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Abstract: Flash memory prevalence has reached greater extents with its performance and
compactness capabilities. This enables it to be easily adopted as storage media in various portable
devices which includes smart watches, cell-phones, drones, and in-vehicle infotainment systems to
mention but a few. To support large flash storage in such portable devices, existing flash translation
layers (FTLs) employ a cache mapping table (CMT), which contains a small portion of logical page
number to physical page number (LPN-PPN) mappings. For robustness, it is of importance to
consider the CMT reconstruction mechanisms during system recovery. Currently, existing approaches
cannot overcome the performance penalty after experiencing unexpected power failure. This is due
to the disregard of the delay caused by inconsistencies between the cached page-mapping entries in
RAM and their corresponding mapping pages in flash storage. Furthermore, how to select proper
pages for reconstructing the CMT when rebooting a device needs to be revisited. In this study we
address these problems and propose a fault tolerant power-failure recovery mechanism (FTRM) for
flash memory storage systems. Our empirical study shows that FTRM is an efficient recovery and
robust protocol.
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1. Introduction

In computer systems, storage still falls far behind network bandwidth and microprocessor (CPU)
speeds that continually double annually [1,2]. The current portable device comes equipped with huge
storage capabilities, for example, the recently released Galaxy S10 5G, iPhone XS Max cellphones,
and 3D flash memory solid state drive (FSSD) are provisioned with up to 512 GB of flash storage.
In these devices, the page-mapping flash translation layer (FTL) provides the best FTL in terms of
performance in two-way memory hierarchy systems. However, as the flash storage size scales up,
the loading and off-loading of the entire image of mappings from flash to Dynamic Random Access
Memory (DRAM) becomes impossible because of limited space and price constraints that comes
with DRAM.

To alleviate the problem, a small portion of mapping entries, which are workload dependent,
are loaded into the cached mapping table (CMT) in DRAM to take advantage of locality in the
particular workload [3,4]. This is commonly referred to as on-demand-based selective-page-mapping
scheme. Problems arise when there is a page-update. Updating a page causes an out-of-place write,
which changes the physical location of the page. Hence, the mapping entry for the page needs
to be updated on both the flash and CMT. However, updating the mapping entry on flash causes
another out-of-place write, which degrades the performance of a flash device. To address the problem,
existing solutions [3,4] defer the update of the mapping entry on flash until the entry is selected for
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eviction from CMT. However, existing solutions suffer from the inconsistency between CMT and
mapping entries on flash in case of a sudden failure of a flash device such as power-off. To address
the problem, several techniques have been proposed. Map-block [5] algorithm proposed a technique
that solves rebooting issues, Per-block [6] proposed using super-blocks to address fast recovery,
and log-based approach [7] proposed yet another technique for improving valid and invalidated
page location. However, they all suffer from duplicate write operations and lack cache reconstruction
techniques that our proposed fault tolerant power-failure recovery mechanism FTRM technique offers.
The comparison of FTRM with existing techniques is summarized in Table 1.

Table 1. A qualitative comparison on existing alternative approaches with our proposed fault tolerant
power-failure recovery mechanism (FTRM) approach.

Method Scheme Translation Recovery Cache Reconstruction Wear Leveling

FTRM Page Mapping Fast Fast Relevant Pages Supported
Super-Block Block Mapping Slow N/A N/A Not Supported

Translation Block Page Mapping Fast Slow Random Access Not Supported

Since an FTL must maintain an up-to-date address mapping table on flash before power-off
in order to reconstruct the mapping tables at boot time. During system initialization, FTL should
reconstruct the mapping tables in CMT [8]. Therefore, any inconsistencies between page mappings in
CMT and flash from the aforementioned page-mapping FTLs and how to reconstruct CMT, is an issue
of concern.

In this paper, we propose a fault tolerant fast recovery approach (FTRM) that enables
on-demand-page-level-mapping FTLs to quickly and efficiently reconstruct consistent up-to-date
CMTs in DRAM during boot. Our approach takes advantage of the out-of-band (OOB) region of flash
pages for the page mapping table to keep track of the number of accesses on every page through
an access counter (AC) and a validation flag (VF) for tracking page updates (valid or invalidated
pages). The AC allows us to efficiently separate hot from cold flash pages for quicker CMT loading and
offloading while the VF is used for pointing to the location of valid data pages to be used for mapping
page updates. We also provision an optional Write Counter (WC) that is used to track the number of
page program cycles for the purposes of wear leveling. In this scenario, all pages that reach a certain
write threshold are moved from a hot region into a cold region of the flash and thus help an even wear
of flash pages. This study makes the following contributions:

• We design and implement an efficient fast-wake-up FSSD algorithm, that fuses together with the
hot/cold page swapping technique to produce a robust and efficient fault tolerant mechanism
for SSDs;

• We further propose a reliable and efficient algorithm for CMT re-construction during
system start-up;

• We implement our proposed scheme on the EagleTree simulator whilst emulating Quad-Level-Cell
(QLC) based FSSD and then ran our experiments using realistic workloads.

The remainder of this paper is organized as follows: Section 2 discusses the background of flash
memory and our motivational goals are discussed in Section 3. Section 4 explains the architectural
designs and implementation of our proposed approach. Section 5 presents our experimental setup and
evaluation results. We discuss the previous works in Section 6 and then conclude in Section 7.

2. Preliminaries

Table 2 shows the important acronyms that we are going to use frequently throughout the paper.
Non volatile (NAND) flash memory consists of planes that are composed of several dies. As illustrated
in Figure 1, each die contains multiple blocks and at this level erase operations are performed. Within a
block, there are multiple pages, which are the granularity at which read and write operations are
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performed [4]. A page is further divided into data area and a small spare area (typically 1/32 of the
data size) called out-of-band (OOB). The OOB of a page is used for storing the page state information
and the page’s logical page number (LPN). The OOB also contains error correction code (ECC) that
is used to check the correctness of the data stored on the page’s data area [3,9] as shown in Figure 1.
During a read operation, the entire page is read together with the OOB area while a write operation
can be done selectively on either the OOB or the data area.

To efficiently mimic traditional the hard disk drive (HDD), SSDs employing flash memory have to
appear on a block device to the overlaying file system while at the same time hiding the peculiarities of
NAND flash. Therefore, an FTL is used for the translation of read/writes from the file system into the
flash. The data structures and mapping tables manipulated by the FTL are the fast but small DRAM.
Basically, there are two forms of FTL designs that is based in the contents of their mapping tables,
which are the page-level and block-level FTL schemes. The page-level FTL scheme employs a fully
associative cache [10] in that the request’s LPN can be mapped to any page on the flash. This efficiently
utilizes flash blocks even though its downside is the requirement of a huge mapping table to be cached
in DRAM. For example, a 512 GB flash memory would require around 1 GB of DRAM space to store
the page-level mapping table. This becomes infeasible to have DRAM that can scale with the increasing
flash size because of the limited price/MB cost of DRAM [4]. Conversely, block-level FTL schemes
translates its logical block number (LBN) to physical block number (PBN) through a set associative
mapping table manner [10] with a fixed LPN offset in a block. Even though a block-level mapping table
size is greatly reduced by a factor of block-size/page-size as compared to page-level FTL, it suffers
from performance degradation. This is due to the fact that, a logical page should be placed onto a
particular page on flash which greatly reduces the chances of finding that page [3].

To address the shortcomings of both block-level and page-level FTL schemes, a variety of
alternatives like hybrid FTLs [5,11,12] and selective-page-level FTLs [3,4] exist. The hybrid FTLs
are a combination of both page-level and block-level FTLs and partitions the flash blocks into
data-blocks (i.e., mapped at block-level) and log-blocks (i.e., mapped at page-level). On the other
hand, the selective-page-level FTLs takes advantage of a page-level mapping scheme that allows
a request to be serviced from any physical page on the flash. Moreover, it exploits the temporal
locality workload characteristics to load and unload a portion of mappings from flash to the space
limited DRAM called CMT [4]. These schemes also separates flash into data-pages and mapping-pages.
The data pages store real data accessed during read/write operations while the mapping pages store
the logical-to-physical address mappings. Even though the page mapping FTLs are the most efficient,
the selective-page-level-mapping schemes like DFTL [3] and RFTL [4] (i.e. a replication-based DFTL
approach), have proven to show good performance. Moreover, they are capable of achieving high
I/O parallelism in multichannel Triple-Level-Cell (TLC)-based SSDs owing to their dynamic striping
techniques. However, these FTLs suffer from having to maintain a large mapping table in DRAM
or on a flash memory array. DFTL, for example, must execute additional read/write operations to
read/update the mapping information stored in flash memory.

Table 2. Acronyms used in the article.

ACRONYM ACRONYM DEFINITION

PPN Physical Page Number
LPN Logical Page Number
CMT Cache Mapping Table
OOB Out-of-Band
QLC Quard Level Cells
ECC Error Correction Code
AC Access Counter
VF Validation Flag
WC Write Counter

FSSD Flash Memory Solid State Drive
WCTH Write Counter Threshold
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Figure 1. The organizational structure of a NAND flash device. [Source: Micron Technology Inc.].

Thus, a portion of mapping pages are temporarily loaded and offloaded from the mapping table
on flash to the CMT depending on the workload locality. Commonly, the flash space is divided into
data blocks and mapping blocks, with the data blocks occupying over 80% of the entire space. When a
write request arrives, its LPN is used to locate its physical location on flash (PPN). This means that the
request’s LPN is translated to a PPN or the FTL first checks its corresponding PPN in DRAM for a
faster address translation. When located, the PPN then points the controller to the actual entry stored
on flash’s data page where the actual write operation is done onto a fresh page, i.e., out-of-place-update
while the previous page is invalidated. The mapping page in CMT is updated with this new physical
data location of the data page on flash while the same mapping page residing on flash’s mapping
table is neglected so as to reduce the write latency. It is only when this particular mapping page is
selected as a victim to be evicted from CMT that its corresponding mapping page on flash is updated.
This process is called lazy copying or write-back policy.

Consequently, if the FSSD experiences a sudden power cut, CMT mappings are lost because of the
volatile nature of DRAM and during reboot, FTL reconstructs a new CMT by randomly selecting and
loading a portion of mappings from the mapping table on flash into the DRAM. This reconstruction
disregards whether the candidate mapping pages are up-to-date or not and whether they are hot or
cold. This can cause inconsistencies as mapping pages might point a request to an already invalidated
physical location of a data page on flash.

3. Motivation

As pointed out in the previous section, mapping page consistency with valid data page location
is of importance during system reboot and is an issue that should be addressed. Figure 2 illustrates
the problem of existing solutions. Consider we have three page mappings in the CMT. If there is an
update request on LPN 7, we first look up the CMT and translate the address to PPN 10. With the PPN,
we can locate the physical page on flash allowing for the write operation to process. This LPN 7 write
request invokes an out-of-place update operation to an empty physical data page (i.e., to DPPN 91)
while the previous physical page location, DPPN 10 is invalidated as illustrated by steps 1 and 2 in
Figure 2. To maintain consistency, the same LPN 7 request entry in CMT is also updated with a new
PPN-91 as shown between steps 2 and 4 of the same figure. Furthermore, the corresponding CMT
entry (i.e., LPN 7) on the mapping table on flash is also supposed to be updated to DPPN 91 which
is not the case. This is done to avoid such extra writes to improve flash performance and endurance.
As a result, the least-recently-used (LRU) CMT entry, i.e., cold mapping entry is updated on the flash
mapping table before it is evicted from the CMT [4].
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Figure 2. The drawbacks of traditional flash memory solid state drive (FSSD) booting schemes.
MLPN/MPPN and DLPN/DPPN refers to the Mapping Pages Logical and Physical Page Numbers
and Data Pages Logical and Physical Page Numbers respectively.

During reboot, in Figure 2 (step 5), the outdated mapping pages are reloaded from flash to DRAM
for CMT reconstruction causing inconsistencies with current data page locations on the flash resulting
in unnecessary page faults/errors. This means that during restart, the system will initialize with an
out-dated reconstructed CMT because the mapping entry candidates that were selected and loaded
into the CMT were the out-of-date mapping pages residing on flash. Consequently, mapping requests
are going to be processed via the outdated CMT and directed to invalidated physical page locations on
flash as illustrated in Figure 2. To correct invalidated PPNs, existing approaches scans all mapping
pages on the flash but due to DRAM’s volatility, an interruption before syncing these CMT entries
with the ones on flash is common. Sudden power cuts will result in the loss of up-to-date mapping
entry information as only the volatile DRAM-CMT would have been updated whilst the same had not
yet been persisted on flash mapping pages.

Furthermore, traditional FSSDs lack an efficient mechanism on how to select candidate mapping
entries from the mapping table on flash into DRAM-CMT. Specifically, policies on how the FTL can
efficiently select entries for CMT construction and the ones to neglect according to particular workload
characteristics are of great concern. Our system proposes a way to select precise mapping entries
and a quick boot mechanism to alleviate such issues in traditional FSSDs. As a result, our proposed
FTRM, for example will always load up-to-date mapping entries into DRAM-CMT thereby reducing
page-faults and CMT-miss penalties. Consequently, booting/recovery is enhanced as our fast-boot
mechanism uses few pages for CMT reconstruction thereby achieving a faster response time. It also
optimizes the I/O parallelism to satisfy the real-time storage and retrieval requirements of current
state-of-the-art storage devices.

4. Design and Implementation

This section discusses the design overview and functional goals of our proposed scheme
together with how we try to conceal the drawbacks of traditional flash memory devices using our
recovery mechanism.

4.1. Design Overview

To overcome the CMT synchronization and reconstruction issues described previously, we propose
a fault tolerant and fast recovery approach (FTRM). FTRM facilitates a quick, efficient, and consistent
up-to-date CMT reconstruction in DRAM during boot for SSDs employing on-demand-based
selective-page-level-mapping FTLs like DFTL [3] and RFTL [13]. Our approach takes advantage
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of the OOB region of flash pages to keep track of the validity of a page via a validation flag (VF) and
page accesses via an access counter (AC). The AC allows for an efficient separation of hot from cold
mapping pages for a quicker CMT loading and offloading. The optional write counter (WC) when
enabled allows us to keep track of the program cycles of pages for effective wear-leveling if needed as
it keeps a count of all the writes of each page.

The FTRM approach aims to improve the overall system recovery time whenever an unexpected
power-cut occurs. Furthermore, it facilitates for the overall end-to-end performance improvement of
storage media (e.g., SSD) through utilizing the OOB area of physical pages to update mapping entries
and to separate hot from cold pages. To ensure data integrity, a regular wake-up procedure or recovery
mechanism should be called by the SSD controller each time a sudden power cut occurs. We further
design an efficient and reliable way on how to construct the CMT from the mapping pages image from
flash. We provide the detailed operations of VF and AC together with the optional WC in the following.

4.2. Operational Process

The schematic diagram of the proposed FTRM approach is illustrated in Figure 3. Each page on
flash has WC, AC, and VF in its OOB area as depicted in the figure. The AC, i.e., step 1 of Figure 3,
is incremented each time there is a read/write on that particular page and helps to maintain an even
hot/cold page separation that also assists during the CMT construction. The second step, i.e., step 2,
of the same figure demonstrates how our VF keeps track of the valid and invalidated data pages.
Our flash is divided into data pages and mapping pages. Each flash page shows whether a data or a
mapping page constitutes a data area and a spare area (OOB) as previously discussed. In Figure 3,
FTRM keeps track of page access through an AC and an optional WC. When there is a CMT hit on a
read request, the data is fetched from the corresponding data page on flash and its mapping page’s AC
in CMT is updated while the same page on flash is neglected (lazy-copying). The reason being that,
if we concurrently update the AC (step 1 of Figure 3) in the OOB of the mapping page on flash during
this read process, such an extra write operation which will be costly to the ongoing read. Therefore,
the ACs of mapping pages residing on flash are synced with all the updates that occurred in CMT
during a write request operation on the same page and/or when the same page has been targeted as a
victim of eviction from the CMT.
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Figure 3. Schematic diagram of the proposed FTRM system.

Consequently, we end up having a separation between the frequently accessed mapping pages
marked as hot and the rest marked as cold. By doing so, the mapping table on flash becomes divided
into hot mapping blocks and cold ones. During reboot, the system selects CMT construction candidates
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from this hot flash region. Moreover, the FTRM approach keeps track of the valid data pages through
the VF which is then used to update the corresponding mapping pages residing on flash during reboot
in the event of an unexpected power cut as demonstrated by step 2 of Figure 3. Furthermore, the use of
the VF to update lost CMT mappings and the AC for hot and cold mapping-page separation improves
the accuracy and loading time of up-to-date +hot CMT entries into DRAM (fast-boot) during system
recovery as demonstrated by step 3 of Figure 3. The following subsections will discuss these mentioned
processes in more detail.

4.2.1. Hot and Cold Page Identification

Since a flash page consists of 16 (24) sectors then, from the 64 Bytes of the OOB region, considering
the QLC lifespan, we provisioned our AC with 6 bits of the OOB which is around 1% of the total
page lifespan, i.e., 5000 program cycles. This can differ depending on the SSD vendor, but in our
work we used the SSD structure with 16 sector pages. Our AC’s space allocation does not affect the
OOB meta-data or ECC that already resides in the OOB but only takes up a small portion of the free
space available.

Algorithm 1 outlines hot and cold page identification. For each input page in the request (Line 2),
it first checks if the request is a write operation in Line 3. During the write, both corresponding pages’
AC is updated concurrently with data update operation, i.e., Lines 4–6 in Algorithm 1. During this
process, FTRM also compares the current page’s AC value with that set as the threshold, from Lines
7–14 in the algorithm. The page’s AC has to reach a predefined threshold (TH), i.e., TH + 1 so that it
can be marked as hot. In Algorithm 1 Lines 20–23, a mapping page marked as hot remains in that
state until it is evicted from CMT where its AC is then reset to zero. The reason being that, if an AC in
DRAM is not written to the OOB of a mapping page on flash whilst the page is cold, we do not need
that page during reconstruction. If the page is marked as hot, then its AC is already reflected on its
OOB (although the AC in the cache and that in the OOB may not be consistent). Moreover, our access
counter is not affected by wear-leveling operation and does not determine the flash page lifespan. It is
the optional WC that can be used to determine such. By keeping track of this AC and marking pages
hot/cold, our page mapping table on the flash array is divided into cold mapping pages on separate
blocks with hot mapping pages on the other side.

Conversely, if the request’s target page is not a CMT victim, FTRM will only update the request
entry’s CMT AC as illustrated in Lines 24 and 25 Algorithm 1. The TH can be set according to developer
needs depending on their goal. The pages with a high AC are regarded as hot and the rest as cold.
There are several ways to keep track of page access. We have chosen to update the AC of a page on
flash in case that (i) a write operation of the page is issued; (ii) the page is about to be evicted from the
CMT; or (iii) the page is in transition from a cold page to a hot one. In other cases, we just update the
AC of a page in the CMT. This is to maintain the read latency and not add extra delays to it. We remark
that the OOB of a page can be updated concurrently with the data area of the same page, that is,
updating the AC during the page’s write operation will not pose any extra latency to the system.

During a CMT-miss, the page mapping for the requested page is fetched from flash and added
into the CMT. Our FTRM system then sets the AC attached to the newly added mapping using the AC
in the OOB of the requested page after reading the page. In this way, the additional write operation
for a read operation is avoided. Since we need an additional OOB write only when a page becomes
hot, we can expect that most of the mapping read operations do not need OOB writes. Moreover, we
can expect the latency of the additional OOB write to be hidden in the upper layer since it would be
rare (depending on how we set the threshold). If we do not write the cached AC back to the mapping
page’s OOB on flash, we lose the up-to-date mapping information. Therefore, if we do not set the AC
in OOB to zero during CMT eviction, it does not correctly reflect the temporal locality. That is, if we do
not reset the AC of the page and the page is then reloaded to the CMT, it may start with a high AC
value. Since the page is the least recently used (LRU) one, we can reflect the temporal locality in our
AC by abandoning any increments occurred while it is in the CMT. This allows us also to maintain a
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low bit AC value thus saving already limited OOB space. Thus, the hot and cold pages are separated
and the hot ones are then used for CMT reconstruction during system reboot. Since mapping pages
constitutes only around 0.2% of total flash space, we can read through the mapping table selectively
picking the most recently accessed mapping pages from the hot blocks on flash.

Algorithm 1: Hot and Cold Pages Identification

1 Input: RequestLPN check page access
2 while requestLPN 6= null do
3 if requestLPN = Write then
4 Increment requestAC in DRAM
5 Increment requestAC on flash page
6 /* Synchronize corresponding flash page AC with the current CMT updates.

*/
7 if f lashOOB AC > Threshold then
8 requestPage = HOT
9 /* Mark page as Hot */

10 else

11 end
12 f lashOOB AC < Threshold
13 requestPage = COLD
14 /* Mark page as Cold */
15 else

16 end
17 requestLPN = Read
18 Increment requestAC in DRAM
19 /* Only increament requestAC on CMT page */
20 if entry = CMTVictim then
21 flash OOBAC = 0
22 /* Reset flash mapping page OOBAC counter to zero */
23 else

24 end
25 entry 6= CMTVictim
26 Increment requestAC in DRAM
27 end
28 Output: Hot and Cold Page Separated

4.2.2. Fast Recovery

Our proposed validation flag (VF) resides in the OOB area of flash pages where it only occupies a
single bit of the OOB space. The VF is used to represent the data page state, i.e., when a data page
is valid, the flag will indicate 1 and when invalid, a 0 will be reflected. During a write operation,
the newly written data page’s VF is then set to 1 while the previous invalidated page’s VF is set to
0. Consequently, all those data pages with VF = 1 are used for updating the mapping pages on flash
memory during system boot whenever up-to-date mappings are lost in DRAM-CMT. This will enable
FTRM to quickly update our PPN for every corresponding LPN as indicated in Figure 3. Furthermore,
reading a single bit from the OBB becomes really fast and efficient. During system reboot, FTRM
executes several read operations on specific portions of the flash mapping pages array for CMT
construction and uploads these pages into DRAM as illustrated in Algorithm 2. That is, FTRM through
the validation flag (VF), quickly checks whether the physical location of valid data pages corresponds
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with the mapping pages on the entire mapping page image on flash as demonstrated by Lines 1–6 of
Algorithm 2. The system checks the hot mapping LPNs against the data LPN with VF = 1 then syncs
the ones that are not up-to-date with the correct information (i.e., Lines 7 in Algorithm 2). It then runs
through the marked CTM reconstruction candidate hot mapping pages on flash and loads them to
DRAM as shown from Lines 8–11 of Algorithm 2. This quick recovery process is referred to as a fast
wake-up and effectively influences flash performance.

Algorithm 2: Fast Recovery

1 Input: Request check VF on Data Page
2 while PageOOB-VF 6= 0 do
3 Check if LPN← PPN is correct
4 /* logical-to-physical address translation of data pages with mapping pages

*/
5 MappingPage ← PageOOB-VF
6 /* Locate Corresponding Data Page */
7 Update MappingPage on Flash
8 if f lashOOB-AC = HOT then
9 Select as candidate for CMT construction

10 CMT← MappingsHot
11 /* Load a portion of hot mappings to CMT */
12 else

13 end
14 f lashOOB-AC = COLD
15 Keep Mapping Page updated
16 /* Entry is not a candidate for CMT construction */
17 end
18 Output: CMT Reconstructed

Unlike in traditional FTLs, our scheme uploads all the page-level mapping information
corresponding to hot mappings by first reading the validation flag from the OOB area of the data
pages and updating the corresponding mapping entries on flash as previously described. Our AC
is incremented whenever a data page is accessed be it a read or write operation as-well. The most
frequently accessed mapping pages, i.e., hot pages, are then selected and listed as CMT reconstruction
candidates and a portion of them is loaded to DRAM-CMT while the rest remain up-to-date on flash
as shown in Lines 12–19 of Algorithm 2.

4.2.3. Optional Lifespan Management

By enabling our proposed optional write counter (WC) on flash pages, we can easily determine the
number of writes each page encounters. We can then use this information for efficient wear-leveling,
if needed, so as to improve the overall flash lifespan as demonstrated by Algorithm 3. Here, the system
first checks whether the ongoing request is a read or a write. If the request is a write then the system
checks whether the WC has reached the threshold (WCTH) and if so, then the page contents are
migrated to a colder page and the previous one is invalidated leading to the update of both CTM and
flash mapping entries with the new PPN as illustrated by Lines 4–11 of Algorithm 3. If the WC of the
same page has not yet reached the threshold then it is incremented and current request page contents
are written onto a free page while their corresponding mapping page PPN is also updated (Lines 12–19
of Algorithm 3). This means that the WC is incremented after every successive write operation of that
particular page. Conversely, the read operations do not affect our WC because read operations do not
pose a threat to the flash memory’s limited write cycle (lifespan).
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Algorithm 3: Page Lifespan Management

1 Input: Request check Write Counter (WC) on Data Page
2 while requestsize 6= 0 do
3 if request = write then
4 Check Page Write Count Threshold (WCTH)

5 if WC > Threshold (WCTH) then
6 PPN ++

7 /* Migrate Page to next physical address */
8 WC = 0
9 /* RESET writes counter */

10 CMTPPN ← f lashPPN
11 /* update mapping page with the new physical data address */
12 else

13 end
14 WC < WCTH
15 WC++

16 /* Increment write counter */
17 CMTPPN ← f lashPPN
18 /* update mapping page with the new physical data address */
19 else

20 end
21 request = read
22 Maintain current WC + Page Position
23 Send contents back to controller
24 end
25 Output: Writes Evenly Distributed

5. Evaluation

In this Section, we carried out a series of experiments to show the efficacy of our proposed fault
tolerant recovery mechanism (FTRM for short). To evaluate the effectiveness of our proposed approach,
we compared the following:

• Baseline: This is the traditional selective-page-mapping FTL (e.g., DFTL);
• Map-Block scheme : This is the traditional space efficient FTL and;
• Our Proposed approach (FTRM) : This is our proposed fault tolerant, reliable, and fast boot approach.

We further carefully considered the most effective and most efficient way to update our access
counter (AC) on the mapping page OOB area without causing effect to the read or write operation on
flash in-order to keep CMT and flash mapping page AC synchronized. This led us to run comparison
experiments on the following FTRM proposed ways:

• FTRMBase: With this approach, the OOB-AC of a mapping page is updated whenever a
corresponding read/write request operation is ongoing;

• FTRMVictim: Here the mapping page’s OOB-AC is updated when there is a corresponding write
operation to the same page or when the same entry has been targeted for CMT eviction and;

• FTRMWrite: This approach considers the update of OOB-AC only when there is a write request
corresponding to the same mapping page on flash and resting the AC whenever the same page’s
corresponding entry has been marked as a CMT victim as previously discussed.
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5.1. Experimental Setup

By carefully considering the above-mentioned facts, we calculated the number of mapping reads
to evaluate the reconstruction efficiency as our comparison matrix that each approach undergoes
during system start-up. The fewer the mapping read operations means the more efficient or faster
the approach is. Fault tolerance was evaluated based on the number of page faults (as a comparison
matrix for checking the robustness of the systems) together with the number of write operations and
the total time taken. Therefore, the fewer or absence of such page faults indicates the robustness of the
system and consequently the accuracy in reconstructing CMT.

We implemented our proposed approaches on EagleTree Simulator [14]. Our setup was composed
of a 128 GB multichannel SSD of 8 KB page sizes, that is a QLC FSSD. Table 3 summarizes the SSD size
and access settings that were used during our experiments. The I/O scheduler uses First-In-First-Out
(FIFO) and the wear-leveling threshold ratio was set to 0.1% for cell lifespan which can also be varied
according to designer needs. We then used realistic workloads [15,16] to run the experiments and they
are comprised of MSNFS with 85% read I/Os, Financial1 with 50% write dominant trace, MSR-ts0

with 82% write traces, and then RADIUS comprising 91% write dominant workload characteristics
which are also presented on Table 4.

Table 3. SSD (solid state drive) operational settings.

Parameter Access Time

DRAM (ns) 100
Page Read Delay 25 µs
Page Write Delay 200 µs
Bus Data Delay 100 µs

Block Erase Delay 1500 µs

Parameter Size

SSD channels (#) 8
Page size 8 KB
Bock size 256 pages
Plane size 2048 blocks
Die size 1 plane

Chip size 4 dies

Table 4. Read/write ratio of workload benchmark traces.

Benchmark Writes Reads Write Size (KB) Read Size (KB)

MSNFS 15% 85% 10.06 14.38
Finacial1 54% 46% 2.91 2.48
RADIUS 91% 9% 7.20 6.58
MSR-ts0 82% 18% 8.01 13.68

5.2. Experimental Results

We exposed our FTRM approaches to various operational scenarios which had both read and write
dominant realistic workloads so that we could evaluate their efficacy. In Figure 4a, FTRMWrite and
FTRMVictim show more than 90% of the I/Os having a response time below 100 µs while FTRMBase has
only below 35% of I/Os with the same response time for mapping reads. This is due to the extra OOB
mapping write operation that FTRMBase undergoes during a mapping read so as to continually keep
the flash mapping page AC up-to-date or in sync with the CMT entry. As a result, the mapping reads
ends up taking as long as the write operation unlike its counterparts FTRMVictim and FTRMWrite which
update their ACs only during CMT eviction and or during a write operation. Conversely, when the
workload becomes write intensive as witnessed from Figure 5b, we see FTRMBase’s number of mapping
writes closing in as it manages to process 90% of I/Os with a response time between 250–300 µs which
is very close to FTRMWrite and FTRMVictim’s mapping write performances. The reason being that,
because of the write intensity environment, both approaches have more mapping writes than reads.
Therefore, all the FTRM approaches can have the opportunity to update/synchronize the OOB of
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their corresponding mapping pages on flash with those in CMT concurrently with the ongoing data
area writes.
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Figure 4. Comparison of Cumulative Distribution Function (CDF) for Mapping Reads I/Os between
FTRM alternatives.
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Figure 5. Comparison of Cumulative Distribution Function (CDF) for Mapping Writes I/Os between
FTRM alternatives.

The outcomes from analyzing a suitable FTRM approach from the above-mentioned trio made use
to opt for the FTRMWrite approach. This is because of the fact that, even though FTRMBase offers the
best CMT reconstruction results, being better than both its counterparts, it degrades the mapping read
time, consequently reducing end-to-end system performance considerably. Furthermore, these induced
extra write operations in-turn poses a great threat to page accesses by other ongoing internal operation,
thereby increasing access conflicts. In the following sections, we evaluated our proposed FTRMWrite
approach against the already existing ones (Baseline and Map-Block). Note that the following FTRM
approach is a simplified name referring to FTRM.

5.2.1. CMT Construction

Figure 6a shows mapping read count comparison between our Baseline, Map-block, and our
proposed FTRM approach under RADIUS, Financial1, and MSNFS realistic traces. Interestingly, FTRM
outperforms both Map-block and Baseline by an average of 38% under all traces because it utilizes
the AC from the data pages’ OOB area to separate hot/cold mappings. The system then easily selects
CMT construction candidates only from the hot updated mapping pages. Conversely, Map-block
approach experiences more reads than the rest because it has to scan/read through all the physical
pages scattered across flash chips to able to select the CMT reconstruction entries and then reconstruct.
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5.2.2. Fault Tolerance

The results from Figure 6b evidenced that our proposed approach (FTRM) can improve a mapping
page consistency by over 65% on average, compared to traditional FTLs. This is because FTRM
updates mapping pages by referencing the VF on their corresponding data pages’ OOB region on flash
regardless of unexpected system power loss. Consequently, not only does this improve performance
time (Figure 6c) but also reduces the percentage number of page faults when the CMT starts to
process incoming requests soon after construction, thus the reduced number of page faults witnessed
from FTRM.
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(a) CMT reconstruction analysis. (b) Page faults analysis. (c) Performance comparison.

Figure 6. Reliability and efficiency comparison between Baseline, Map-Block, and our proposed FTRM
approach. (a) Reconstruction analysis using mapping reads count; (b) percentage number of page
faults after system reboot; and (c) performance comparison through writes and time analysis.

To evaluate FTRM’s performance, we measured and recorded the write counts and the total
elapsed time in milliseconds for each approach using the RADIUS workload. We used these traces
because they are 91% write dominant while comprising of small-random-write requests. Such types of
requests reduce flash performance speed because of the out-of-place-update nature of flash memory.
Figure 6c shows the writes count with elapsed time comparison results and we evidenced that the
number of writes are directly proportional to time taken. For example, the Map-Block approach
experienced over 6450 writes in 9500 ms of time while it took FTRM around 7000 ms to process
4200 writes. Baseline has the least writes because it has no recovery mechanism, whilst Map-Block
experiences the most writes since it has to duplicate writes to another block. Furthermore, FTRM’s
performance is tightly close to the baseline’s because the WC on the OOB area of data pages is updated
concurrently with the data area during a write operation.

6. Related Works

As discussed in the previous section, power recovery and fault tolerance is of concern in
flash memory apart from GC and the slow write/reads operations. Several research works have
proposed some fast-wake-up algorithms [3–8]. To resolve rebooting issues, a fast-wake-up method
[17] and a map block approach [5] were proposed. These allow all mapping entries to be loaded into
DRAM and during boot, the system simply scans all these mappings and loads them into DRAM.
The Map block approach has the advantage of 100% guaranteed cache-hits for all incoming requests
but such block-mapping schemes have lower performance when compared to page-mapping schemes.
This is because page-mapping FTLs facilitates parallelism in current multichannel SSDs. Furthermore,
they induce dynamic stripping mechanism thereby speeding up writes as compared to block-mapping
which is restricted to a static stripping of physical pages on flash. If a page can be placed anywhere on
flash, then the result is lesser access conflicts and faster physical page allocation during writes.

A per-block mapping method using a super-block FTL that employs a hybrid address translation
scheme for fast recovery was also proposed [6]. It stores the mapping entries on the OOB region of
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each physical page and therefore unlike the Map block method, per-block method does not require
any physical blocks to store mapping entries. Moreover, it has a space advantage since the data area
of physical pages will all be dedicated to data entries. However, this slows down the time to load
or construct the mapping table since it has to go through several read operations on the OOB area
of all the physical pages scattered across the flash. Log-based recovery schemes [7] records valid
and previously invalidated mappings onto a separate log block for recovery usage but they have
performance issues for example, caused by the duplicate write operations.

To alleviate the above issues, Translation Block methods employing On-Demand-based
selective-page-mapping schemes like [1,3] were proposed but such approaches cannot apply the
Map-block method because of its demand for a huge mapping table to be loaded in DRAM. Therefore,
only 1% of the hot page-level mapping table is loaded into DRAM and 99% remains in the mapping
blocks on flash. Consequently, recovering from power loss is of concern in such systems, therefore our
proposed approach endeavors to improve and guarantee data consistency and performance coupled
with faster reboot if sudden power loss occurs. We achieve this by requiring a few read operation to
reconstruct the mapping table in DRAM while keeping in consideration the OOB area for updates
check and hot/cold page separation.

7. Conclusions

In this study, we proposed an efficient, fault tolerant and fast cached mapping table (CMT)
recovery scheme (FTRM) for flash memory, coupled with an effective hot/cold page separation
algorithm. The design goal of FTRM was to guarantee fast and safe CMT recovery in DRAM with
negligible performance degradation. To achieve this, FTRM keeps track of flash page accesses and
updates by using an access counter AC and a validation flag VF implemented in the OOB area of
each page. Whenever a mapping page is accessed during a read/write operation, that page access is
recorded to an AC which is later used to separate the hot from cold mapping pages on flash. After an
unexpected sudden power cut, during reboot, all data pages with VF = 1 are used for updating
corresponding out-of-date mapping pages on flash. Then, some of the hot mappings initially separated
by AC are loaded into DRAM as CMT entries. Even though our proposed approach is implemented on
flash memory, it can also be applied to various kinds of FTL algorithms and designs without affecting
the traditional file system. Our proposed FTRM approach, as evidenced from evaluation results,
has superior performance and robustness when compared to the traditional FSSD-based FTLs.
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