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Abstract: Effective open-circuit fault diagnosis for a two-level three-phase pulse-width modulating
(PWM) rectifier can reduce the failure rate and prevent unscheduled shutdown. Nevertheless,
traditional signal-based feature extraction methods show poor distinguishability for insufficient fault
features. Shallow learning diagnosis models are prone to fall into local extremum, slow convergence
speed, and overfitting. In this paper, a novel fault diagnosis strategy based on modified ensemble
empirical mode decomposition (MEEMD) and the beetle antennae search (BAS) algorithm optimized
deep belief network (DBN) is proposed to cope with these problems. Initially, MEEMD is applied
to extract useful fault features from each intrinsic mode function (IMF) component. Meanwhile,
to remove features with redundancy and interference, fault features are selected by calculating
the importance of each feature based on the extremely randomized trees (ERT) algorithm, and the
dimension of fault feature vectors is reduced by principal component analysis. Additionally, the DBN
stacked with two layers of a restricted Boltzmann machine (RBM) is selected as the classifier, and the
BAS algorithm is used as the optimizer to determine the optimal number of units in the hidden layers
of the DBN. The proposed method combined with feature extraction, feature selection, optimization,
and fault classification algorithms significantly improves the diagnosis accuracy.

Keywords: beetle antennae search; deep belief network; modified ensemble empirical mode
decomposition; extremely randomized trees; fault diagnosis; three-phase PWM rectifier

1. Introduction

Three-phase pulse-width modulating (PWM) rectifiers have been widely used in the fields of
electric vehicles, aerospace, renewable energy, high power electrolysis, and military [1]. Compared with
the conventional diode or thyristor rectifiers, PWM rectifiers have many merits, e.g., lower harmonic
distortion of line current, stabilization, and regulation of the DC-link monitoring signal [2]. However,
due to complex operating conditions and unpredictable work performance, the PWM rectifiers are
vulnerable to unexpected faults. Once fault occurs, the system runs under abnormal conditions or
causes substantial economic losses. Hence, an efficient and accurate fault diagnosis approach is of the
utmost to ensure the reliability and security of the PWM rectifiers [3].

In general, the semiconductor switch device faults in power converters are divided into two
categories: hard fault (structural fault) and soft fault (parametric fault) [4–6]. Hard faults cause the
circuit topology to change due to component damage, resulting in a complete loss of circuit function.
The soft fault manifests that the parameter value of the component exceeds the tolerance range of the
nominal value. Additionally, the hard faults of the power semiconductor devices are the most common
in PWM rectifiers, which can be divided into short-circuit fault (SCF) and open-circuit fault (OCF) [7].
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A SCF of the semiconductor switch device will cause an overcurrent, which is very destructive and
makes the PWM rectifier shut down immediately. In practice, hardware protection circuits are adopted
while a SCF is detected, a fast-acting fuse disconnects for converting a SCF to an OCF [8]. In contrast,
an OCF will not immediately cause the shutdown of the system and can remain undetected for an
extended period. This may cause overstress on the healthy switches, leading to the second fault of
other components [9].

Nowadays, fault diagnosis approaches are classified into model-based approaches [10] and
data-driven approaches [11]. Model-based approaches are dependent on the empirical knowledge of
the operation conditions, material characteristics, and failure mechanism to build mathematical models,
among which the state estimation method, parameter identification method [12], and analytical model
method [13] are representative. However, the two-level three-phase PWM rectifier has a symmetrical
topology structure with many power semiconductor devices. The mixed-signal, formed by noise and
crosstalk of neighboring power semiconductor device, makes the original monitoring signal relatively
easy to be distorted, resulting in a low signal-to-noise ratio [14]. Thus, the model-based method can
hardly build a precise fault diagnosis model for a two-level, three-phase PWM rectifier. In this case,
the data-driven approaches emerge with the advantage that prior expertise on accurate mathematical
models is no longer required. Data-driven approaches mainly involve three parts: feature extraction,
feature selection, and fault diagnosis.

Currently, numerous feature extraction researches have been widely utilized to capture fault
information from the original monitoring signal via time-domain and frequency-domain feature
extraction. For time-domain statistical analysis, reference [15] employed kurtosis and entropy of the
original monitoring signal as the fault features of the circuit. Long et al. extracted the high-order
statistical parameters as features for the diagnosis of the circuit [16]. Nevertheless, these time-domain
methods are unable to provide information in specific frequency bands, which makes it challenging to
extract useful fault information. For frequency-domain feature extraction, the fast Fourier transform
(FFT) is used for spectrum analysis, and the wavelet transform is used for sweep frequency response
analysis of the output signal [17]. However, these approaches show poor distinguishability for
insufficient fault features for nonlinear and non-stationary signals. Another powerful signal processing
method for non-linear and non-stationary signals, named empirical mode decomposition (EMD),
ensemble empirical mode decomposition (EEMD) [18], and complete ensemble empirical mode
decomposition (CEEMD) [19], has been widely used to solve fault diagnosis of rotating machinery
and circuit systems. Additionally, compared with wavelet transform where the basic functions are
fixed, the EMD-based method decomposes signals according to time-scale characteristics of data
without setting any basis function in advance, which has stronger local stationary. However, the EEMD
and CEEMD algorithms are time-consuming, the number of iterations has a great impact on the
decomposition effect. Therefore, this paper uses a modified ensemble empirical mode decomposition
(MEEMD) [20,21] algorithm to extract fault features of the three-phase PWM rectifier, which not only
suppress the mode confusion in the decomposition process, but also reduce the calculation amount.

Feature selection, the most significant step before fault diagnosis, can exclude redundant features
and remain representative features [22]. If all the features are imported into the classifier directly
without further processing, it will increase the computational complexity. However, there is a common
problem concerning what features would make fault diagnosis more accurate. To answer this question,
the existing approaches generally applied suitable projections to map the matrices in a feature subspace
capturing high-discriminative fault information. A variety of approaches, i.e., independent component
analysis (ICA), kernel principal component analysis (KPCA), two-dimensional non-negative matrix
factorization (2DNMF), and two directions two-dimensional linear discriminative analysis (TD2DLDA),
are implemented to increase the discrimination between different fault categories via further obtaining
the lower-dimension feature vectors. Although the above methods allow the user to pick better features
and achieve good results for circuit fault diagnosis, there are still drawbacks. For instance, a suitable
feature is always difficult to select when the data volume is not large because of insufficient information.
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In other words, the features selected in this way are likely not comprehensive, and some useful
information may be overlooked. Thus, in this work, the Extremely randomized trees (ERT) algorithm
is used to measure the importance of each feature. The best subset of features can be selected via
dimensionality reduction.

Nowadays, there are many shallow learning fault diagnosis models, i.e., backpropagation
neural network (BPNN), support vector machine (SVM) [23], least squares support vector machine
(LSSVM), multiclass relevance vector machine (mRVM) [24], and extreme learning machine (ELM) [25],
which have been widely implemented in fault diagnosis. For example, artificial neural network (ANN)
is used to implement intelligent classification, in which the dependency and the number of thresholds
can be reduced [26]. In [27], an intelligent fault diagnosis method based on an immune neural network
is used to acquire fault knowledge of electronic components. Nevertheless, these shallow learning
networks can not reveal the complex inherent relationships between the root cause of failure and the
signal signatures, which often suffer from invalid learning and weak generalization when learning
and training with many fault features. Moreover, various optimization algorithms, such as the genetic
algorithm (GA), quantum-behaved, chaos theory, particle swarm optimization (PSO) [16], and crow
search algorithm (CAS) [28], have been applied to optimize the hyper-parameters of the above shallow
learning models. Hereafter, deep learning models have been emerged as a practical approach due
to its powerful generalization ability by learning the mapping relationship between the available
fault feature and the corresponding fault category. Currently, several effective deep learning models
have been applied in fault diagnosis, i.e., deep belief network (DBN) [29], sparse auto-encoder (SAE).
For instance, Sun et al. [28] presented a novel DBN model optimized by the CAS to realize fault
diagnosis for a DC-DC circuit. In [30], Wen et al. investigated a new deep transfer learning method
for fault classification, which is a supervised transfer learning based on a three-layer SAE. In [31],
the proponent of the DBN algorithm said that DBN could overcome the limitation of shallow neural
networks. DBN is composed of multi-layer units, which can learn to obtain a feature vector that is
more suitable for classification. However, the performance of DBN is very vulnerable to the change
of DBN structure, such as the depth of the model and the number of hidden layer units. In [32],
extensive experiments had been carried out by Coates et al., and the results showed that the number of
hidden layer units had a more critical effect on the performance of DBN than the depth. It is necessary
to propose a suitable optimization algorithm to determine the number of hidden layer units of DBN.

Consequently, this paper proposes a novel fault diagnostic approach for a two-level three-phase
PWM rectifier based on beetle antennae search optimized deep belief network (BAS-DBN). The main
contributions of this paper are summarized as follows:

(1) As an improved EMD-based algorithm, MEEMD overcomes the shortcomings of EEMD
and CEEMD. It has less computation time and higher reconstruction accuracy when decomposing
the original signal into more representative intrinsic mode function (IMF) components. For fully
mining sensitive features, the ERT algorithm is proposed to analyze features from multiple respects
to obtain the optimal feature set. Feature selection can avoid feature redundancy and overfitting,
thereby improving the accuracy of the fault classifier and constructing a faster and lower-consumption
fault diagnosis model.

(2) The DBN can find out the essential structure of the data through the layer-by-layer nonlinear
mapping and finally realize the deep extraction of features. The BAS algorithm is used to optimize the
number of hidden nodes in DBN, avoiding critical deficiencies such as the premature convergence to
sub-optimal solutions. Simulation results show that the proposed method achieves higher accuracy by
comparing it with the other shallow learning models and optimization algorithms.

The rest of this paper is organized as follows. Section 2 presents the methodologies and theoretical
of feature extraction, feature selection, and fault diagnosis algorithms. In Section 3, the simulation
model of a two-level three-phase PWM rectifier is presented, and the fault categories are analyzed.
Section 4 presents the experimental results of different classification methods compared with BAS-DBN.
The conclusion and future researches are presented in Section 5.
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2. Proposed Framework & Theoretical

The proposed fault diagnostic strategy for a two-level three-phase PWM rectifier is represented in
Figure 1, and the detailed description is illustrated as follows:

Step 1: The healthy condition and fault modes for a two-level three-phase PWM rectifier are
defined. The fault monitoring signal and the reference signal under the healthy condition and different
OCFs are sampled from the two-level three-phase PWM rectifier.

Step 2: The initial feature vectors are extracted from the monitored current signals based on
MEEMD. In detail, time-domain, frequency-domain, and energy characteristics of each IMF component
are computed as the circuit fault features.

Step 3: The ERT algorithm calculates the importance of each fault feature, and the threshold value
is set to remove the features with redundancy and interference. Afterward, the principal component
analysis (PCA) algorithm is used to reduce the dimension of fault feature vectors for decreasing the
calculation costs and improving the efficiency of fault diagnosis.

Step 4: The optimized DBN-BAS algorithm is utilized to achieve an intelligent fault diagnosis of
the two-level three-phase PWM rectifier by optimizing and determining the optimal number of the
neurons in the first and second hidden layers of DBN.
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Figure 1. The framework of the proposed fault diagnostic approach based on beetle antennae search
algorithm optimized deep belief network.

2.1. Modified Ensemble Empirical Mode Decomposition

The essence of the MEEMD algorithm [33] is to use a certain rule to separate the abnormal signals
in the original data, and then perform EMD decomposition on the remaining signals. Such processing
can not only ensure the completeness of the original data, but also reduce the influence of abnormal
signals on the decomposition results. The MEEMD algorithm avoids these problems by introducing
the permutation entropy (PE) to randomly detect the abnormal signals. The steps of MEEMD are
as follows:
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Step 1: Add the positive and negative paired white noise ni(t) and −ni(t) into the original signal
x(t) to obtain a new sequence:{

x+t (t) = x(t) + aini(t), t = 1, 2, . . . , Ne

x−t (t) = x(t) − aini(t), t = 1, 2, . . . , Ne
(1)

where ai is the amplitude of the white noise signal. ni(t) represents the white noise, of which the root
mean square value should be close to the root mean square value of x(t). Ne denotes the logarithm of
the white noise, generally not higher than 100. Perform an EMD algorithm on x+t (t) and x−t (t) to obtain
the IMF component series

{
l+i1(t)

}
and

{
l−i1(t)

}
(i = 1, 2, . . . , Ne), from which the first IMF component

I1(t) can be obtained via ensemble averaging.

I1(t) =
1

2N

Ne∑
i=1

[I+i1 (t) + I−i1(t)] (2)

Step 2: Based on the permutation entropy δ of the obtained IMF component, if the permutation
entropy of the IMF component is greater than the threshold, it is an abnormal component. Otherwise,
it is a stationary component. If I1(t) is an abnormal component, continue to step 1 until the obtained
IMF component I1(t) is no longer abnormal.

Step 3: The abnormal components are separated from the original signal, and then the remaining
is decomposed by the EMD algorithm. Finally, arrange all the IMF components obtained from high
frequency to low frequency.

r(t) = x(t) − x′(t) (3)

r(t) EMD
→

m∑
k=1

Ik(t) + r(t) (4)

where x′(t) represents the sum of all abnormal signals, r(t) denotes the residual signals, and Ik(t) is the
kth IMF components obtained via the MEEMD algorithm.

2.2. Extremely Randomized Trees

The ERT algorithm [34], which is proposed by Pierre Geurts et al., calculates the variable
importance measures (VIM) of feature by calculating the purity of decision tree nodes by the Gini
index. At last, a certain proportion of features are deleted according to the VIM value to obtain an
optimal feature set.

Assuming that there are m features X1, X2, . . . , Xm, the VIM value of each feature is expressed as
VIM(Gini)

j , representing the average change in the impurity purity of the jth feature in the ERT decision
trees. The formula for calculating the Gini index is as follows:

GIm =
K∑

k=1

∑
k′,k

pmkpmk′ = 1−
K∑

k=1

p2
mk (5)

where K represents the number of categories with samples. pmk represents the proportion of category k
in node m, and pmk′ = 1− pmk.

For the importance of feature X j at node m, the variation of the Gini index before and after the
branch of node m is expressed as follows:

VIM(Gini)
jm = GIm −GIl −GIr (6)

where GIl and GIr represent the Gini index of the two new nodes after branching, respectively.
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If the node of the feature in the decision tree i is in the set M, then the importance of X j in the ith
tree is expressed as follows: 

VIM(Gini)
i j =

∑
m∈M

VIM(Gini)
jm

VIM(Gini)
j =

n∑
i=1

VIMi

(7)

Ultimately, the importance score of the feature is obtained by normalization as follows:

VIM j =
VIM j

m∑
j=1

VIM j

(8)

2.3. Deep Belief Network

The concept of DBN put forward by Hinton et al. in 2006 was an area of machine learning
research, which overcame the limitations of shallow network methods. It is constructed from multiple
layers of restricted Boltzmann machines (RBMs), which can extract deep-seated features from complex
data. DBN can be viewed as the stacking of simple learning modules. DBN training consists of
unsupervised layer-by-layer pre-training and supervised fine-tuning. The former achieves complex
nonlinear mapping by directly mapping data from input to output, which is also the critical factor for
its robust feature extraction capability. After pre-training, the DBN is trained, supervised by adding
a classifier at the top level of DBN to reduce training error. This classifier uses a backpropagation
algorithm to fine-tune the relevant parameters of the DBN.

As shown in Figure 2, the schematic representation contains three stacked RBMs. The input layer
is the visible layer, which is composed of n visible units v = (v1, v2, · · · · · · , vn). Hidden1 is the first
hidden layer, which is composed of m hidden units h = (h1, h2, · · · · · · , hm). Both are binary random
vectors, i.e., v ∈ {0, 1}n, h ∈ {0, 1}m. Since RBM is an energy-based model, the energy function E(v, h|θ )
is defined as follows:

E(v, h|θ ) = −αTv− βTh− vTwh

= −
n∑

i=1
αivi −

m∑
j=1

β jh j −
n∑

i=1

m∑
j=1

viwi jh j
(9)

where θ = [α, β, w], αi and β j represent the bias of vi and h j; wi j is the weight that connects vi and h j.
Then, the probability distribution to every possible pair of v and h can be defined as the following
energy function

p(v, h) =
1
Z

exp(−E(v, h)) (10)

where Z is the normalizing constant, as expressed in Formula (11). It can be calculated by summing all
possible pairs of v and h

Z(θ) =
∑

v

∑
h

exp(−E(v, h)) (11)

The probability that the network assigns to v is as follows:

p(v|θ ) =
∑

h

p(v, h) =
1
Z

∑
h

exp(−E(v, h)) (12)

Furthermore, there is a bidirectional connection between the hidden layer and visible layer, while
the neurons in the same layer are independent of each other. When the visible layer is determined, the
conditional probability of the visible layer units is presented as follows:

p(h|v;θ ) = p(v,h;θ)
p(v;θ) =

∏
j

p(h j|v )

p(v|h;θ ) = p(v,h;θ)
p(h;θ) =

∏
j

p(vi|h )
(13)
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The function sig(x) = 1/(1 + e−x) can be used to calculate the following activation probabilities
p(h j = 1|v ) = sig(β j +

n∑
i=1

wi jvi)

p(vi = 1|h ) = sig(αi +
n∑

i=1
wi jh j)

(14)

Given the training data, the probability p(v) of Formula (12) can be maximized by adjusting
corresponding parameters. The probability of a training vector is related to the energy of the vector.
Therefore, the parameters of RBM can be estimated based on the principle of maximum likelihood
estimation. The log-likelihood derivative of θ can be derived as follows:

∂ log p(v)
∂θ

= −
∑

h

p(h|v )
∂E(v, h)
∂θ

+
∑

v

∑
h

p(v|h )
∂E(v, h)
∂θ

= −

〈
∂E(v, h)
∂θ

〉
0
+

〈
∂E(v, h)
∂θ

〉
∞

(15)

where
〈
∂E(v,h)
∂θ

〉
0
a and

〈
∂E(v,h)
∂θ

〉
∞

denote the expectation of p(h|v ) concerning the data distribution

and the model, respectively. However, it is quite challenging to attain an unbiased sample of 〈·〉model.
The learning rule is similar to the objective gradient function named contrastive divergence, where
〈·〉model can be replaced by k iterations of Gibbs sampling. Therefore, according to Formula (15),
the update rules of the model parameters are as follows:

∆wi j = ρ(
〈
vih j

〉
0
−

〈
vih j

〉
k
)

∆αi = ρ(〈vi〉0 − 〈vi〉k)

∆β j = ρ(
〈
h j

〉
0
−

〈
h j

〉
k
)

(16)

where ρ ∈ (0, 1) is the learning rate.
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2.4. DBN Optimized by Beetle Antennae Search Algorithm

In this paper, a DBN with two hidden layers is selected for fault diagnosis of a two-level three-phase
PWM rectifier. The BAS optimization algorithm is used to the optimal number of neurons in the
hidden layer of the DBN. Similar to the GA and PSO optimization algorithms, BAS can automatically
implement the optimization process without knowing the specific form of function and gradient
information. Furthermore, there is only one individual, and the speed of optimization has been
significantly improved. The dimension of the search space in BAS is 2.

The biological principle of the BAS algorithm can be interpreted that the two antennae of the
beetle judge the strength of the food odor on the left and right sides to determine the direction in the
next step. The flow chart of the BAS algorithm can be summarized in Figure 3, which can be divided
into the following steps:

(1) Suppose there is a k-dimensional optimization space, xle f t and xright represent the coordinates
of the left and right antennae of the beetle, respectively. xt represent the centroid position of the beetle
at time t, and d0 represent the distance between the two antennae. If the initial orientation of the beetle
is random, the vector that the left antennae of the beetle point to the right antennae is also arbitrary.
Hence, a normalized random vector is assumed as follow

→

b = rands(k, 1)/‖rands(k, 1)‖ (17)

xle f t − xright = d0·
→

b (18)

where xle f t and xright can be expressed as the centroid position xle f t = xt + d0·
→

b /2

xright = xt
− d0·

→

b /2
(19)

(2) The objective function is set as f (·) and the objective function value at the two position
coordinates of the left and right antennae are calculated as f (xle f t) and f (xright). Compare the size of
these two values and choose the right or left step of the beetle position according to the optimization
direction of the objective function δ′.

(3) Subsequently, the beetle’s centroid position at time t + 1 is updated as follows:

xt+1 = xt
− δ′·

→

b ·sign( f (xle f t) − f (xright)) (20)

The fitness function is set as follow

MSE =
1
N

N∑
i=1

‖ypre − ytrue‖
2 (21)

where ypre denotes the output value of the DBN classifier and ytrue denotes the actual value.
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3. Results Establishment of the Simulation Model and Analysis of Fault Categories

This section may be divided by subheadings. It should provide a concise and precise description
of the experimental results, their interpretation as well as the experimental conclusions that can be
drawn. The simulation experiment is carried out for the two-level three-phase PWM rectifier, which
converts 220 V AC voltage to 600 V DC voltage with a switching frequency of 10 kHz. Figure 4
shows the two-level three-phase PWM rectifier, which involves the main circuit and a control block
diagram. The control block includes two current control loops and one DC-link voltage control loop.
Furthermore, the AC-link current is converted to d and q axis current in a synchronous reference frame.
The q-axis current is kept at zero to achieve unity power factor operating status. Additionally, the d-axis
current is controlled to keep the DC-link voltage constant. The specifications of the circuit are listed in
Table 1.
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Table 1. Parameters Setting of Two-Level Three-Phase PWM Rectifier.

Parameters Value

Input AC voltage Usa, Usb, Usc 220 V/50 Hz
Input boost inductance Ls 1 mH

Line resistance Rs 0.5 Ω
Switching frequency f s 10 kHz

Injected current id,in 5 A
DC-link voltage U 600 V

DC-link capacitor C 4000 µF
DC-link resistance R 10 Ω
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Since the multiple power semiconductor devices are unlikely to break down simultaneously,
this paper only considers the fault of one power semiconductor device. According to the topology
of the circuit, the circuit fault categories are divided into seven categories, including healthy
condition and VT1-VT6 OCFs. Table 2 lists the fault modes, classification labels, and fault codes.
More precisely, the classification label [0,1,0,0,0,0,0,0,0]T indicates that an OCF occurs at VT1.
In this paper, the MATLAB/Simulink model of the tested three-phase PWM rectifier is applied
to the RT-LAB hardware-in-the-loop simulation system by PC, which reduces the difficulty of
constructing the circuit and improves the reliability of the simulation system. Additionally, the data
processing methods mentioned are implemented with MATLAB R2019a. As illustrated by Figure 5,
the simulation experimental of the two-level three-phase PWM rectifier was built in the OP5600
simulator, which constructs a circuit response database containing multiple fault conditions and
transmits the fault signal to the PC. The circuit response was captured at the output using a National
Instruments (NI) USB-6212 data acquisition board. The data were recorded using LabVIEW on PC.
The experiment operations and different fault settings are implemented in the OP5607 controller.
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Table 2. Fault Modes and Classification Labels.

Fault Modes Classification Label Fault Codes

Healthy condition [1,0,0,0,0,0,0]T 0
VT1 OCF [0,1,0,0,0,0,0]T 1
VT2 OCF [0,0,1,0,0,0,0]T 2
VT3 OCF [0,0,0,1,0,0,0]T 3
VT4 OCF [0,0,0,0,1,0,0]T 4
VT5 OCF [0,0,0,0,0,1,0]T 5
VT6 OCF [0,0,0,0,0,0,1]T 6
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4. Implementation Results and Discussion

4.1. Circuit Monitoring Signal Acquisition

Considering the operation of a two-level three-phase PWM rectifier under no-load condition,
which means that the load side is virtually disconnected from DC-link. If the DC output voltage is
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well controlled at its reference value, the d-axis current, which is a real power component, is zero and
the DC-link voltage is kept constant, except for the switching frequency-related ripple components.
However, since this is an equilibrium state, it is difficult to obtain any information on the system
parameters for this condition. Thus, an AC signal at a specific frequency is injected into the d-axis
current to solve the problem. Therefore, as shown in Figure 4, a suitable inject signal is used to excite
the system for generating a fault signal, which is easy to extract and analyze. The injected current
reference in the synchronous reference frame is given as follows:

ide,in = 5 sin(50πt) (22)

where idc_in is well controlled and is inversely transformed into the stationary reference frame, the AC
current of the pulsed waveform with a fundamental frequency of 25 Hz flows through the line and the
DC-link capacitors. Additionally, because the DC-link capacitor can compensate the DC-link output
voltage harmonic changes and it may affect the accuracy of fault diagnosis, the DC-link output current
is selected as the fault signal.

4.2. Fault Feature Extraction and Dimension Reduction

4.2.1. Fault Feature Extraction Based on MEEMD

According to the previous fault modes setting of the circuit, the sampling time and the sampling
frequency are set to 0.1 s and 100 kHz. Subsequently, the monitored current signal is decomposed into
7 IMF components via the MEEMD algorithm. Because the trend of IMF components with orders higher
than seven tends to be flat and almost unchanged and contains little fault information. Therefore, the
IMF1-IMF7 components are collected as fault features in this paper. As shown in Figure 6, the waveform
of each IMF is different between different fault categories. The monitored current signal under healthy
condition is closed to the fundamental frequency of 50 Hz, while the current waveform is distorted
under the VT1 OCF. To reduce the interference of irrelevant factors, the number of each fault category
sample is set to 100, a total of 7 × 100 signal samples are obtained. Hereafter, the 17 features of each
IMF component are calculated, which are represented in Table 3. Ultimately, the initial fault dataset A
(119 × 700) can be obtained.

Table 3. Fault Features and Computational Formula.

No. Fault Feature Computational Formula No. Fault Feature Computational Formula

F1 Energy T1 =
n∑

i=1

∣∣∣x(i)∣∣∣2 F10 Impulse index T10 = maxx(i)/|T3|

F2 Complexity T2 = Lempel-Zivcomplexity F11 Peak index T11 = [maxx(i)]/T4

F3 Mean value T3 =

√
1
n

n∑
i=1

x(i) F12 Kurtosis index T12 =

[
1/n

n∑
i=1

x(i)4
]
/T4

4

F4 Root mean
square value T4 =

√
1
n

n∑
i=1

∣∣∣x(i)∣∣∣2 F13 Frequency center T13 =
∑

fφ( f )/
∑

f ( f )

F5 Standard
deviation T5 =

√
1
n

n∑
i=1

[x(i) − T3]
2 F14 Mean square

frequency T14 =
∑

f 2φ( f )/
∑

f ( f )

F6 Skewness T6 = 1
n−1

n∑
i=1

[x(i) − T3]
3/T5

3 F15 Root mean
square frequency T15 =

√
T14

F7 Kurtosis T7 = 1
n−1

n∑
i=1

[x(i) − T3]
4/

(
T5

3
− 3

)
F16 Deviation

frequency T16 =
∑
( f − T13)

2φ( f )/
∑
φ( f )

F8 Coefficient of
variation T8 = T4/|T3| F17

Standard
deviation
frequency

T17 =
√

T16

F9 Margin index T9 = maxx(i)/
[
1/n

n∑
i=1

√∣∣∣x(i)∣∣∣]2
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4.2.2. Dimensionality Reduction of Fault Feature Vectors Based on ERT and PCA

If all the features are imported into the classifier directly without further processing, it will increase
the computational complexity. Hence, as shown in Figure 7, the ERT algorithm is used to calculate the
VIM score of each feature to achieve feature selection from 119 kinds of fault features. Among them,
the VIM values of 54 fault features are close to 0. The number of fault features for the IMF1 component,
whose VIM values are equal to 0, is the least with a minimum of 3. It is proven that the IMF1 component
contains the most fault feature information. On the contrary, the number of fault features for the IMF6
component, whose VIM values get close to 0, is the largest with a maximum of 14. It indicates that
IMF6 contains the least fault feature information. Moreover, the 17 kinds of statistical parameters
are also needed to be selected for retaining the excellent features. For instance, as for the mean and
kurtosis index, the VIM values of each IMF component are not equal to 0, indicating that these two
parameters are quite essential features to distinguish different fault categories. In contrast, as for the
skewness and coefficient index, the VIM values for each IMF component are close to 0. For the Impulse
index, although the VIM values calculated from IMF6 components are 0, the VIM value calculated
from IMF2 is as high as 2.26, indicating that the appropriate fault features have a meaningful impact
on the fault diagnosis results. Given the results, 119 kinds of fault features are ranked in descending
order according to the value of VIM, and then the culling ratio is set as 0.6. Hence, the fault dataset B
(48 × 700) with a dimension of 48 is obtained.

Additionally, this paper uses a t-distributed stochastic neighbor embedding (t-SNE) algorithm to
map the high-dimensional data to a two-dimensional (2-D) space. The sample number of each fault
category is 100. Due to the overlapping of points, the samples of the various fault categories shown
in Figure 8a–d) appear to be different. The 2-D visualization of the initial fault feature dataset A is
shown in Figure 8a. The label 0 represents the healthy condition; label 1 represents the VT1 OCF, label
2 represents the VT2 OCF. Additionally, in Figure 8a, there is no clear boundary between the samples
of VT1 OCF and VT3 OCF. Figure 8b,c shows the t-SNE visualization of the dataset B obtained by PCA
and ERT, respectively. Moreover, PC1 and PC2 represent the first and second principal components of
the sample. The concentration of the fault in the same category in Figure 8b,c are lower than Figure 8a.
The samples of VT1 OCF and VT3 OCF can be distinguished after feature selection via the PCA or
ERT algorithm.
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ERT + PCA.

Additionally, it can be seen from the comparison between Figure 8b and Figure 8c that the
dimensionality reduction effect after ERT algorithm feature selection is significantly better than PCA.
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The distance between different fault categories is increased, and the distance of samples in the same
category is more concentrated. However, dimensionality reduction based on PCA is performed on the
samples after ERT, as shown in Figure 8d, the dimensionality reduction effect has not been significantly
improved. To further quantify the effects of different dimensionality reduction methods, the interclass
distance and intraclass distance are calculated on the samples after different dimensionality reduction
methods, as shown in Table 4.

Table 4. Dimensionality Reduction Effects of Different Methods.

Dimensionality Reduction Intraclass Distance Interclass Distance Feature Dimension

Initial fault feature 38.268 15.687 96
PCA 37.544 15.654 35
ERT 4.799 6.484 32

ERT+PCA 4.550 6.441 25

4.3. Fault Diagnosis Results of Different Classifiers

Based on the above analysis, the dimension of each fault feature vector is 25. The constructed
BAS-DBN classifier is used to accurately separate seven categories of faults and diagnose the fault
category for the unknown samples. Additionally, a verification method, named K-fold cross-validation,
is applied, which can randomly divide the samples into K repulsion subsets. Each K-1 subsets are
randomly selected as a training set and the remaining one as a test set. Cross-validation repeated K
times, and each subset is verified once. Finally, K times validation results are averaged to obtain the
final accuracy. The advantage of K-fold cross-validation is that all the data will be applied as a training
set and a test set, and the result will better reflect the model accuracy. K is set to 5, and a five-fold
cross-validation method is applied in this paper. The fault diagnosis results of DBN is compared
with shallow learning network to verify the performance of DBN. For BPNN, the parameters to be
optimized are the initial connection weights and threshold values. As for the DBN, the number of
hidden layer units is mainly optimized. Additionally, for the comparison of different optimization
algorithms, GA is selected to compare with the BAS algorithm. The parameter settings are shown in
Table 5.

Table 5. Parameters Setting of DBN.

Network Structure Parameters Parameters Training Parameters Parameters

No. of input layer units 25 Learning rate 0.01
No. of output layer units 7 Batch size 150

No. of hidden layers 2 Epoch 100
No. of hidden1 units h1 (Optimization) Activation ReLU
No. of hidden2 units h2 (Optimization) Solver L-BFGS

4.3.1. GA-BPNN, BAS-BPNN and BAS-DBN

For the BPNN classifier, its structure is set to the most common three-layer architecture. The sigmoid
function is selected as the transfer function of the hidden layer. After several trials, it is found that
when the number of units in the hidden layer is set as 21, the fault diagnosis results perform better than
others. Therefore, the structure of BPNN is set to 25-31-7. The number of parameters to be optimized
is 385.

Dataset D based on ERT and PCA is divided into a training set and a testing set. The optimal initial
network parameters are obtained by the optimization algorithm (GA or BAS). The fitness function is
as follows:

err =
1
N

N∑
i=1

‖ypre − ytrue‖
2 (23)
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where err is the error value, ytrue is the actual value, ypre is the predicted value, and N is the number of
training samples.

The error evolution curves of GA-BPNN and BAS-BPNN are shown in Figure 9, the final training
error obtained by the BAS optimization algorithm is 0.0655, while the training error obtained by the
GA algorithm is 0.0458. Although the error of the former is higher than that of the latter, the number of
iterations needed by the former is far less than that of the latter, and the optimal weights and thresholds
can be obtained as soon as possible. It takes 106 iterations to seek the optimal parameters of BPNN by
the GA algorithm. However, it takes 13 iterations to seek the optimal parameters of BPNN by the BAS
algorithm. The number of input layer units in DBN is set to 25, and the number of output layer units is
set to 7. The BAS algorithm optimizes the number of hidden1 and hidden2 layers units. The error
evolution curve of BAS-DBN is shown in Figure 10, it can be known that when the number of units in
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4.3.2. Results of Fault Diagnosis

The fault diagnosis results of BPNN, GA-BPNN, BAS-BPNN, GA-DBN, and BAS-DBN are shown
as Figure 11a–e. The points whose true label distributed between 0 and 1 represent the samples under
healthy condition; the points between 1 and 2 represent the samples under VT1 OCF, and so on.
Similarly, the predicted label 0 represents the samples are under health condition, and the predicted
label 1 represents the samples are under VT1 OCF. It can be known that BAS-DBN performs better than
BPNN, GA-BPNN, BAS-BPNN, and GA-DBN. Among them, the BPNN classifier has a higher error
rate in VT6 and VT4 OCF, and confusion appears between VT1 OCF and VT3 OCF. In the GA-BPNN
classifier, the classification results of VT6 and VT4 OCF are improved. For GA-DBN, its performance is
much better than BPNN, but it is a little worse than BAS-DBN. In the BAS-DBN classifier, not only the
classification accuracy of VT2, VT4, and VT6 OCF categories are guaranteed to reach 100%, but also
the error rate of the other three fault categories reduced. The fault diagnosis accuracy of BAS-DBN
is 98.43%, which is higher than other classifiers. The fault diagnosis accuracy of BPNN, GA-BPNN,
and GA-DBN are 89.29%, 94%, and 97.28%, respectively.

Electronics 2020, 9, x FOR PEER REVIEW 18 of 21 

 

accuracy of BAS-DBN is 98.43%, which is higher than other classifiers. The fault diagnosis accuracy 
of BPNN, GA-BPNN, and GA-DBN are 89.29%, 94%, and 97.28%, respectively. 

(a)

(e)

(b)

(c) (d)

1 6520 73 4
Ture label 1 6520 3 4

Ture label
7

1 6520 3 4 1 6520 3 4 7

1 6520 3 4 7

Ture label
7

Ture label

Ture label

1

6
5

2

0

3
4

D
ia

gn
os

is 
la

be
l

1

6
5

2

0

3
4

D
ia

gn
os

is 
la

be
l

1

6
5

2

0

3
4

D
ia

gn
os

is 
la

be
l

 

1

6
5

2

0

3
4

D
ia

gn
os

is 
la

be
l

 

1

6
5

2

0

3
4

D
ia

gn
os

is 
la

be
l

 

Wrong diagnosis
Correct diagnosis Wrong diagnosis

Correct diagnosis

Wrong diagnosis
Correct diagnosis

Wrong diagnosis
Correct diagnosis

Wrong diagnosis
Correct diagnosis

 
Figure 11. Fault diagnosis results of (a) BPNN; (b) GA-BPNN; (c) BAS-BPNN; (d) GA-DBN; (e) BAS-
DBN. 

As shown in Figure 12, to further verify the accuracy of each fault diagnosis method, we carried 
out 30 repeated experiments. It can be found that GA-BPNN is better than BAS-BPNN in diagnosing 
VT1, VT2, and VT3 OCFs, but BAS-BPNN performs better than GA-BPNN in diagnosing VT4, VT5, 
and VT6 OCFs. The BAS-DBN can efficiently diagnose every fault category, and its performance is 
relatively stable. The mean value of all fault diagnosis accuracy in every experiment is higher than 
95%. The accuracy of fault diagnosis for BPNN, GA-BPNN, BAS-BPNN, GA-DBN, and BAS-DBN is 
82.88%, 88.60%, 89.18%, 97.21%, and 98.58%, respectively. 

Figure 11. Fault diagnosis results of (a) BPNN; (b) GA-BPNN; (c) BAS-BPNN; (d) GA-DBN;
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As shown in Figure 12, to further verify the accuracy of each fault diagnosis method, we carried
out 30 repeated experiments. It can be found that GA-BPNN is better than BAS-BPNN in diagnosing
VT1, VT2, and VT3 OCFs, but BAS-BPNN performs better than GA-BPNN in diagnosing VT4, VT5,
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and VT6 OCFs. The BAS-DBN can efficiently diagnose every fault category, and its performance is
relatively stable. The mean value of all fault diagnosis accuracy in every experiment is higher than
95%. The accuracy of fault diagnosis for BPNN, GA-BPNN, BAS-BPNN, GA-DBN, and BAS-DBN is
82.88%, 88.60%, 89.18%, 97.21%, and 98.58%, respectively.Electronics 2020, 9, x FOR PEER REVIEW 19 of 21 
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5. Conclusions

In this paper, an OCFs diagnosis framework for a two-level, three-phase PWM rectifier is proposed
by using MEEMD for feature extraction, ERT algorithm for the selection of the most relevant features,
and BAS-DBN for fault diagnosis, which can reduce the fluctuation of the selected features as well as
improve the accuracy of diagnosis. The effectiveness of the feature selection method is verified by
measuring the intraclass and interclass distance between different samples. The features left behind are
more conductive to fault diagnosis, and although the shallow neural network is used as the classifier,
the fault diagnosis accuracy is higher than 90%. For the parameter setting of DBN, most papers choose
the typical parameter setting or perform finite-time experiments to determine the number of hidden
layer units. In our work, the optimization algorithm named BAS is used to train DBN, and the model
which is most suitable for the converter fault recognition is obtained to ensure the highest accuracy of
fault diagnosis.
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