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Abstract: In this paper, we propose a vision-based feature tracker for the autonomous hovering of an
unmanned aerial vehicle (UAV) and present an area-efficient hardware architecture for its integration
into a flight control system-on-chip, which is essential for small UAVs. The proposed feature
tracker is based on the Shi–Tomasi algorithm for feature detection and the pyramidal Lucas–Kanade
(PLK) algorithm for feature tracking. By applying an efficient hardware structure that leverages
the common computations between the Shi–Tomasi and PLK algorithms, the proposed feature
tracker offers good tracking performance with fewer hardware resources than existing feature
tracker implementations. To evaluate the tracking performance of the proposed feature tracker,
we compared it with the GPS-based trajectories of a drone in various flight environments, such as
lawn, asphalt, and sidewalk blocks. The proposed tracker exhibited an average accuracy of 0.039
in terms of normalized root-mean-square error (NRMSE). The proposed feature tracker was designed
using the Verilog hardware description language and implemented on a field-programmable gate
array (FPGA). The proposed feature tracker has 2744 slices, 25 DSPs, and 93 Kbit memory and can
support the real-time processing at 417 FPS and an operating frequency of 130 MHz for 640 × 480
VGA images.

Keywords: feature tracker; flight control; hovering; system-on-chip; unmanned aerial vehicle (UAV)

1. Introduction

Unmanned aerial vehicles (UAVs), often called quadcopters or drones, have been widely applied
to execute missions in various fields, such as precision agriculture, security, and surveillance [1].
One of the most popular and promising applications of UAVs is ground target surveillance that
requires stable hovering of the UAV. Hovering is usually performed using a global positioning system
(GPS) in an outdoor environment. However, the scope of application of hovering based only on GPS
information is limited because GPS signals are often shadowed in dense environments, such as cities,
and unavailable in indoor environments [2]. Therefore, a reliable technique for estimating the position
of the UAV is required in GPS-denied environments. Inertial measurement units (IMUs), light detection
and ranging (LiDAR), or camera sensors [3–10] are used for hovering in GPS-denied environments.
Simultaneous localization and mapping (SLAM) techniques using depth sensors such as LiDAR
or stereo-vision cameras build detailed maps of rooms and can thus be used for indoor hovering.
However, they require very complex computations and have high power consumption. Among them,
vision-based techniques with camera sensors are particularly suitable for UAVs because of their lower
power consumption and weight compared with other techniques [5,6]. Vision-based hovering is a
method to track the motion of a UAV using image sequences acquired from a downward-facing
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camera and then compensate for the current motion of the UAV based on the tracked motion.
Therefore, accurate motion tracking of the UAV is essential.

Several algorithms for tracking the movement of UAVs have been studied [5–10]. The template
matching algorithm was used in [7], which estimates the deviation by calculating the correlation
between the features of sequential frames using the sum of absolute differences (SAD) or the sum of
squared differences (SSD). Even though this algorithm has low computational complexity, its tracking
accuracy is very low because it determines whether the templates match only via the values of the
SSD or the SAD. The Kanade–Lucas–Tomasi (KLT) algorithm can track the movement of the UAV by
detecting the features in an image and estimating the optical flow for each feature [8]. Compared with
the template matching method, the KLT algorithm has higher accuracy because all computations are
kept at a subpixel accuracy level using bilinear interpolation [10].

The KLT algorithm consists of two processes: feature extraction using the Shi-Tomasi algorithm and
feature tracking using Lucas–Kanade (LK) optical flow estimation (OFE) [11]. The Shi–Tomasi algorithm
defines features based on the eigenvalues of the Hessian matrix [12] and exhibits excellent performance in
feature tracking applications. However, the computation of eigenvalues is computationally intensive and
becomes a bottleneck for real-time vision tasks, such as high-frame-rate video processing. The LK-OFE
algorithm finds the flow vector of features by minimizing the sum of squared error between two
images. It exhibits excellent performance and has been used in many applications [13–18]. However,
there is a tradeoff between local accuracy and robustness when choosing the window size. A small
window is preferable to avoid smoothing out the details of the images, but a large window is required
to handle large motion. To overcome this problem, the pyramidal LK (PLK) algorithm was proposed
in [19]. The PLK algorithm can track large motions even with a small search window by applying
iterative processing to each level of an image pyramid. While the PLK overcomes this tradeoff, it still
has a problem in that iterations increase computational complexity.

In this paper, we propose a feature tracker based on the Shi–Tomasi and PLK algorithms and present
an area-efficient hardware architecture and FPGA-based implementation results. To reduce complexity,
we simplified complex equations while maintaining performance. In addition, we developed a structure
that shares common computations between the Shi–Tomasi and PLK algorithms. The rest of this paper is
organized as follows. Background for the Shi–Tomasi and PLK algorithms is presented in Section 2.
In Section 3, we describe a hardware architecture for the proposed feature tracker. Section 4 presents
the results of our implementation and verification on an FPGA, and experimental results from real
flight environments are presented in Section 5. Finally, we conclude the paper in Section 6.

2. KLT Feature Tracking Algorithm

2.1. Shi–Tomasi Algorithm

The Shi–Tomasi algorithm for feature detection was proposed in [12]. It is based on the 2 × 2
Hessian matrix H:

H =

[
g2

y gygx

gygx g2
y

]
, (1)

where gx and gy are gradients in the horizontal and vertical directions, respectively. The eigenvalues
of H indicate the type of intensity change within the window centered at a given point. When both
eigenvalues are small, the point is in a flat region. When one is large and the other is small, the point is
at an edge. If both eigenvalues are large, the point is considered a corner [12]. To detect corners that
are favorable for tracking, the minor eigenvalue is compared with a predefined threshold T as follows:

min(λ1, λ2) > T, (2)
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where λ1 and λ2 are the eigenvalues. When a pixel satisfies Equation (2), it is considered a candidate
for a good feature to track. To obtain non-overlapping features, all overlapped features within an n× n
window centered at each candidate feature are deleted [11,12].

2.2. Pyramidal LK Optical Flow Estimation

Assuming that the brightness constancy constraint is satisfied, the LK-OFE algorithm computes
the flow vectors of features between the current frame and the previous frame in image sequences [11].
The brightness constancy constraint can be expressed as follows:

I(x, y, t + τ) = I(x− δx, y− δy, t), (3)

where I(x, y, t + τ) is the intensity of the pixel corresponding to the feature point at x= (x, y) in the
(t + τ)-th frame, and I(x− δx, y− δy, t) is the intensity of the pixel shifted by δx and δy in the x
and y directions, respectively, in the t-th frame, which is the previous frame. The amount of motion
d = (δx, δy) is called the displacement vector of point x. If we re-define J(x) = I(x, y, t + τ) and
I(x− d) = I(x− δx, y− δy, t), the value of d that minimizes the residue error ε can be calculated
as follows:

ε = ∑
j∈W

[I(xj − d)− J(xj)]
2wj, (4)

where wj is a Gaussian kernel and W is a small window centered at one of the feature points. When d
is small, the intensity function can be approximated by its Taylor series as follows:

I(x− d) = I(x)− g · d, (5)

where g is the gradient vector
(

∂I
∂x , ∂I

∂y

)
at x. Then, we can rewrite the residual error as

ε = ∑
j∈W

[h(xj)− g · d]2wj, (6)

where h(x) denotes I(x)− J(x). Because the residue is a quadratic function of the displacement d,
the minimization can be done in closed form as

∑
j∈W

(h(xj)− g · d)g · wj = 0. (7)

Because (g · d) g =
(
ggT) d and d is assumed to be constant within W, we have

Gd = e, (8)

where the G is symmetric 2× 2 matrix

G = ∑
j∈W

ggTwj =

 ∑
j∈W

wjg2
y ∑

j∈W
wjgygx

∑
j∈W

wjgygx ∑
j∈W

wjg2
x

 , (9)

and e is a two-dimensional vector

e = ∑
j∈W

h(xj)gwj =

 ∑
j∈W

wjgyh(xj)

∑
j∈W

wjgxh(xj)

 . (10)
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However, the result of Equation (8) usually contains some errors. Therefore, d is determined
via iterations. The coordinates of the current feature are compensated by d from the previous step,
and images are resampled via bilinear interpolation to achieve subpixel accuracy.

To overcome the tradeoff between accuracy and robustness in LK-OFE, the PLK algorithm
was proposed in [19]. Let IL

t be the image corresponding to pyramidal level L for the t-th image,
where L = 0, 1, 2 . . . , Lm are generic pyramidal levels. I0

t is essentially the highest resolution image
(the raw image). The PLK algorithm sequentially tracks from the highest-level image ILm

t to the
lowest-level image I0

t . The pyramidal image IL
t is obtained via decimation filtering from IL−1

t as follows:

IL (x, y) = 1
4 IL−1(2x, 2y)+

1
8
{

IL−1 (2x− 1, 2y) + IL−1 (2x + 1, 2y) + IL−1 (2x, 2y− 1) + IL−1 (2x, 2y + 1)
}
+

1
16
{

IL−1 (2x− 1, 2y− 1) + IL−1 (2x + 1, 2y + 1) + IL−1 (2x− 1, 2y + 1) + IL−1 (2x + 1, 2y− 1)
}

.
(11)

Figure 1 depicts the overall procedure of the PLK algorithm for finding the flow vector. dL
t denotes

the displacement at level L. vL
t is the initial guess that propagates from level L and is calculated using

dL
t and vL+1

t as follows:

vL
t =


2dLm

t
2(vL+1

t + dL
t )

v1
t + d0

t

,
,
,

L = Lm

0 < L < Lm,
L = 0

(12)

where vL
t is propagated to the lower level by being used as a new initial guess at level L− 1.

This propagation is repeated down to level 0, and thus the flow vector v0
t of the t-th image is

finally obtained.

Figure 1. Procedure of the pyramidal Lucas–Kanade (PLK) algorithm.

3. Hardware Architecture of Proposed Feature Tracker

Figure 2 shows the overall architecture of the proposed feature tracker. The proposed feature
tracker detects the features from the first frame I0, and then tracks the features from the next frames I1,
I2, I3, . . . , IN−1, where N is the frame number. The calculated motion vector (u, v)T for each frame is
transferred to the UAV’s flight controller to perform hovering in real time. After tracking N frames,
feature detection is performed again at frame IN , and then feature tracking is performed iteratively for
subsequent frames, IN+1, IN+2, . . ., I2N−1.
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Figure 2. Overall architecture of the proposed feature tracker.

Figure 3 shows a block diagram of the proposed feature tracker, which consists of a Hessian-matrix
calculation unit (HCU), a feature detection unit (FDU), and a feature tracking unit (FTU). Because the
Shi–Tomasi and PLK algorithms involve the same calculation of gradients and multiplications, the FDU
and the FTU share the HCU to reduce hardware complexity. In addition, the HCU, FDU, and FTU are
all designed with a pipelined structure for high-speed operation and lower memory usage.

Figure 3. Block diagram of the proposed feature tracker.

3.1. Hessian-Matrix Calculation Unit (HCU)

The HCU shown in Figure 3 consists of a Sobel filter and Gaussian filters. The HCU calculates
matrix H in Equation (1) for the Shi–Tomasi algorithm and matrix G in Equation (9) for the PLK
algorithm. The Sobel filter calculates the gradients in the horizontal and vertical directions, and the
Gaussian filters smoothen these gradients using a Gaussian kernel. Gaussian and Sobel filters are
implemented with a line buffer structure to carry out the convolution operation. The line buffer
unit (LBU), which is shown in Figure 4, converts sequential input data to the form of an n×n window.
The LBU can be implemented without additional frame buffers because it reuses the input data
line by line. The five Gaussian filters and the Sobel filter in the HCU, the two interpolation units
in the FTU, and the NMS (non-maximum suppression) unit in the FDU were also implemented
using LBUs. Consequently, the memory size was reduced from 9Rx×Ry to 18Rx, where Rx and Ry

denote the horizontal and vertical resolutions of the input image, respectively.
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Figure 4. Block diagram of line buffer unit (LBU).

3.2. Feature Detection Unit (FDU)

The FDU is composed of a corner-response calculation unit (CRCU), a boundary and threshold
checking unit (BTCU), an NMS unit (NMSU), and a region checking unit (RCU). The CRCU determines
the minor eigenvalue, which is a corner response. If the elements of the matrix H in Equation (1) are p,
r, r, and q (in that order), the characteristic equation of H can be expressed as

λ2 − (p + q)λ + pq− r2 = 0. (13)

By applying the quadratic formula to Equation (13), the minor eigenvalue is simply computed as

λmin =
(p + q)−

√
(p− q)2 + 4r2

2
. (14)

The BTCU selects points that have corner probabilities higher than a predefined threshold as
feature candidates. In addition, the BTCU excludes feature candidates located at the boundary because
these may be left out of the image during the tracking process.

After feature candidates are selected by the BTCU, the final features are selected by the
NMSU and RCU. Because points close to good features typically have high corner responses,
selected candidates can overlap. To avoid tracking essentially the same point multiple times, the NMSU
and RCU enforce a minimum distance between features. The NMS technique picks only one feature
with the best corner response in a window and then removes the remaining features that overlap
with it and iterates [11]. Because iterating causes latency to increase, the NMSU is designed with
a hardware-friendly structure using an LBU. As depicted in Figure 5a, the NMSU is composed of
LBU and comparison units, which are shown in Figure 5b. Instead of carrying out a sorting process,
NMS is performed by removing feature candidates when the input corner response is not the largest
in the window. Subsequently, the RCU divides the image into k regions and selects the first candidate
from the NMSU in each region as the final feature.

(a) (b)

Figure 5. Block diagrams of (a) the non-maximum suppression unit (NMSU) and (b) a comparison unit.
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3.3. Feature Tracking Unit (FTU)

The FTU consists of interpolation units, Gaussian filters, a displacement calculator, a flow
vector controller, and a motion estimator, as shown in Figure 3. The traditional PLK algorithm
starts tracking from the highest-level image ILm to the lowest-level image I0. However, because
the pyramidal images are constructed in order from the lowest-level image I0 to the highest-level
image ILm , performing decimation filtering to lower-level images as in Equation (11) requires additional
memory to store the generated pyramidal images. Therefore, we use simple down-sampling instead of
decimation filtering. Simple down-sampling enables the construction of an image pyramid without
incurring additional processing time and memory by controlling the read address of the frame buffer
according to the pyramidal level. Through experiments, we found that the degradation of the
tracking performance when using down-sampling instead of decimation filtering is less than the
root-mean-square error (RMSE) of one pixel.

The construction of pyramidal images via down-sampling is carried out in the interpolation unit.
Figure 6 shows a block diagram of the interpolation unit, which consists of two blocks: a window region
extractor (WRE) and a bilinear interpolator. The WRE operates as a read controller of frame buffers
for the window centered on the feature corresponding to the current pyramidal level. The bilinear
interpolator calculates the intensity value corresponding to the coordinate expressed as a real number
via bilinear interpolation.

Figure 6. Block diagram of the interpolation unit.

Figure 7 depicts the WRE, which calculates the read address of the frame buffer for down-sampling.
If pixel data are stored in the frame buffer in the horizontal direction, the read address of the frame
buffer is calculated as

addrread(x, y, L) = 2L(x + c1 − ws − 1) + 2L(y + c2 − ws − 1)Ry, (15)

and the address of each pyramidal level is connected to the multiplexer. The final read address is
selected based on the current pyramidal level. x and y are the coordinates of the feature, c1 and c2

denote the row and column counter values, ws is the size of the window, Ry is the vertical resolution,
and L is the pyramidal level.

Figure 7. Block diagram of the window region extractor.
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The coordinates of the feature compensated by the calculated displacement are real numbers,
not integers. Therefore, bilinear interpolation is required to determine the intensity of the pixel
corresponding to the real number coordinates and achieve subpixel accuracy. Bilinear interpolation
involves two linear interpolations, one in the horizontal direction and one in the vertical direction.
Because a linear interpolation can be performed via a convolution operation with kernels determined
by the coordinates of the features, the bilinear interpolator was designed using the LBU as shown in
Figure 8.

(a) (b)

Figure 8. Block diagram of (a) the bilinear interpolator and (b) a kernel unit.

After interpolation, the values of wj, g, and h are accumulated to obtain the elements of
Equations (9) and (10). The displacement calculator then calculates d as the product of a vector and an
inverse matrix, as shown in Figure 9.

Figure 9. Block diagram of the displacement calculator.

To calculate the 2× 2 inverse matrix, division by the determinant of G is required. Because the
division operation is highly complex, we use an efficient divider unit considering the characteristics
of the proposed feature tracker, as shown in the flowchart in Figure 10. Here, z is the dividend, d is
the divisor, qint is the integer part of the quotient, qdec is the decimal part of the quotient, and f is the
number of decimal places. The latency of this divider unit is proportional to the size of the quotient.
However, because the value of each element of the displacement vector is less than n when the size of
the search window is n× n, the latency of the divider unit is within (qint + f ) clock cycles, which is
approximately 10 clock cycles. Therefore, the divider unit can be implemented with approximately
35% less area than the general divider unit in [20] using shifters and an adder without causing
performance degradation.
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Figure 10. Flowchart of the divider unit.

After the calculation of the displacements, the feature memory is iteratively updated via the
summation of the displacement and the stored coordinates of features. The final motion vector of a
feature is then calculated by performing a pyramidal propagation from level L to level 0. After the
tracking process for all features is performed, the tracking process is repeated for the next frame.

To calculate (u, v)T , which is the motion vector of a single value, from several flow vectors,
a motion estimator based on a histogram is used. The motion estimator analyzes the histogram of the
flow vectors. The histogram is generated by dividing the entire range of the flow vectors into a series
of intervals and then counting how many vectors fall into each interval [21].

4. FPGA Implementation Results

The proposed feature tracker was designed using Verilog, a hardware description language,
and implemented on a Xilinx Virtex7 XC7VX330T FPGA device [22]. Thus, the proposed feature
tracker was implemented with 2744 slices, 7459 slice LUTs, 25 DSPs, and a 93 Kbit block RAM.
Its power consumption is 108 mW at a maximum operation frequency of 130 MHz, as shown in Table 1.

Table 1. Implementation results of the proposed feature tracker.

Block Slices Slice LUTs DSP48s Block RAM Power Consumption

HCU 775 1937 3 34 Kb 32 mW
FDU 660 1633 2 21 Kb 24 mW
FTU 1309 3859 20 38 Kb 52 mW
Total 2744 7459 25 93 Kb 108 mW

A comparison of the FPGA resources required for the proposed feature tracker and those of
previous works [23–25] is presented in Table 2. The tracker proposed in [25] for embedded vision
applications can extract and track features at very high speeds by making the inter-frame displacement
very small. This approach significantly reduces the time required to extract all features and exhibits
comparable performance with the proposed design in terms of the number of maximum features and
normalized execution time. However, compared with [25], the proposed feature tracker can reduce
the maximum number of slices by 56%, slice LUTs by 65%, and block RAM by 97%. This is because
the HCU is fully shared, several computations (such as division and minor eigen value calculation)
are simplified, and the pipeline structure was designed without additional block RAM. Even though
the design proposed in [23] requires fewer hardware resources, it was implemented without the
pyramidal scheme.



Electronics 2020, 9, 1591 10 of 13

Table 2. Comparison of the proposed tracker and previous works.

Target FPGA Circuit Slices Slice LUTs Block RAM

Virtex2 [23] 550 1237 90 Kb

Virtex5
[24] 5702 24,002 1763 Kb
[25] 7334 29,376 3991 Kb

Proposed 3203 10,324 93 Kb

Virtex7 Proposed 2744 7459 93 Kb

Table 3 shows the comparison results in terms of processing speed. To make a fair comparison,
we normalized the execution time as time per pixel at a clock frequency of 60 MHz. As shown in
Table 3, the execution time per pixel and feature of the proposed feature tracker is lowest among the
different trackers considered owing to its pipelined structure and pyramidal image construction with
no latency. In addition, the proposed tracker can track more features than those of previous works at
the same resolution. Moreover, the execution time per feature of the proposed tracker is also lowest.
Therefore, the proposed tracker is well suited for autonomous hovering of UAVs because it can support
a good tracking performance with low hardware complexity and high processing speed, as evidenced
in Tables 2 and 3.

Table 3. Comparison of the processing speed of our approach with previous works.

[23] [24] [25] Proposed

# of iterations N.A. 4 3 4
Height of pyramid 1 3 1 3
Frequency (MHz) 125 209 182 130

Resolution 320 × 240 720 × 480 1024 × 768 640 × 480
Execution time per frame @60 MHz (s) 0.0205 N.A. 0.0135 0.0051

Execution time per pixel (ns) 266.67 N.A. 17.17 16.88
Maximum features 49 100 1000 171@(720×480) 1554@(1024×768)

Execution time per feature
@1024×768 (ns) 4280 N.A. 13.5 8.5

5. Experiment Results

To evaluate the performance of the proposed feature tracker, we used the DJI Phantom 4 [26].
Performance evaluations were performed by comparing the trajectory of motion vectors obtained
from the proposed feature tracker based on the images from the downward-facing camera with the
movement trajectory derived from GPS coordinates information from the DJI Phantom 4.

Because the unit of the motion vector of the proposed feature tracker is pixels and that of the
GPS-based movement trajectory is meters, it is necessary to convert the former to meters as follows:

xm =
Hu
fL

and ym =
Hv
fL

, (16)

where H is the altitude of the drone and fL is the focal length, which is the distance from the camera’s
projection center to the image sensor [27]. Subsequently, the movement trajectory of the UAV was
calculated based on the histogram of the motion vectors expressed in meters. The red boxes indicate
the position of the features in the previous frame, and the yellow lines indicate the flow vectors.
The green arrow indicates a representative vector calculated from the histogram of the flow vectors.
When the motion vector is (−0A, FE) in hexadecimal, we can derive that the UAV is moving at a speed
of 2.13 cm per frame using Equation (16), as shown in Figure 11.
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Figure 11. Motion vector in metric units.

The experiment was conducted using images obtained by flying for approximately 10 s at an
altitude of 2 m on lawn, asphalt, and sidewalk block environments. For comparison with GPS-based
trajectories, we unavoidably conducted experiment in outdoor environments. Table 4 summarizes the
verification environments.

Table 4. Summary of verification environments.

Drone DJI Phantom 4

Environments Lawn/Asphalt/Sidewalk blocks
Moving distances 8.3 m/12 m/6.8 m

Altitude 2 m
Flight time 10 s
Resolution 640 × 480

FPS 30
Field of View 94°
Focal length 20 mm

Figure 12 shows the trajectories obtained by accumulating the metric moving distance of the
proposed feature tracker and the movement trajectory of the Phantom 4 obtained based on the
GPS coordinates. The proposed design tracks a moving path similar to the GPS-based results in
each environment. Table 5 shows the RMSE normalized by moving distance of the results obtained
using the proposed feature tracker and a GPS-based approach. The proposed feature tracker exhibited
a similar performance with an average normalized RMSE of 0.039. Therefore, the proposed feature
tracker should be able to support the hovering of UAVs even in GPS-denied environments, such as
indoor environments.
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Figure 12. Comparison of the proposed feature tracking results with GPS-based results on (a) lawn,
(b) asphalt, and (c) sidewalk blocks.
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Table 5. Normalized root-mean-square error (NRMSE) of the proposed feature tracker.

Environment NRMSE

Lawn 0.044
Asphalt 0.045

Sidewalk block 0.029

6. Conclusions

In this paper, we proposed an area-efficient hardware architecture to perform feature tracking to
support the autonomous hovering of UAVs. We present a fast and area-optimized hardware design
based on a robust and accurate pyramidal KLT algorithm. To reduce the area of the feature tracker,
we leveraged the fact that the PLK and Shi–Tomasi algorithms share certain computations. The feature
tracker was implemented with 2744 slices, 7459 slice LUTs, 25 DSPs, and 93 Kbit of on-chip memory
on a Xilinx Virtex7 XC7VX330T device, which represents a reduction in the number of maximum
slices of 56%, slice LUTs of 65%, and block RAM of 97% compared with existing feature tracker
implementations. We experimented in various flight environments to verify our implementation,
and we confirmed that the proposed feature tracker consistently tracks the motion of the drone with
GPS-based trajectories. The proposed feature tracker supports real-time processing at 417 FPS and an
operating frequency of 130 MHz for VGA images (640 × 480).
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