple

Additional circuit relatively complicated simple simple

Load applicability CCM or DCM Both CCM and DCM Both CCM and DCM

Applicability narrow wide wide

The main advantages of the two proposed methods are:

(1) Only the output voltage ripple and the inductor current ripple are sampled, which requires
minimal hardware.

(2) The proposed methods apply to both CCM and DCM.

The main differences between method 1 and method 2 are:

(1) Method 1 only needs to capture two points for calculation in a switching period and method 2
needs to continuously capture several switching-period points.

(2) Method 1 is susceptive to noise and method 2 has a strong capability for noise immunity.

It should be noted that the proposed methods are only applicable to the case that the output is
a single capacitor or the case that the output can be equivalent to a single capacitor. The proposed
methods are not effective and need to be improved for parallel capacitors. Ultimately, we are still
working on the optimal method of monitoring parallel capacitors.
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