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Abstract: This paper presents an extended time-delayed control (ETDC) scheme and applies it to a
quadrotor system. The proposed ETDC scheme uses a one-sample delayed information of the system
for canceling out the uncertainties and disturbances in nonlinear quadrotor system, which involves
a combination of pole-placement term to deal with the pole assignment. Thus, the proposed one
requires no prior knowledge about the quadrotor dynamics, which is called model-free control
scheme, and then assures fast convergence rate while providing simplicity structure. To suppress
time-delayed estimation (TDE) errors generated by using one-sample delayed information of the
system, a new auxiliary control scheme is designed in the proposed ETDC scheme. It results in a
proper switching gain without undesirable side effect, including chattering and input fluctuation.
Moreover, given that it does not require any number of additional parameters, the number of
the parameters in the proposed ETDC scheme has no change compared to that in conventional
time-delayed control. From these benefits, the proposed one can be recognized as a simple and
effective alternative to the quadrotor system with nonlinearity and complexity. The tracking errors
are proved to be uniformly ultimately bounded through Lyapunov function. The effectiveness of the
proposed ETDC scheme is verified by the simulation with the quadrotor system, which is compared
to that of the conventional time-delayed control scheme.

Keywords: model-free control; attitude control; quadrotor; unmanned aerial vehicle

1. Introduction

The research for the quadrotor systems have been tremendously increased in recent years,
which have shown many tasks including rescue [1], surveillance [2], inspection [3], and topography
mapping [4]. These tasks require the robust trajectory-tracking because they should maintain the high
precision performance. However, given that the quadrotor systems have typical nonlinear systems
with coupling dynamics while being light-weight, it can be difficult to achieve the desired tracking
performance because of sensitivity. For the satisfactory control performance of the quadrotor systems,
several researchers have been fascinated by many control schemes for many years.

Traditionally, the linear control schemes have been widely employed for controlling the quadrotor
systems. As one of them, the linear quadratic regulator (LQR) control scheme [5] has been applied to
obtain desired tracking performance in the quadrotor systems. The LQR control scheme has required two
variables that have a significant effect on the reliability of the controller. However, it is not easy to obtain
that an optimal value of these variables at which best reductions in responses is obtained. It means that it
may adversely affect robust performance. As another control scheme, H∞ control scheme [6] has been
introduced to remedy aforementioned problem, which enhances the robust performance. This control
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scheme is adopted to achieve the optimal gain through Riccati equation or linear matrix inequality,
which aims at providing a sense of stability for the hovering of the quadrotor systems while reducing the
external disturbances. However, given that it requires the complex procedures, e.g., Riccati equation or
linear matrix inequality, in obtaining the optimal gain, this control scheme has difficulty guaranteeing
the globally optimal solution in real systems. Furthermore, the above-mentioned control schemes have a
potential undesirable side effect when generating the abrupt and unsuspected disturbances and finally
may lead to instability in the quadrotor systems.

To improve these problems, conventional sliding-mode control (SMC) schemes [7,8] have been
studied in the quadrotor systems, which has been well-established as one of the most important
tools in industrial systems, including a robot manipulator [9], electric power steering system [10],
and cable-driven manipulator [11]. The outstanding advantage of the conventional SMC scheme
improves the robust performance in the presence of uncertain conditions [12], even though the
unknown system dynamics exists in the systems. Additionally, these control schemes can be easily
applicable to the quadrotor systems owing to the simplicity of their structure. However, given that
the conventional SMC schemes employ the time-invariant switching gains required to be greater
than the upper-bound on the uncertainties and disturbances, they are very conservative because the
information of the upper-bound cannot be perfectly achieved in the real quadrotor systems. In other
words, it implies that they may cause undesirable side effects [13], including chattering and input
fluctuation, and hence there is a limit to improving the convergence rate without negative results.

To remedy these undesirable side effects, studies on the SMC schemes have been conducted
for many years. As one of them, adaptive sliding-mode control (ASMC) schemes [14–17] have been
recently developed, which produce appropriate control inputs in adapting to an uncertain dynamics
and unknown perturbations efficiently owing to the time-varying switching gains. For this reason,
the ASMC schemes aim at overcoming some problems mentioned above. However, given that the
time-varying switching gains are only regulated in relation to tracking errors, there is room for them
greater than the upper-bound on the quadrotor systems. In other words, although the high switching
gains in the ASMC schemes may have positive results generally for the nonlinear systems with large
moment of inertia (MOI), including robot manipulators [18,19] and space vehicles [20], it may have
a negative impact, e.g., system instability, on the systems with small MOI such as the quadrotor
systems because they can be easily shaken by external pressure such as abrupt wind. It implies that
it may make a result sensitive to external disturbances. Furthermore, since these ASMC schemes
employ equivalent terms that seem to be similar to feed-forward terms, they have no choice but to
require exact information of the quadrotor system model, including parametric uncertainties, MOI,
and unmodeled disturbances. In other words, given that these control schemes are mostly based on
mathematical models that incorporate a priori knowledge of systems, they have difficulty in obtaining
an exact and simple model for control design in real quadrotor systems and hence may cause degraded
tracking-trajectory control performance while decreasing the robustness. In addition, the number of
the parameters in these control schemes should be increased for adjusting the time-varying switching
gains appropriately. However, their increase provides difficulties for practicing engineers to use the
quadrotor systems. This is a very important factor while designing the controller in the practical aspect.
In this regard, it would be meaningful to develop a simple, practical, and powerful control scheme
for an effective solution with a fast convergence rate while guaranteeing the system stability in the
quadrotor systems.

In this paper, we propose an extended time-delayed control (ETDC) scheme and apply it to the
quadrotor system. The proposed ETDC scheme uses the state information from a previous time to
cancel out the uncertain and unknown nonlinear dynamics. Therefore, the proposed one requires
no prior knowledge about the quadrotor dynamics. Moreover, it is possible to achieve the dominant
pole using the pole-placement term so that it can be easily performed in the desired convergence
rate. This is a reason that the proposed ETDC scheme assures a fast convergence rate while providing
a simple structure. To suppress the time-delayed estimation (TDE) errors generated by using the
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state information at a previous time, the proposed one involves the switching gain based on the TDE
error at a previous time, as an auxiliary control scheme. Therefore, it provides a proper time-varying
switching gain without undesirable side effects, including chattering and input fluctuation. In addition,
the proposed ETDC scheme does not require any number of additional parameters while providing
these advantages, unlike the existing TDC-based control schemes. From these reasons, the proposed
ETDC scheme can be recognized as a simple and effective alternative to the quadrotor system with
nonlinearity and complexity. It may be convenient for the practicing engineers who do not have control
engineering knowledge. The effectiveness of the proposed ETDC scheme is verified through quadrotor
simulations, which is compared to that of existing control schemes.

The remainder of this paper is organized as follows: In Section 2, we briefly introduce the
quadrotor system dynamics. In Section 3, we explain how to design both the conventional TDC scheme
and the proposed ETDC scheme. In Section 4, we carried out simulations with the quadrotor system.
In Section 5, we discuss a future perspective and a supplementary simulation. In Section 6, we conclude
with a brief summary of this paper.

2. System Dynamics

The quadrotor system dynamics with angular components can be illustrated in accordance with
a Euler–Lagrange equation [21–23]. To begin with, the Euler–Lagrange equation can be represented
as follows:

d
dt

(
∂L
∂η̇

)
− ∂L

∂η
= τT

η (1)

where η = [φ, θ, ψ]T describes the roll, pitch, and yaw angles, respectively. η̇ = [φ̇, θ̇, ψ̇]T is defined
as the derivative of η. η and η̇ are set in inertial frame, as shown in Figure 1. τη = [τφ, τθ , τγ]T is
the roll, pitch, and yaw control torques, respectively. The Lagrangian L is directly related to angular
components and hence can be described as

L = ER =
1
2

νTImν =
1
2

η̇TJcη̇ (2)

where ER is the rotational kinetic energy and ν is angular velocity in body frame, as shown in
Figure 1. Jc is Jacobian matrix that will be introduced later on. Im is moment of inertia (MOI) as
Im = diag(Jxx, Jyy, Jzz), where Jxx, Jyy, and Jzz are the MOI of the x-axis, y-axis, and z-axis in the
quadrotor system, respectively. It implies that the quadrotor system is assumed to be a symmetric
structure with the four arms aligned with the body axes, i.e., x-axis and y-axis. The transformation
matrix Wη for angular velocity from the inertial frame to the body frame can be represented as follows:

Wη =

1 0 −sθ

0 cφ cθsφ

0 −sφ cθcφ

 (3)

where cφ = cos(φ), sφ = sin(φ), cθ = cos(θ), and sθ = sin(θ).
From Equations (1) and (2), we consider the angular dynamic model [21–23] of the quadrotor

as follows:

Jcη̈+ C(η, η̇)η̇ = τη + τd (4)
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where η̈ = [φ̈, θ̈, ψ̈]T is the angular acceleration. τd is called the external disturbance (ED) that
is assumed to be bounded in this paper, i.e., ‖τd‖ ≤ τ∗d , where τ∗d is a positive constant value.
In Equation (2), the Jacobian matrix Jc can be defined as follows:

Jc = WηImWη =

J11 J12 J13

J21 J22 J23

J31 J32 J33

 (5)

where

J11 = Jxx

J12 = J21 = 0

J13 = J31 = −Jxxsθ

J22 = Jyyc2
φ + Jzzs2

φ

J23 = J32 = (Jyy − Jzz)cφsφcθ

J33 = Jxxs2
θ + Jyys2

φc2
θ + Jzzc2

φc2
θ ,

where Jxx, Jyy, and Jzz are the positive constant values. In Equation (4), the second term of left-hand
side follows that

C(η, η̇) =

C11 C12 C13

C21 C22 C23

C31 C32 C33

 (6)

where

C11 =0

C12 =(Jyy − Jzz)(θ̇cθsφ + ψ̇s2
φcθ) + (Jzz − Jyy)ψ̇c2

φcθ − Jxxψ̇cθ

C13 =(Jzz − Jyy)ψ̇cφsφc2
θ

C21 =(Jzz − Jyy)(θ̇cφsφ + ψ̇s2
φcθ) + (Jyy − Jzz)ψ̇c2

φcθ + Jxxψ̇cθ

C22 =(Jzz − Jyy)φ̇cφsφ

C23 =− Jxxψ̇sθcθ + Jyyψ̇s2
ψcθsθ + Jzzψ̇c2

φsθcθ

C31 =(Jyy − Jzz)ψ̇c2
θsφcφ − Jxx θ̇cθ

C32 =(Jzz − Jyy)(θ̇cφsφsθ + φ̇s2
φcθ) + (Jyy − Jzz)φ̇c2

φcθ + Jxxψ̇sθcθ − Jyyψ̇s2
φsθcθ − Jzzψ̇c2

φsθcθ

C33 =(Jyy − Jzz)φ̇cφsφc2
θ − Jyy θ̇s2

φcθsθ − Jzz θ̇c2
φcθsθ + Jxx θ̇cθsθ

where C(η, η̇) is the Coriolis matrix, containing the gyroscopic and centripetal effects. τη mentioned
in Equation (4) is directly related to the rotors of the quadrotor system, which can be represented
as follows:

τη =

 0 l 0 −l
−l 0 l 0
− cd

b
cd
b − cd

b
cd
b

 · f (7)

where f = [ f1, f2, f3, f4]
T denotes the forces generated by four rotors of the quadrotor system (Figure 1).

fi = bω2
i where ωi is the rate of i-th rotor, e.g., i = 1, 2, 3, 4, of the quadrotor system. b and l are

the lift coefficient and the length from the center of mass to the center of each rotor, respectively.
cd
b is considered as the drag coefficient.



Electronics 2020, 9, 1586 5 of 16

Figure 1. A schematic diagram of quadrotor system in the inertia (•I) and body (•B) frames.

3. Control Strategies

3.1. Conventional Time-Delayed Control Scheme

To achieve a stable attitude control for the quadrotor system, we consider the nonlinear quadrotor
system model (Equation (4)). Representing Equation (8) in a compact and simple form yields

η̈ = N + J̄−1τη (8)

where N = J̄−1[−(Jc − J̄)η̈− C(η, η̇)η̇+ τd]. J̄ = diag( J̄φ, J̄θ , J̄ψ) = diag( J̄1, J̄2, J̄3) is the TDC gain that
will be determined for guaranteeing the system stability later on. J̄−1 is defined as the inverse matrix
of J̄. In Equation (8), it is assumed that Euler angles η constraints of the quadrotor system model are
bounded as follows:

−π

2
< φ <

π

2

−π

2
< θ <

π

2
(9)

−π < ψ < π.

Since N in Equation (8) is not available, we can use its estimate N̂ as below:

N̂ ∼= N− = η̈− − J̄−1τη,− (10)

where N̂ is one-sample delayed information of N, which is called time-delayed estimation (TDE).
Subscript “−” means the one-sample delayed information of any variables in present time, i.e., •t−L.
L is set as the sampling period in the quadrotor system, which should be required to be small
sufficiently. Then, the one-sample delayed acceleration can be calculated by the simple procedure
as follows:

η̈ =

(
η− 2η− + η−−

)
L2 (11)

where η−− is the one-sample delayed information of η−.
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To obtain attitude stabilization of the quadrotor system, time-delayed control (TDC)
scheme [19,24,25] can be expressed while employing Equation (10) as in the following form:

τη = −J̄η̈− + τ̄η,− + J̄(η̈d + Kaė + Kbe) (12)

where τη is called the control torque of TDC scheme. To achieve the dominant pole, Ka =

diag
(
Ka,φ, Ka,θ , Ka,ψ

)
= diag

(
Ka,1, Ka,2, Ka,3) and Kb = diag

(
Kb,φ, Kb,θ , Kb,ψ

)
= diag

(
Kb,1, Kb,2, Kb,3

)
are employed as the positive gains in Equation (12). e = ηd − η is defined as the error of Euler angles.
ė = η̇d − η̇ is defined as the derivative of e. ηd, η̇d, and η̈d are the desired Euler angle, the desired
angular velocity, and the desired angular acceleration, respectively.

Substitute Equation (12) into Equation (8), we can obtain the error dynamics as

ë + Kdė + Kpe + Ee = 0 (13)

where Ee = N − N̂ = (Ee,φ, Ee,θ , Ee,ψ) = (Ee,1, Ee,2, Ee,3) is called the TDE error. Then, if J̄ in
Equation (12) is chosen to satisfy the following condition [24,25]

‖I− J−1 J̄‖2 < 1 (14)

for all t ≥ 0, the TDE error Ee can be represented as

‖Ee‖2 ≤ E∗e (15)

for all i = 1, 2, 3, 4. In Equation (14), I is the identity matrix. E∗e is upper bound of the TDE errors, and its
proof is given in [25,26]. If the sampling period is sufficiently small, the estimation in Equation (10)
implies that N̂ can be as close to N as possible. However, as a troublesome matter of TDC scheme
in real quadrotor system, N̂ cannot be estimated exactly even for small sampling period because of
nonlinear disturbances, e.g., Coulomb friction, as well as to a limited sampling period from computing
device. Furthermore, the undesirable side effects caused by abrupt change of the ED may be a matter of
great concern to the quadrotor system because this system has a small MOI while being light-weight.

3.2. Proposed Extended Time-Delayed Control Scheme

To remedy the above-mentioned problems, we propose an extended time-delayed control (ETDC)
scheme as a simple and powerful control scheme:

τη =−J̄η̈− + τη,− + J̄
[
η̈d + Kdė +

(
Ks + δη |s†|

)
s
]

(16)

where

δη = diag
(
|Ee,1,−|, |Ee,2,−|, |Ee,3,−|

)
= diag

(
δφ, δθ , δψ

)
(17)

is the time-varying switching gain. Given that δη is one-sample delayed value of Ee,
it provides the adaptation effects without additional parameters compared to the TDC scheme
(Equation (12)). It implies that δη can provide a positive effect in the proposed ETDC scheme when
the sampling period is small sufficiently. Kd = diag

(
Kd,φ, Kd,θ , Kd,ψ

)
= diag

(
Kd,1, Kd,2, Kd,3

)
and

Ks = diag
(
Ks,φ, Ks,θ , Ks,ψ

)
= diag

(
Ks,1, Ks,2, Ks,3

)
are employed to achieve the dominant pole as the

positive gains. The sliding variable s = [sφ, sθ , sψ]T is defined as

s = ė + Kde (18)

where Kd is the same as the pole gain applied in Equation (16). If s is zero, the tracking error e goes
to zero monotonically, and its convergence rate can be adjusted by Kd. As seen in Equation (16),
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|s†| is represented as diag
( 1
|sφ | ,

1
|sθ |

, 1
|sψ |
)

equal to diag
( 1
|s1|

, 1
|s2|

, 1
|s3|
)
. It is defined in this paper that the

following property holds |s†|s = 1 when s = 0.

Theorem 1. For a quadrotor system (Equation (4)) controlled by Equation (16), the sliding variables
(Equation (18)) enter near the sliding manifold, i.e., ‖s‖2 ≤ εM, and then they are guaranteed to be uniformly
ultimately bounded (UUB) as follows:

‖s‖2 ≤ εM = max
(√

2V0,
max

i
(|Ei| − |Ei,−|)

√
3

min
i
(Ks,i)

)
for all i = 1, 2, 3. εM and V0 are defined as the upper bound of the sliding variable and the initial value of
Lyapunov function, respectively.

Proof. The proof of stability is given in Appendix A.

Remark 1. The time-varying switching gains employed in the proposed ETDC scheme makes full use of the
one-sample delayed information of the TDE errors, which can suppress the TDE errors appropriately without the
chattering and fluctuation. However, given that it employs the delayed information, the proposed ETDC scheme
may not respond for a while in the system with low frequency. Fortunately, since the quadrotor systems have
been recently developed to operate at a fast frequency, the proposed one can avoid the aforementioned problem
sufficiently when implemented in the quadrotor systems. Moreover, it provides the simple structure while not
requiring additional parameters compared to the TDC scheme. It implies that practical engineers can easily apply
the proposed ETDC scheme to the quadrotor systems, and its results can be observed in Section 4.3.

3.3. Comparison with Conventional Time-Delayed Control Scheme

τη =−J̄η̈− + τη,− + J̄
[
η̈d + Kdė +

(
Ks + δη |s†|

)
s︸ ︷︷ ︸

Auxiliary control

]
(19)

It is noted that the proposed ETDC scheme has an effect of providing an auxiliary control.
The auxiliary control scheme adjusted according to the time-varying switching gain (Equation (17))
which serves as an assistant to suppress the tracking errors even further without additional parameters.
Moreover, Ks can be designed to be dominant in terms of the magnitude of the sliding variable.
From these properties, the proposed ETDC scheme aims at improving the tracking performance with
enhanced robustness while suppressing the TDE errors.

4. Simulation

4.1. Simulation Setup

To illustrate the effects of the proposed ETDC scheme, we conducted simulations through the
“+”-type quadrotor system with four rotors (Equation (4)). The system model parameters are chosen
to be Jxx = Jyy = 0.08, Jzz = 0.07, and L = 0.010. The parameters of the proposed ETDC scheme
are set to be J̄φ = J̄θ = 0.08, J̄ψ = 0.07, Ks,φ = Ks,θ = Ks,ψ = 4, Kd,φ = 1, Kd,θ = 1.5, and Kd,ψ = 3.5.
Tuning method for these parameters is introduced in Appendix B.
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4.2. Simulation Description

The objective of these simulations is to make the roll, pitch, and yaw angles η follow the desired
trajectories ηd that is set to zero for all angles. To demonstrate the effectiveness of the proposed ETDC
scheme, we employ

• Proportional-integral-derivative (PID) control scheme
• Conventional TDC scheme [24]

in this section. It can be observed that all parameters of these control schemes are represented in
Appendix C. We have tried three kinds of simulations:

(C1) All control parameters are set to be tuned to the zero reference trajectories without the ED,
as shown in Figure 2a, i.e., τd = 0. Nominal trajectory-tracking performances of all control
schemes have been demonstrated.

(C2) The ED is applied with regard to external pressure in this simulation, which is being increased
continuously as shown in Figure 2b. Then, to illustrate the effectiveness of the time-varying
switching gains in the proposed ETDC scheme, the trajectory-tracking performance of the
proposed one is analyzed in accordance to the sampling period, i.e., 10 ms, 30 ms, and 50 ms.

(C3) All control parameters are also set to be tuned in the zero reference trajectories, i.e., τd = 0.
After that, to evaluate the robust trajectory-tracking performance of all control schemes, the ED
is added after 6 sec, which has the non-smooth points as shown in Figure 2c. It serves to
significantly disturb the motion of the quadrotor system, which has anomalous direction.

0 2 4 6 8 10
-5

0

5

(a)

0 2 4 6 8 10
-5

0

5

(b)

0 2 4 6 8 10
-15

-7.5

0

(c)

Figure 2. The external disturbances impacted on all axes of quadrotor system: (a) without ED (C1);
(b) with ED (one direction) (C2); (c) with ED (anomalous direction) (C3).
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4.3. Simulation Results

Figure 3 shows the switching gains of the proposed ETDC scheme that employ one-sample
delayed information of the TDE errors. It can be observed that the magnitude of the switching gains is
similar in that of the TDE errors. Therefore, the proposed ETDC scheme can appropriately respond
to undesirable side effects generated by the TDE errors. In Equation (13), it provides a result in the
desired error dynamics as follows:

ë + Kdė + Kpe ∼= 0. (20)

This procedure offers fast convergence rate with robustness owing to dominant pole, and its
results are represented in Figure 5.

(a)

(b)

Figure 3. Comparison of the time-varying switching gains of the proposed ETDC scheme (solid line)
and the TDE errors (dotted line): (a) overall scale; (b) partial scale.

Figure 4 shows the trajectory-tracking performance the proposed ETDC scheme according to a
change in the sampling period. Given that the proposed one employs the switching gains that use
one-sample delayed information of the TDE errors, it can be observed that the trajectory-tracking
performance of the proposed ETDC scheme is inversely proportional to the magnitude of the sampling
period. Recently, the quadrotor system is being developed to be possible in small sampling period so
that such estimation in the proposed ETDC scheme will provide positive effects when implemented in
a digital device.
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0

15

30

0

15

30

0 2 4 6 8 10

-100

0

100
50 msec

30 msec

10 msec

Figure 4. The trajectory-tracking performance of the proposed ETDC scheme in accordance with the
sampling time 10 ms (solid line), 30 ms (dashed line), and 50 ms (dotted line).

Figure 5 shows trajectory-tracking errors of the PID control scheme, conventional TDC scheme,
and the proposed ETDC scheme in three kinds of simulations:

(C1) Figure 5a shows a result in zero reference trajectory without the ED. As seen in Figure 2a, all
control schemes have the similar level in trajectory-tracking performance. It implies that they
have no significant difference in performance of reference trajectory without the ED. The root
mean square (RMS) values of the trajectory-tracking errors are given in Table 1.

(C2) Figure 5b shows a result in nominal trajectory-tracking performance while generating the ED.
To illustrate the undesirable side effects generated by the abrupt ED (Figure 2b), a sinusoidal
signal is added in the simulation procedure. The signal have strong external pressure
instantaneously. As seen in Figure 5b, it can be observed that both the conventional TDC
scheme and the proposed ETDC scheme work better than the PID control scheme in case
of increasing ED continuously after 6 s. In detail, the proposed ETDC scheme has better
performance than the conventional TDC scheme in vicinity of 6 s. It means that the proposed
one provides precise trajectory-tracking performance while enhancing the robustness. The RMS
values of the trajectory-tracking errors are given in Table 2.

(C3) Figure 5c shows the trajectory-tracking errors in the external pressure with high frequency
trajectory, i.e., a sinusoidal signal 2sin(1.5t), unlike in Figure 5b. The ED causes negative results
significantly in both the PID control scheme and the conventional TDC scheme. On the other
hand, Figure 5c represents that the proposed ETDC scheme has improved the robustness
compared to other control schemes. The RMS values of the trajectory-tracking errors are given
in Table 3.

Table 1. RMS values of trajectory-tracking errors (Figure 5a) measured from 5 s to 10 s.

Control Strategies Roll, φ (Deg) Pitch, θ (Deg) Yaw, ψ (Deg)

PID control scheme 2.20 × 10−5 1.94 × 10−5 2.32 × 10−8

Conventional TDC scheme [24] 1.61 × 10−5 0.82 × 10−5 2.29 × 10−8

Proposed ETDC scheme 1.40 × 10−5 0.51 × 10−5 1.69 × 10−8

Table 2. RMS values of trajectory-tracking errors (Figure 5b) measured from 5 s to 10 s.

Control Strategies Roll, φ (Deg) Pitch, θ (Deg) Yaw, ψ (Deg)

PID control scheme 46.03 47.70 25.07
Conventional TDC scheme [24] 2.46 2.39 1.54

Proposed ETDC scheme 0.37 0.36 0.25
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Table 3. RMS values of trajectory-tracking errors (Figure 5c) measured from 5 s to 10 s.

Control Strategies Roll, φ (Deg) Pitch, θ (Deg) Yaw, ψ (Deg)

PID control scheme 5.89 5.84 3.37
Conventional TDC scheme [24] 1.67 1.61 1.00

Proposed ETDC scheme 1.34 1.25 0.83

0
15
30 PID

TDC

ETDC

0
15
30

0 2 4 6 8 10

-100

0

100

(a)

0
15
30 PID

TDC

ETDC

0
15
30

0 2 4 6 8 10

-100

0

100

(b)

0
15
30 PID

TDC

ETDC

0
15
30

0 2 4 6 8 10

-100

0

100

(c)

Figure 5. Comparison of the trajectory-tracking errors of PID control scheme (dotted line), conventional
TDC scheme (dashed line), and the proposed ETDC scheme (solid line): (a) without ED (C1); (b) with
ED (one direction) (C2); (c) with ED (anomalous direction) (C3).
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5. Discussion

5.1. Future Perspective

In [27–29], the role of biological findings can be used to optimize current control model systems.
As future perspective, it would be meaningful to employ the role of biological findings for wide
readership of several papers, including this paper.

5.2. Supplementary Simulation

In this paper, no experimental research is conducted. However, in order to investigate more
realistic conditions, see, for example [30], we employ the quadrotor system assuming measurement
uncertainties.

Parameters of all control schemes are set to be tuned as in the scenario (C1) of Section 4. We use the
simulation with the quadrotor system while adding the internal disturbance (ID), e.g., random noise,
in the scenario (C2) of Section 4. Then, we evaluate the trajectory-tracking performance of all
control schemes.

Figure 6 shows trajectory-tracking errors of the PID control scheme, conventional TDC scheme,
and the proposed ETDC scheme, which describes the same as criteria for the scenario (C2) in Section 4.
Since this simulation have an undesirable side effect on the random noise, i.e., mean = 0.05 and
variance = 0.05, all control schemes represents the degraded trajectory-tracking performance in some
areas when compared with Figure 5b. At first, as seen in Figure 6, both the proposed ETDC scheme and
conventional TDC scheme are not instantaneously convergent in the vicinity of 1 s, i.e., green circle.
In other words, it implies that they cause an overshoot signal because of their mathematical structure.
However, the proposed ETDC scheme aims at providing precise trajectory-tracking performance
against the noise due to the proposed time-varying switching gain. Next, it can be observed that the
PID control scheme and conventional TDC scheme are not guaranteed to be hovering in the vicinity
of 10 s, i.e., magenta circle. In particular, the PID control scheme causes fluctuation in the vicinity
of 10 s because of the unattractive effect generated by the ED and the ID. As a result, it may lead to
unstable motion in the quadrotor system. On the other hand, the proposed ETDC scheme is working
well for improving convergence rate while guaranteeing the system stability, unlike these existing
control schemes, as seen in Figure 6.

Figure 6. Comparison of the trajectory-tracking errors of PID control scheme (dotted line), conventional
TDC scheme (dashed line), and the proposed ETDC scheme (solid line): with ED (one direction) (C2)
and ID.
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6. Conclusions

The proposed ETDC scheme was proposed to improve both nominal and robust
trajectory-tracking performance in the quadrotor system. The proposed one does not require any
number of additional tuning parameters when compared to a well-known conventional TDC scheme,
and hence we can still keep it simple. Moreover, since the TDE errors can be suppressed appropriately
by the proposed time-varying switching gains, the proposed ETDC scheme provides a fast convergence
rate while guaranteeing the system stability, even in the case of various external disturbances.
As a result, the proposed ETDC scheme aims at providing precise trajectory-tracking performance with
robustness against the abrupt ED unlike the TDC scheme. It is shown through the simulations, and then
the trajectory-tracking errors are guaranteed to be UUB while not having undesirable side effects.

The proposed ETDC scheme could be a good replacement of the conventional TDC scheme.
We believe that it would be a good trial to increase ease of use and improve the trajectory-tracking
performance.
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Appendix A. Proof of Stability

To facilitate the proof in Equation (16), the Lyapunov function, denoted by V, is defined as follows:

V =
1
2

sTs. (A1)

Then, the time derivative of Equation (A1) can be obtained as

V̇ = sT ṡ

= sT [ë + Kdė]

= sT [η̈d − η̈− + Kdė] (A2)

where ė = η̇d − η̇ is the derivative of Euler angles, and its derivative is ë = η̈d − η̈. Substituting
Equation (10) into Equation (A2), we have

V̇ =sT(η̈d −N + J̄−1τη,t + Kdė
)
. (A3)

Substituting τη,t in Equation (A3) yields

V̇ = sT(−N + N− −Kss− δη |s†|s
)

= sT(− Ee −Kss− δη |s†|s
)

≤
3

∑
i=1
|si||Ee,i| −

3

∑
i=1

Ks,is2
i −

3

∑
i=1
|si||Ee,i,−| (A4)

where Ee is upper-bounded according to Equation (14). It follows then that

V̇ ≤ −
3

∑
i=1

Ks,is2
i +

3

∑
i=1
|si|(|Ee,i| − |Ee,i,−|)

≤ −min
i
(Ks,i)

3

∑
i=1

s2
i + max

i
(|Ee,i| − |Ee,i,−|)

3

∑
i=1
|si|. (A5)
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From the second term of the right-hand side of Equation (A5), it follows that we have

V̇ ≤ −min
i
(Ks,i)

3

∑
i=1

s2
i + max

i
(|Ei| − |Ei,−|)

√
6V. (A6)

From Barbalat′s lemma [31], we can represent ‖s‖2 → 0 as t → ∞ when maxi(|Ei| − |Ei,−|) is
zero in Equation (A6). As the worst case of Equation (A6), we assume that the right-hand side is larger
than or equal to zero. It follows that

0 ≤ −min
i
(Ks,i)

3

∑
i=1

s2
i + max

i
(|Ei| − |Ei,−|)

√
6V. (A7)

From Equation (A7), the Lyapunov function V is upper-bounded as

V ≤ max
(
V0,
(

max
i

(|Ei| − |Ei,−|)
)2 · 3

2
(

min
i
(Ks,i)

)2

)
(A8)

which means that

‖s‖2 ≤ max
(√

2V0,
max

i
(|Ei| − |Ei,−|)

√
3

min
i
(Ks,i)

)
(A9)

where V0 is initial value of Lyapunov function. The upper bound in Equation (A9) is directly dependent
on Ks. In other words, it can be observed that the larger Ks, the smaller ‖s‖2. From Equation (A7),
‖s‖2 is UUB so that the tracking error e is also UUB owing to bounded-input bounded-output stability
[31] from Equation (18).

Appendix B. Parameters Tuning of Proposed Extended Time-Delayed Control Scheme

(S1) To begin with, Kd and Ks in Equation (16) should be chosen to provide desirable error
dynamics by the pole assignment when the TDE errors are assumed to be zero, i.e., δη = 0.
Then, Kd, and Ks are chosen to obtain dominant pole, and their initial values are specified as
identity matrix I.

(S2) Starting off from initial value J̄ = 0.0001 in Equation (16), tuning it may be tractable because
the inertial moment of a quadrotor system hardly changes. However, if the J̄ is too large,
the trajectory-tracking performance will be degraded due to the noise effect generated by
angular acceleration in Equation (16).

(S3) After a standard setup, please check the imaginary motion of s in Equation (18) from the plot.
Then, Kd should be tuned to adjust the convergence rate of the s. It implies that the Kd may
be increased for fast convergence rate, and hence the poles may be slightly shifted from the
imaginary axis.

(S4) In order to guarantee the dominant pole, please align Ks with Kd.
(S5) Please, repeat (S3) ∼ (S4) once again for achieving the desired level.

Appendix C. Parameters of All Control Schemes in Simulation

All parameters of control schemes introduced in the Section 4 can be represented as follows:

(1) PID control scheme

– P-gain: Kpp,φ = Kpp,θ = 10, Kpp,ψ = 20
– I-gain: Kpi,φ = Kpi,θ = Kpi,ψ = 5
– D-gain: Kpd,φ = Kpd,θ = Kpd,ψ = 4.

(2) Conventional TDC scheme
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– J̄φ = J̄θ = 0.08, J̄ψ = 0.07
– Ka,φ = Ka,θ = Ka,ψ = 8
– Kb,φ = Kb,θ = Kb,ψ = 16.
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