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Abstract: It is proposed, developed, investigated, and validated by experiments and modelling for 
the first time in worldwide terms new data processing technologies, higher order spectral multiple 
correlation technologies for fault identification for electromechanical systems via electrical data 
processing. Investigation of the higher order spectral triple correlation technology via modelling 
has shown that the proposed data processing technology effectively detects component faults. The 
higher order spectral triple correlation technology successfully applied for rolling bearing fault 
identification. Experimental investigation of the technology has shown, that the technology 
effectively identifies rolling bearing fault by electrical data processing at very early stage of fault 
development. Novel technology comparisons via modelling and experiments of the proposed 
higher order spectral triple correlation technology and the higher order spectra technology show 
the higher fault identification effectiveness of the proposed technology over the bicoherence 
technology. 
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1. Introduction 

Induction motors are used in a broad scope of industrial applications: electric vehicles, 
gearmotors, etc. It is important to keep induction motors operational via fault identification, i.e., fault 
detection and isolation (FDI) of their key components. One of the key components that essentially 
impacts induction motor functions is its rolling bearings. Fault identification and prognosis for 
bearings are the subjects of many research works that provide viable results [1–19]. 

A new technique for early fault detection and diagnosis in rolling-element bearings, based on 
vibration analysis is presented [1]. After normalization and the wavelet transform of vibration 
signals, the standard deviation as a measure of average energy and the logarithmic energy entropy 
as a measure of the degree of disorder are extracted in sub-bands of interest as representative features. 

Then, the feature space dimension is optimally reduced to two, using scatter matrices. In the 
reduced two-dimensional feature space, the fault diagnosis is performed by quadratic classifiers. 

A new bearing fault diagnosis method is proposed [2], based on structural feature selection. In 
contrast to most of common fault diagnosis methods, the proposed method transfers the problem of 
fault diagnosis into a new multi-objective programming problem, and then uses the numerical 
algorithm to exploit the structural relationship among heterogeneous fault features. A method, 
allowing fault detection and diagnostic for critical components of the gear reducer, in particular gear 
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and bearing defects, is developed [3], based on a new indicator, extracted from electrical signals. It 
allows characterizing different states of the gear reducer, such as healthy state, bearing faults, gear 
faults, and combined faults. 

A new motor square current signature analysis (MSCSA) fault diagnosis is presented [4]. The 
proposed technique is based on three main steps: first, the induction motor current is measured; 
secondly, the square of the current is computed; and, finally, a frequency analysis of the square 
current is performed. This technique allows more information to be obtained from a motor with a 
rotor fault, than the classical current analysis. 

A new method for the fault detection of bearing outer raceway fault in motors is proposed [5]. 
The method is based on the analysis of the instantaneous frequency (IF) of current using Hilbert 
transform, and spectrum analysis is used to detect the frequency associated with the bearing outer 
raceway fault. The proposed method can significantly reduce the negative influence of the supply 
frequency component spectrum leakage, and thus, can enhance the fault features to detect bearing 
outer raceway fault under lower load conditions. The authors proposed [6] a motor bearing 
monitoring tool, which leverages on stator currents signals, processed with a deep learning. The 
authors exploit a deep learning, able to extract from the stator current signal a compact and 
expressive representation of the bearings state. Investigation of the efficacy of current monitoring for 
bearing fault detection by correlating the relationship between vibration and current frequencies 
caused by incipient bearing failures is performed [7]. The effects on the stator current spectrum are 
described and the related frequencies determined. 

A new approach is proposed [8] for fault identification, based on two effects of a bearing fault: 
(1) the introduction of a particular radial rotor movement and (2) load torque variations, caused by 
the bearing fault. Six wavelets are considered for bearing fault diagnosis via stator current [9] out of 
which three are real valued and the remaining three are complex valued. Base wavelet has been 
selected on the basis of wavelet selection criteria-maximum relative wavelet energy. A similar 
method is developed [10], a base wavelet has been selected out of four real valued wavelets, using 
energy-based criterion. To characterize faults in time-frequency domain, 2-D and 3-D wavelet 
scalograms have also been presented. 

A method is developed [11], based on squared envelope spectrum to detect localized bearing 
faults through the stator current analysis of a three-phase induction motor. The fast kurtogram and 
the wavelet kurtogram are also applied to improve the envelope analysis. The originality of work 
[12] relies on the use of high-resolution methods to detect modulations in the stator current. Stator 
current modeling for defective induction motor rolling bearings, based on magnetic equivalent 
circuits, is carried out [13]. An iterative numerical integration method is presented to solve the stator 
current model. 

Following the wavelet decomposition of vibration signals into a few sub-bands of interest, the 
standard deviation of obtained wavelet coefficients is extracted as a representative feature [14]. Then, 
the feature space dimension is optimally reduced to two using scatter matrices. In the reduced two-
dimensional feature space, the fault detection and diagnosis are carried out by quadratic classifiers. 
The authors [15] evaluated the effectiveness of the bispectrum to assess the machine faults for selected 
signals: stator current, voltage proportional to the unipolar stream, vibration, and acoustic pressure. 
The authors [16] have developed an algorithm that generates a pseudo-spectrum of square of current, 
using multiple signal classification techniques. A novel detection algorithm is introduced [17], based 
on the analysis of the internal signals from the control structure: controller outputs and control path 
decoupling variables. The spectral analysis of these signals is used to detect the stator-winding 
incipient damages. 

High effectiveness of early bearing diagnostics has been experimentally revealed. A novel 
diagnosis technology [18], combining the benefits of the spectral kurtosis and the wavelet transform, 
is validated for early defect diagnosis of rolling bearings. A systematic procedure for feature 
estimation is proposed and rules for the selection of technology parameters are defined. The 
bicoherence analysis [19] on both simulated and rig-generated vibration data from a rub-effected 
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rotor–stator system shows diagnosis effectiveness on industrial data from final tailing pumps to 
detect impeller wear in an oil-sands plant. 

The drawback of a vibration fault identification is that it requires expensive accelerometers. This, 
in turn, is not cost effective, especially in fault identification of big number of electrical motors. The 
majority of off-the-shelf systems require installation of vibration sensors on induction motor casing. 
For accurate measurements, sensors should be screwed to a body of the diagnosed motors; this 
requires drilling and rifling in a body of a motor; that is not always possible. Another problem of 
vibration sensor installation arises, if a motor is in an enclosed installation with a limited access or 
even without an access to a motor. Such installations: e.g., deep underground pumps or offshore 
enclosed systems do not allow direct access to motor, and that makes vibration fault identification 
systems unusable. 

Technologies that are cheaper and allow fault identification to be taken in the above-mentioned 
enclosed installations are based on electrical data processing, namely, on motor current signature 
analysis. They employ remote current measurements, taken at a power source of a motor, instead of 
contact access vibration measurements. Motor current signature analysis technologies are widely 
used for fault identification of components of induction motors such as stator, rotor, etc. [14,16,20–
22]. However, these technologies are not yet widely used for fault identification of motor bearings in 
industrial applications. 

Due to low cost of motor current signature analysis, applications of this technique for fault 
identification of motor bearings have become popular in the recent years. The classic Fourier 
transform is normally employed for fault identification of motor bearing, e.g., [7,10,14], by 
transferring time domain signals of a motor current into the power spectral density. Characteristic 
components, related to motor bearing faults, are usually sought in the power spectral density of 
motor current. 

This approach is not effective for identification of early stage of bearing fault development. 
Therefore, more effective second order data processing techniques are employed for fault 
identification of motor bearing by motor current signature analysis, as follows: the Park vector 
approach and the extended Park vector approach [13,21,23], the spectral entropy [1], a fuzzy feedback 
observer [2], deep learning technology [1,6], the wavelet transform [9–11], and the spectral kurtosis 
[11,18]. However, all these advanced techniques are still the second order techniques and, therefore, 
not effective for identification of early stage of bearing fault development. 

It is known that the advanced data processing technique and the nonlinear higher order spectra 
[24] are more effective [24–27] for the identification of early fault than the second order data 
processing techniques. 

Therefore, the higher order spectra that are widely used for vibration fault identification in 
various electromechanical systems are becoming popular for motor fault identification via motor 
current signature analysis [15,19,28,29]. These works are related to simultaneous usage of multiple 
spectral narrowband components, generated by a fault, for higher order spectra estimation and fault 
identification. 

From definition of the higher order spectra [24], it is clear that all the analyzed spectral 
components must exhibit phase coupling (e.g., quadratic phase coupling, cubic phase coupling, etc.), 
in order to obtain a non-zero result that is associated with asset faults. The higher order spectra 
techniques and the 3rd order bicoherence require a strict choice of spectral components, generated 
by faults in electromechanical systems. Specifically, the highest frequency, taken into consideration 
by the higher order spectra, has to be a sum of remaining lower frequencies: i.e., in the case of 3rd 
order bicoherence (𝑓ଵ + 𝑓ଶ) [24]. 

This requirement will be fulfilled in some cases, in which fault related spectral components are 
presenting explicit harmonic signatures. However, this higher order spectra requirement may not be 
met for all spectral components that are carrying important information for fault identification. 
Therefore, this higher order spectra requirement is limited spectral components, generated by faults, 
that could be used for fault identification via motor current signature analysis, and, thus, limited fault 
types, that could be effectively identified by the higher order spectra. 
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Another drawback of the higher order spectra technologies is that the higher order spectra do 
not represent the correlations between complex spectral components, generated by faults in 
electromechanical systems, and, therefore, are not allowed to achieve the highest possible 
effectiveness at an early stage of fault identification. 

These two essential drawbacks clearly show a need to develop higher order technologies for 
fault identification for electromechanical systems. 

In order to mitigate these drawbacks, it is proposed in this research novel higher order spectral 
technologies, based on multi-dimensional higher order spectral multiple correlation of order n, higher 
order triple correlation, and higher order fourth correlation, for fault identification via signature 
analysis. The technologies are preserving positive features of higher order spectral analysis. However, 
they allow to take into account statistical dependencies between all needed combinations between the 
multiple spectral components, appearing due to a fault, without any limitations: i.e., regardless of 
dependencies between their frequencies. This technology feature will essentially enlarge the 
identification capabilities of the proposed technologies in comparison with the higher order spectra 
technologies. 

The intensive literature search, performed by the authors, has shown that, in worldwide terms, 
nobody proposed the higher order multiple spectral correlations. 

The spectral correlation, proposed in multiple references, e.g., [30–32], related to the cyclic 
spectral analysis of the cyclo-stationary signals and the higher order multiple spectral correlations 
proposed here are two entirely different signal processing techniques. The only common feature 
between these two techniques is just the same name: the spectral correlation. 

The spectral correlation in previous studies [30–32] is related to a specific application for the 
cyclic spectral analysis for the cyclo-stationary processes and displays the power distribution of a 
signal with respect to both the spectral frequency f, linked to the waveforms in the signal, and the 
cyclic frequency a, linked to the cyclic evolution of the waveforms. Hence, contrary to the classical 
spectral analysis of stationary signals, the spectral correlation displays an additional dimension 
related to the nonstationarity of the signal. 

Thus, the spectral correlation [30–32] is the second order signal processing technique, a two-
dimensional function and it is designed specifically for the cyclic spectral analysis of the cyclo-
stationary signals. 

The main concept of this research is the proposed spectral correlations that are the higher order 
techniques, multi-dimensional functions, which depend on n independent frequencies and present 
exact correlations between n complex spectral components. They are related to the general cases of 
complex stationary and non-stationary random signals, including the cyclo-stationary signals. 
Mathematical equations of the higher order spectral multiple correlations, proposed here and 
described in Section 2 below, are entirely different from the mathematical equation, proposed in 
previous studies [30–32] for the spectral correlation for the cyclic spectral analysis. 

Other novelties of the research are, as follows: 

• Validation of the proposed spectral triple correlation technology via modelling trials 
• Experimental validation of the proposed spectral triple correlation technology via experimental 

trials 
• Comparison of the proposed technology with the higher order spectra technology via modelling 

trials 
• Experimental comparison of the proposed technology with the higher order spectra technology 

The objectives of the research are, as follows: 

• Develop and investigate for the first time in worldwide terms fault identification technology, 
based on the higher order spectral correlation for electromechanical systems via signature 
analysis 

• Perform a validation of the proposed spectral triple correlation technology via modelling trials 
for pristine and faulty mechanical components 
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• Perform a comparison of the proposed technology with the higher order spectra technology via 
modelling 

• Perform an experimental validation of the proposed spectral triple correlation technology via 
experimental trials for pristine and faulty motor bearings, using electrical data processing 

• Perform a preliminary experimental comparison of the proposed spectral triple correlation 
technology with the higher order spectra technology for pristine and faulty motor bearings, 
using electrical data processing 

2. The Proposed Technologies 

According to the classical statistical multivariate correlation analysis [33–35], the normalized 
multiple cross-correlation (MCC) of order n between n complex stochastic variables 𝑥௜ 𝑥௝  𝑥௡  is 
expressed as 

𝑀𝐶𝐶 ൫𝑥௜, 𝑥௝ , … , 𝑥௡൯  =  𝐸 ቄ ቂ(𝑥௜)  −  (𝑥௜ )ቃ  ቂ൫𝑥௝൯  −  ൫𝑥௝ ൯ቃ… ቂ (𝑥௡)  −  (𝑥௡ )     ቃ ∗ ቅ𝜎 (𝑥௜)  𝜎 ൫𝑥௝൯  …𝜎 (𝑥௡)  (1) 

where 𝑥పഥ  is the mean value of variable 𝑥௜, ∗ denotes the complex conjugation, 𝜎(… ) is the standard 
deviation operator, and 𝐸 is the mean value operator. i = 1, n. 

It is proposed here for the first time in worldwide terms a generic fault identification technology 
for electromechanical systems, the higher order spectral multiple correlation (MC) of order n, 
obtained via Equation (1) as 

𝑀𝐶 (𝑓ଵ,𝑓ଶ, … , 𝑓௡ , 𝑡)  =  𝐸 ቄ ቂ𝑋(𝑓ଵ, 𝑡)  −  𝑋(𝑓௜ , 𝑡)ቃ  ቂ𝑋(𝑓ଶ, 𝑡)  −  𝑋൫𝑓௝ , 𝑡൯ቃ… ቂ 𝑋(𝑓௡ , 𝑡)  −  𝑋(𝑓௡ , 𝑡)     ቃ ∗ ቅ𝜎 (𝑋(𝑓ଵ, 𝑡))   𝜎(𝑋(𝑓ଶ, 𝑡)) …𝜎 (𝑋(𝑓௡ , 𝑡))  (2) 

where 𝑋(𝑓௜ , 𝑡) describes complex time-frequency transforms at frequency 𝑓௜  and specific time t for 
non-stationary random signals and complex frequency transforms at frequency 𝑓௜ and any time t for 
stationary random signals. 

New particular technologies of the generic multiple correlation technology (2), the higher order 
spectral triple correlation of order 3 and the higher order spectral fourth correlation of order 4 are 
also proposed here and are obtained via Equation (2) as 

𝑇𝐶(𝑓ଵ, 𝑓ଶ, 𝑓ଷ, 𝑡) = 𝐸ൣ(𝑋(𝑓ଵ, 𝑡) − 𝐸൫𝑋(𝑓ଵ, 𝑡)൯ ∙ (𝑋(𝑓ଶ, 𝑡) − 𝐸(𝑋(𝑓ଶ, 𝑡)) ∙ (𝑋(𝑓ଷ, 𝑡) − 𝐸൫𝑋(𝑓ଷ, 𝑡)൯∗൧𝜎(𝑋(𝑓ଵ, 𝑡)) ∙ 𝜎(𝑋(𝑓ଶ, 𝑡)) ∙ 𝜎(𝑋(𝑓ଷ, 𝑡))  (3) 

𝐹𝐶(𝑓ଵ, 𝑓ଶ,𝑓ଷ, 𝑓ସ, 𝑡) = 𝐸ൣ(𝑋(𝑓ଵ, 𝑡) − 𝐸൫𝑋(𝑓ଵ, 𝑡)൯ ∙ (𝑋(𝑓ଶ, 𝑡) − 𝐸(𝑋(𝑓ଶ, 𝑡)) ∙ (𝑋(𝑓ଷ, 𝑡) − 𝐸൫𝑋(𝑓ଷ, 𝑡)൯ ∙ (𝑋(𝑓ସ, 𝑡) − 𝐸(𝑋(𝑓ସ, 𝑡))∗൧𝜎(𝑋(𝑓ଵ, 𝑡)) ∙ 𝜎(𝑋(𝑓ଶ, 𝑡)) ∙ 𝜎(𝑋(𝑓ଷ, 𝑡))  ∙  𝜎(𝑋(𝑓ସ, 𝑡))  (4) 

The proposed technologies are applicable for stationary random signals, related to a stationary 
operation of electromechanical systems by employing appropriate frequency transforms (e.g., the 
complex Fourier transform, the Hartley transform, the Cosine transform, etc.) in Equations (2)–(4). It 
is proposed here the application of the technologies for non-stationary random signals, related to a 
transient operation of electromechanical systems, via employing appropriate time–frequency 
transforms (e.g., the short time chirp–Fourier transform [36], the chirp–Wigner transform [37], etc.) 
in Equations (2)–(4). 

The spectral multiple correlation (2) and spectral triple and fourth correlations (3)–(4) are multi-
dimensional complex functions, estimated for stationary and non-stationary random signals at 
multiple n frequencies, three and four frequencies, respectively, and depend on multiple n 
frequencies, three and four frequencies, respectively. The importance of the higher order multiple 
correlation (MC), the higher order triple correlation (TC), and the higher order fourth correlation (FC) 
is that they are measures of statistical dependencies between n, three and four complex spectral 
components, respectively. The proposed main concept of the MC, the TC, and the FC is applicable to 
both continuous and digital random signals. 

The clear physical sense of the proposed technologies is that multiple complex spectral 
components that are appearing in the spectrum of measured signals due to a system fault, exhibit 
non-zero spectral correlations. Thus, the proposed technologies are sensitive to fault related spectral 
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components. The normalization of the spectral correlations by the standard deviations allows 
avoidance of systematic errors due to amplitude changes of a time-frequency transforms: i.e., if an 
intensity of transform amplitudes will be changed, the normalized multiple correlations will be 
unchanged. 

The higher order spectra of order n and their particular cases, the bicoherence, and the 
tricoherence do not represent the multiple correlations between multiple n complex spectral 
components, three and four complex spectral components, respectively. 

The advantages of the proposed higher order technologies are that, while they are still 
preserving positive features of higher order analysis (i.e., a high sensitivity to system faults and an 
ability to suppress noise in the measured data), in contrast to the higher order spectra technologies, 
they could take into account statistical dependencies between all needed combinations between 
multiple spectral components, appearing due to a fault, regardless dependencies between their 
frequencies. Therefore, the technologies are not limited in combinations of spectral components that 
could be used for fault identification via signature analysis, and, thus, will allow fault identification of 
much more possible fault types, related to electromechanical systems, than the higher order spectra 
technologies. This advantage is obvious, as it is based on the MC, the TC, and the FC definitions (2–4). 

If the proposed technologies are being applied to fault identification, then interval for the MC, 
the TC, and the FC is (0–1). The MC, the TC, and the FC magnitudes, closed to 0 (i.e., in cases of low 
correlations between multiple spectral components), are identifying no fault cases, while the MC, the 
TC, and the FC magnitudes, closed to unity (i.e., in cases of high correlation between multiple spectral 
components, that are related to a fault), are identifying fault cases. 

The main novel contributions of the paper from theoretical development are data 
processing/fault identification technologies, the generic higher order spectral multiple correlation, 
the higher order spectral triple correlation, and the higher order spectral fourth correlation that are 
based on the multiple cross-correlation (1) of any complex stochastic variables. The intensive 
literature search has shown that nobody made such novel propositions. 

Further novel contribution from theoretical development of the proposed technologies is made 
for non-stationary operation of electromechanical systems via applying various time-frequency 
transforms for the higher order spectral multiple cross-correlations. 

Considering application of the proposed spectral triple correlation technology to motor bearing 
fault identification in stationary conditions of motor operation, the complex Fourier transform is 
employed in Equation (3) for motor current signals. The block diagram of data processing, that 
realized the spectral triple correlation technology, is shown in Figure 1, where 𝑠(𝑡) is time domain 
current signal, segment 𝑠௠(𝑡) is mth time segment, M is the total number of segments, m = 1, M, 𝑋௠(𝑓), is the Fourier transform of mth segment,  𝑋௠(𝑓ଵ) 𝑋௠(𝑓ଶ), and 𝑋௠(𝑓ଷ) are the Fourier transforms 
of mth segment for the selected frequencies 𝑓ଵ, 𝑓ଶ, and 𝑓ଷ respectively. The first step in estimation of 
the TC is to divide the digital domain motor current signal into the predefined number of time 
segments, using a time window. The next step is to perform the Fourier transform for each time 
segment and search for components with characteristic frequencies. The complex spectral amplitudes 
of three characteristic spectral components that are related to a specific bearing fault could be 
obtained from the complex Fourier spectra of motor current data. The final step is to estimate the TC 
of motor current data. 

The characteristic frequencies of spectral components, which appear in the complex Fourier 
transform of motor current due to local bearing fault, are comprised [13] of the bearing defect 
frequencies, the supply grid frequency, and, for some bearing local faults, also of the shaft rotation 
frequency. Research studies have confirmed, e.g., [13], that spectral components, based on 
combinations of these characteristic frequencies, can be effectively used for identification of a variety 
of bearing faults in electrical motors. 

Motor shaft rotation frequency fr and supply grid frequency fg are estimated from the power 
spectral density of motor current data. The bearing defect frequencies are described by the following 
equations [23]: 
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𝑓௢௨௧ = 12 𝑓௥ ൬1 − 𝐵ௗ𝑃ௗ 𝑐𝑜𝑠 𝛼൰𝑁௕ (5) 

𝑓௜௡ = 12 𝑓௥ ൬1 + 𝐵ௗ𝑃ௗ 𝑐𝑜𝑠 𝛼൰𝑁௕ (6) 

𝑓௖ = 12 𝑓௥ ൬1 − 𝐵ௗ𝑃ௗ 𝑐𝑜𝑠 𝛼൰ (7) 

𝑓௥௢௟ = 12 𝑓௥ 𝑃ௗ𝐵ௗ ቆ1 − 𝐵ௗଶ𝑃ௗଶ 𝑐𝑜𝑠ଶ𝛼ቇ (8) 

where 𝑓௢௨௧  is the defect frequency of rolling elements rolling over the outer ring, 𝑓௜௡  is the defect 
frequency of rolling elements rolling over the inner ring, 𝑓௖ is cage defect frequency, 𝑓௥௢௟ is the defect 
frequency of rolling elements, fr is a shaft rotation frequency, 𝑁௕ is number of balls or rollers, 𝐵ௗ is 
diameter of balls or rollers, 𝑃ௗ is the pitch diameter of a bearing, and 𝛼 is the angle of thrust. 

Values of these defect frequencies are necessary in order to calculate the characteristic 
frequencies for the sought bearing faults. 

 
Figure 1. Block diagram for data processing for TC estimation. 

The novel contribution from theoretical development is the estimation methodology for the 
proposed higher order spectral triple correlation for diagnosis of rolling element bearings via motor 
current signature analysis, presented in Figure 1. 

3. Technology Validation and Technology Comparison via Modelling 

To validate that the proposed higher order spectral triple correlation technology could 
effectively diagnose faults and to compare the proposed technology with the higher order spectra, a 
component modelling with a fault and without a fault has been undertaken. 

A generic dynamic bi-linear oscillator is widely employed for modelling of electromechanical 
components of industrial electromechanical systems and complex structures, e.g., for modelling of 
sub-harmonic resonances of offshore structures [38], loading towers [39], components with clearances 
[40], and the following faulty components: rolling element bearings [41,42], gearboxes, blades, and 
shafts [25,26,43–46]. 

The dynamic equation of motion for the bi-linear oscillator is presented as follows [46]: 𝑥 ሷ + 2ℎ𝑥ሶ +  𝜔௦ଶ𝑥 = 𝐴𝑐𝑜𝑠ሾ𝜔𝑡 + 𝜑ሿ,   𝑥 ൒ 0 𝑥 ሷ + 2ℎ𝑥ሶ +  𝜔௖ଶ𝑥 = 𝐴𝑐𝑜𝑠ሾ𝜔𝑡 + 𝜑ሿ,   𝑥 ൏ 0 
(9) 

where x = X/m, X is the displacement, x is the normalized displacement, 𝜔௦ = ඥ𝑘௦/𝑚,  𝜔௖ = ඥ𝑘௖/𝑚, h 
= c/2m, h is damping, m and c are the mass and damping coefficient respectively, 𝑘௦ and 𝑘௖ are the 
stiffness for positive normalized displacement and the stiffness for negative normalized displacement 
respectively, A = A1/m, A1 is the constant amplitude of the input excitation, A is the normalized 
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constant amplitude of the input excitation, 𝜔 is the constant angular frequency, and 𝜑 is the random 
initial phase. 

The random initial phase is uniformly distributed in the range [0; 2π]. Thus, an input random 
cosine excitation with constant amplitude, random initial phase, and constant frequency is exciting 
the bi-linear oscillator, as shown in Equation (9). 

Equation (6) presents faulty and pristine components under the stationary random excitation. 
For the faulty components, the stiffness for positive normalized displacement and the stiffness for 
negative normalized displacement are different and a fault severity is presented by the fault severity 
ratio, 𝑘∗ = (𝑘௖ −  𝑘௦)/𝑘௖ . The resonance frequency of the faulty component is as follows [46]: 𝜔଴ = 𝜔 c

2 ⋅ √1 − 𝑘∗1 + √1 − 𝑘∗ (10) 

For pristine components, the stiffness for positive normalized displacement and the stiffness for 
negative normalized displacement are the same and the resonance frequency of the pristine 
component is 𝜔௖ = ඥ𝑘௖/𝑚 [46]. 

250 time domain realizations for the faulty component (i.e., the fault severity ratio is 5%) and 
250 time domain realizations for the pristine component (i.e., fault severity ratio is 0) were generated 
via modelling of bi-linear oscillator, for validation of the proposed technology and comparison with 
the higher order spectra. The resonance frequency of the bi-linear oscillator without a fault 𝜔௖ is 14 
Hz. According to Equation (10), the resonance frequency of the bi-linear oscillator with a fault is 13.82 
Hz for the fault severity ratio of 5%; damping is 2.45. 

For modelling of data, related to the faulty and the pristine components, the excitation 
frequencies are equal to the two resonance frequencies of faulty and the pristine components 
respectively. Duration of each simulated realization is 5 s. The Gaussian white noise was added to 
each realization in order to more closely simulate early stage of a fault. The signal to noise ratio is 30 
dB. The sampling frequency is 210 Hz. 

The following parameters and functions are employed for spectral triple correlation evaluation: 
segment size is 0.33 s, the frequency resolution is 3 Hz, number of non-overlapping segments on the 
duration of the simulated realizations is 15, time window is the Hamming window, and overlapping 
of segments is 50%. 

The following higher order spectral triple correlations were estimated, using the modelling data 
from the faulty and the pristine components: the triple correlation TC (1,1,2) and the triple correlation 
TC (1,2,3). The triple correlation TC (1,1,2) is estimated for three harmonics, according to Equation 
(3): the fundamental harmonic of component resonance oscillations, that is used two times, and the 
second harmonic of component resonance oscillations. The triple correlation TC (1,2,3) is estimated 
also for the three harmonics, according to Equation (3): the fundamental harmonic of component 
resonance oscillations, the second harmonic of component resonance oscillations and the third 
harmonic of component resonance oscillations.  

As detection features, the magnitudes of the triple correlation TC (1,1,2) and the magnitudes of 
the triple correlation TC (1,2,3) are employed. The histograms of the detection features, the 
magnitudes of the triple correlation TC (1,1,2) and the magnitudes of the triple correlation TC (1,2,3), 
are shown in Figure 2a,b, respectively. 
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Figure 2. (a) The histograms of the magnitudes of the triple correlation TC (1,1,2); (b) The histograms 
of the magnitudes of the triple correlation TC (1,2,3). 

It is observed from Figure 2 that values of the detection features are higher for the faulty 
component compared with the pristine component, because, for the faulty component, it is a higher 
level of correlation of resonance spectral harmonics that are appearing due to a fault, compared with 
the pristine component. The histograms of the detection features display a full separation between 
the proposed detection features from the faulty and pristine components. Therefore, the estimates of 
the complete probabilities of correct detection are 100% and 100% for the considered two detection 
features. High values of the complete probabilities, obtained for the triple correlation TC (1,1,2) and 
the triple correlation TC (1,2,3), prove high detection effectiveness of the proposed technology. 

Detection effectiveness of the proposed techniques is also evaluated by the one-dimensional 
Fisher criterion (FCr) [47] that is widely employed for detection effectiveness evaluation for one-
dimensional features [47–49] and allows estimating the quality of separation between detection 
features for the faulty and the pristine cases: 𝐹𝐶𝑟 = |𝑚ଵ −𝑚ଶ|ଶ𝜎ଶଵ + 𝜎ଶଶ  (11) 

where 𝑚ଵ  and 𝑚ଶ  are the mean values of the detection features for the pristine and the faulty 
components respectively; 𝜎ଶଵ and 𝜎ଶଶ  are variances of the detection features for pristine and faulty 
components, respectively. 

The obtained values of the FCr are 176.3 and 36.8 for the magnitudes of the triple correlation TC 
(1,1,2) and for the magnitudes of the triple correlation TC (1,2,3), respectively. The mean values for 
the magnitude of triple correlation TC (1,1,2) and the magnitude of triple correlation TC (1,2,3) are 
0.8 and 0.54 for the faulty component and 0.14 and 0.074 for the pristine component, respectively. 

High values of the FCr, obtained for the triple correlation TC (1,1,2) and the triple correlation TC 
(1,2,3) also prove high detection effectiveness of the proposed technology. 

For comparison via modelling of fault detection effectiveness for the proposed technology and 
the higher order spectra technology, the Fourier bicoherences are employed, that are described by 
the following equation [24]: 𝐵𝐶(𝑓ଵ,𝑓ଶ) = |𝐸ሾ𝑋(𝑓ଵ)𝑋(𝑓ଶ)𝑋(𝑓ଵ + 𝑓ଶ)∗ሿ|𝐸[|𝑋(𝑓ଵ)𝑋(𝑓ଶ)|]𝐸[|𝑋(𝑓ଵ + 𝑓ଶ)|] (12) 

where 𝑋(𝑓ଵ) is the complex Fourier transform of motor current signal at frequency 𝑓ଵ, 𝑋(𝑓ଶ) is the 
complex Fourier transform of motor current signal at frequency 𝑓ଶ, 𝑋(𝑓ଵ + 𝑓ଶ) is the complex Fourier 
transform of motor current signal at frequency (𝑓ଵ + 𝑓ଶ), and |…| is the absolute value operator. 

The bicoherence BC (1,1) is estimated for three harmonics, according to Equation (12): the 
fundamental harmonic of component resonance oscillations, that is used two times, and the second 
harmonic of component resonance oscillations. The bicoherence BC (1,2) is estimated also for the 
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three harmonics, according to Equation (12): the fundamental harmonic of component resonance 
oscillations, the second harmonic of component resonance oscillations, and the third harmonic of 
component resonance oscillations. 

The bicoherence BC (1,1) and the bicoherence BC (1,2) are estimated for the same 500 simulated 
realizations for the pristine and the faulty components, using the same parameters and functions that 
are used for the triple correlation TC (1,1,2) estimation and the triple correlation TC (1,2,3) estimation. 
It should be noted that the triple correlation TC (1,1,2) and the bicoherence BC (1,1) and the triple 
correlation TC (1,2,3) and the bicoherence BC (1,2) are estimated respectively for the same harmonics 
of component resonance oscillations. The histograms of the detection features, the magnitudes of the 
bicoherence BC (1,1), and the magnitudes of the bicoherence BC (1,2), are shown in Figure 3a,b, 
respectively. 

 
Figure 3. (a) The histograms of the magnitudes of the bicoherence BC (1,1); (b) The histograms of the 
magnitudes of the bicoherence BC (1,2). 

These histograms also display a full separation between the bicoherence detection features from 
the faulty and pristine components. However, the obtained values of the FCr for detection features, 
the magnitudes of the bicoherence BC (1,1), and the magnitudes of the bicoherence BC (1,2), are 57.7 
and 19.6, respectively. The values of the FCr, obtained for the magnitudes of the bicoherence BC (1,1) 
and the magnitudes of the bicoherence BC (1,2), are much less, than the appropriate values of the FCr 
for the proposed detection features, the magnitudes of the triple correlation TC (1,1,2), and the 
magnitudes of triple correlation TC (1,2,3), respectively.  

The mean values for the magnitude of the bicoherence BC (1,1) and the magnitude bicoherence 
BC (1,2) are 0.82 and 0.52 for the faulty component and 0.54 and 0.13 for the pristine component, 
respectively. 

Identification effectiveness (Table 1) of the proposed detection features and the bicoherence 
detection features is shown below. 

Table 1. Identification effectiveness of the proposed detection features and the bicoherence detection 
features. 

Detection Feature The FCr  The Mean Value, 
Faulty Component  

The Mean Value, 
Pristine Component 

The magnitude of TC 
(1,1,2) 

176.3 0.8 0.14 

The magnitude of TC 
(1,2,3) 

36.8 0.54 0.074 

The magnitude of BC 
(1,1) 

57.7 0.82 0.54 

The magnitude of BC 
(1,2) 

19.6 0.52 0.13 
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It is known [47] that a detection feature with higher values of the FCr provides better detection 
capability. The detection effectiveness gain is evaluated as the ratio of the Fisher criteria for the 
proposed techniques to the respective Fisher criteria for the bicoherence techniques. The proposed 
techniques provide the essential detection effectiveness gains: 3.1 for comparison of the proposed 
technique TC (1,1,2) with the bicoherence BC (1,1) and 1.9 for comparison of the proposed technique 
TC (1,2,3) with the bicoherence BC (1,2) for early fault stage: the fault severity ratio of 5%, and in a 
noisy environment. Thus, the comparison of the technologies by modelling shows the higher 
detection effectiveness of the proposed technology over the bicoherence technology. 

The novel contribution from theoretical development is the identification feature, the triple 
correlation TC (1,1,2), that is not developed in the classical multivariate analysis. This identification 
feature is successfully validated via modelling. 

4. Experimental Setup 

The laboratory test rig is shown in Figure 4a, where arrow A directs to motor, arrows B direct to 
laser sensors, arrow C directs to magnetic coupling, arrow D directs to electromagnetic brake, arrow 
E directs to cooling hoses, and arrows F direct to vibration isolation pads. The induction motor, used 
for experimental tests, is a three phase Cantoni motor, Sh 80X-4C model, the nominal power is 1.1 
kW, the nominal voltage is 400 V, the nominal rotational speed is 1380 RPM, the power factor is 0.76, 
the nominal current at full load is 2.9 A, and the weight is 11 kg. The motor was supplied directly 
from 50 Hz three phase supply grid, with 400 V nominal voltage. 

 
Figure 4. (a) The experimental test rig, (b) The damaged outer ring of the faulty bearing, (c) a closer 
look into the outer ring damage, and (d) The pristine bearing. 

All experimental tests were carried on 6204C3 Koyo open deep groove ball bearings (Figure 4d) 
without seals, made from steel 52,100; outside diameter 47 mm, inside diameter 20 mm, width is 14 
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mm, and weight 106 g. The inner and the outer races of the bearings are hardened for an extended 
life and a wear protection. 

Motor current captures were made for two bearing conditions: without fault in both shaft 
bearings and with the introduced local fault to the outer race of one shaft bearing. The introduced 
bearing outer race fault (Figure 4b,c) is a local fault across the bearing rolling direction with fault 
length of 3 mm, fault depth of 0.7 mm, and fault width of 1 mm. The non-dimensional fault severity 
ratio of the outer race fault is 0.78% of the circumference [18]; thus, it is an early stage of bearing local 
fault development. The essence of bearing fault identification is to identify a fault at an early stage of 
its development. 

The laboratory test rig design is eliminating factors that could negatively influence the accuracy 
of motor current data. Special vibration isolation pads were installed underneath of the motor to 
damp the ambient vibrations and to reduce transfer of load vibrations to the tested motor through 
test rig construction base. Motor current data capture for the faulty bearing and the pristine bearing 
require disassembly and reassembly of a motor shaft. These procedures are normally causing motor 
shaft misalignment and, therefore, motor current data inaccuracy due to the misalignment. 

To improve current data accuracy, an adjustment of a test rig, that is improving quality of the 
current capturing system, was made by installing into the system a special laser shaft alignment sub-
system. Two accurate laser emitters and receivers were installed in X and Y axes in a midpoint of a 
motor shaft. Laser beams were directed tangentially to the shaft in both axes. If a misalignment 
occurred, laser beams were deflected. Special alignment screws were used to accurately adjust (align) 
a motor shaft to a load shaft. 

Another important factor that could negatively affect accuracy of motor current data is load 
torque oscillations. In the literature, e.g., [16], the most commonly used load is an electrical generator. 
The two main issues, arising from generator load application, are load vibration frequencies that 
could be very similar to the motor bearings defect frequencies, and load torque oscillations that are 
easily transferred via motor shaft to tested motor bearings. Due to these issues, it is uncertain whether 
motor vibrations are sourced from the bearing under identification or not. 

To eliminate these issues, two adjustment solutions for the test rig that improve quality of the 
current capture system were implemented. The first adjustment solution was to use as a load an 
electromagnetic break, instead of a generator, that was installed into a test rig. Break torque 
oscillation frequencies are essentially different from motor bearing defect frequencies. The second 
adjustment solution was to isolate load shaft vibrations by a special magnetic coupling between a 
motor shaft and a load shaft. Besides isolation from vibrations, this coupling smoothens the load 
torque. The above-mentioned adjustment solutions were properly isolating the motor from external 
vibrations, including the load torque oscillations. 

The system was prevented from an external magnetic field by special shielding cover in order 
to reduce current data inaccuracy due to external magnetic field. The self-noise of a complete current 
capture system was below −120 dB and flat in the analyzed frequency range. 

To capture motor current, a special transducer is designed and manufactured. The main 
components of a transducer are a current transformer that is wound on a high-quality ferrite core, 
and a special low noise amplifier. A transformer works with the forced current; current flows through 
transformer primary winding. The transducer was powered by batteries to avoid errors due to 
fluctuations of the power grid voltage and frequency. 

Voltage, that is linearly proportional to motor current signal from the transducer, was converted 
into digital domain by an analogue-digital data acquisition card. 

5. Experimental Technology Validation and Technology Comparison 

Fault identification results are obtained through digital data processing of captured motor 
current signals. Current signals were captured during 65 s of a stationary operation of a motor in 
order to obtain 13 non-overlapping time segments of 5 s and 11 non-overlapping time segments of 
5.75 s for TC estimation. The sampling frequency was 65 kHz; the Blackman time window was 
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employed for each time segment. Signal 𝑠௙(𝑡) was captured for a motor with one pristine bearing and 
one the faulty bearing and signal 𝑠௡௙(𝑡) was captured for two pristine bearings. 

As the faulty bearing has an outer race fault, the following characteristic frequencies related to 
outer race fault and combined of bearing outer race defect frequency 𝑓௢௨௧ and supply frequency 𝑓௚ 
[13] are used for TC estimation: 𝑓ଵ = 𝑓௢௨௧ + 𝑓௚, 𝑓ଶ = 2𝑓௢௨௧ + 𝑓௚, 𝑓ଷ = 𝑓௢௨௧ − 𝑓௚,. Thus, the higher order 
spectral triple correlation, based on the complex Fourier transform and selected for experimental trial, 
has the same structure as the higher order spectral correlation TC (1,2,3), investigated in modelling 
trials in Section 3. 

The histograms (Figure 5) of identification features, the magnitudes of the spectral triple 
correlation TC for the two pristine bearings conditions and for the one pristine bearing and one faulty 
bearing conditions, are obtained from the experimental trials for 5-s and 5.75-s segment sizes. It is 
observed that values of the identification features are higher for the one pristine bearing and one 
faulty bearing compared with two pristine bearings, because the faulty bearing has a higher level of 
spectra triple correlation of characteristic spectral components, generated by the fault, compared with 
the two pristine bearings. 

These histograms also show almost full separation between the identification features from the 
faulty bearing and the pristine bearings. Although it is clear from the histograms, that fault 
identification for bearing by the TC is successful, the effectiveness of the proposed technology is also 
evaluated by estimates of the complete probability of the correct fault identification and by the FCr. 

 
Figure 5. The histograms of the magnitudes of triple correlation (TC) for 5-s (a) and for 5.75-s (b) time 
windows. 
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The estimate of the complete probability of correct fault identification is as follows: 𝑃௧ = 𝑁 + 𝑝𝑁𝑁𝑡 + 𝑝𝑁𝑡 (13) 

where N and pN are the total numbers of correct identifications for faulty bearing and pristine 
bearing, respectively; Nt and pNt are the total numbers of identification features for faulty bearing 
and pristine bearing respectively. 

For decision-making for one-dimensional identification feature, a threshold-based decision-
making rule is employed via the Bayesian criterion [47]. 

One-dimensional identification feature, the TC, is employed and the estimates of the probability 
density functions of these features (Figure 5) are clearly unimodal for the faulty and the pristine 
conditions. The simulation results confirm the unimodality of the probability density functions of the 
TC identification features (Figure 2). Therefore, taking into account the unimodality property of the 
estimates of the probability density functions of the TC feature, a very simple and effective threshold-
based decision-making rule [47,50–53] is used. 

This decision-making rule is effective and sufficient only for one-dimensional identification 
features with the unimodal probability density functions and it is not intended to be the most accurate 
method for all possible types of probabilities density functions even for one-dimensional 
identification features (e.g., multimodal probabilities density functions with multiple modes). 
However, for the unimodal probabilities density functions of one-dimensional identification features, 
it provides the same (not better) identification effectiveness, as more complicated the support vector 
machine (SVM), neural network, the nearest neighbors, etc. 

The advantage of the threshold-based decision-making rule is, that the computational 
complexity of this rule is the lowest, comparing with other decision-making methods (e.g., the SVM, 
neural network, the nearest neighbors, etc.). This is an important advantage for various industrial 
applications of the proposed technology. 

The estimates of the complete probability of correct fault identification and the FCr, evaluated 
by using 100 fault identification features, are 96% and 6.7, respectively, for segment size 5 s and 97% 
and 7.8, respectively, for segment size 5.75 s. Thus, the estimates of the complete probability of 
incorrect bearing fault identification are 4% and 3% respectively for segment size 5 s and for segment 
size 5.75 s. All these estimates confirm successful bearing fault identification by the TC technology. 

For experimental comparison of bearing fault identification effectiveness between the proposed 
technology and the higher order spectra technology, the bicoherence [24] is used that is higher order 
spectra technology of order 3. The bicoherence (Equation (12)) was estimated for the same captured 
signals 𝑠௙(𝑡) and 𝑠௡௙(𝑡) of the motor current and for time segment length of 5 s. As the bicoherence 
depends only on two frequencies, 𝑓ଵ  and 𝑓ଶ , it was calculated for three characteristic frequency 
combinations: (1) 𝑓ଵ, 𝑓ଶ, (2) 𝑓ଵ, 𝑓ଷ, and (3) 𝑓ଶ, 𝑓ଷ. Therefore, the bicoherence selected for experimental 
trials has the same structure as the bicoherence B (1,2) investigated in modelling trials in Section 3. 

The bicoherence magnitude is used for bearing fault identification. The best identification results 
are achieved for the above option (3) of characteristic frequency combination. 

The histograms (Figure 6) of identification features, the magnitudes of the bicoherence BC for 
the pristine, and the faulty bearing conditions are also obtained from the experimental trials. It is 
observed that values of the bicoherence identification features are higher for the faulty bearing 
compared with the pristine one, because the faulty bearing has a higher level of bicoherence of 
characteristic spectral components, generated by the fault, compared with the pristine bearing. 
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Figure 6. The histograms of the magnitudes of bicoherence (BC) for 5 s time window. 

However, these histograms show essential overlapping between the bicoherence identification 
features from the faulty bearing and the pristine bearing. The effectiveness of the proposed 
technology is also evaluated by estimates of the complete probability of the correct fault identification 
and by the FCr. The estimates of the complete probability of correct identification and the FCr, 
evaluated by using 100 fault identification features, are 74% and 0.7, respectively; thus, the estimate 
of the complete probability of incorrect bearing fault identification is 26%. Identification effectiveness 
(Table 2) of the proposed detection features and the bicoherence detection features is shown below. 

Table 2. Identification effectiveness of the proposed detection features and the bicoherence 
detection features. 

Detection Feature FCr  
The Complete Probability of 

Incorrect Identification 
The magnitude of the 

triple correlation  
6.7 4% 

The magnitude of the 
bicoherence  

0.7 26% 

To compare the TC technology and the bicoherence technology, both the estimates of the 
complete probability of incorrect bearing fault identification and the FCr were used. The effectiveness 
gain in the complete probability of incorrect bearing fault identification that is a ratio of the estimate 
of the complete probability of incorrect bearing fault dentification by the bicoherence technology to 
the estimate of the complete probability of incorrect bearing fault identification by the TC technology 
(the estimate of the complete probability for 5 s segment size is used) is 6.5. The effectiveness gain in 
the FCr, that is a ratio of the FCr, achieved by the TC technology to the FCr achieved by the 
bicoherence technology (the FCr for 5 s segment size is used), is 9.6. 

The experimental fault identification effectiveness results and the preliminary experimental 
comparison of identification results confirm and match with the identification effectiveness results 
and the technology comparison results via modelling, presented in Section 3, and clearly shows the 
higher bearing fault identification effectiveness by the proposed technology over the bicoherence 
technology. Thus, the TC data processing for motor bearing fault identification is far more effective 
in comparison to the bicoherence data processing. 

Very serious limitation of the higher order spectra is related to selection of analyzed frequencies: 
i.e., in the case of the bicoherence, the highest analyzed frequency must equal to sum of two lower 
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frequencies. The characteristic frequencies, chosen as important for fault identification, are not 
always fulfil the requirements of the bicoherence definition. This limitation usually has a very 
negative influence on quality of fault identification and limits fault types that could be effectively 
diagnosed by the higher order spectra. 

The proposed technology allows analysis of any combination between freely chosen three 
spectral components; therefore, this technology significantly extends capabilities of the higher order 
spectra. As it is shown here, the proposed technology is also more effective than the higher order 
spectra, for early bearing fault identification. One of the important achievements of the proposed 
research is experimentally obtained high effectiveness level of identification of motor bearing local 
fault at very early stage: the fault severity ratio is 0.78%. 

The superiority of the bicoherence technology over the second order transforms for fault 
identification at early stage is well known and described in multiple works, e.g., [24–27], related to 
fault identification by the bicoherence. The main reason of that superiority is that, unlike the 
traditional and novel second order techniques (e.g., the Fourier transform, the wavelet transform, the 
Wigner–Ville distribution, etc.), the bicoherence is employing simultaneously three spectral 
components, generated by a fault, in contrast to the second order techniques that are employing 
single spectral components. Therefore, the bicoherence is considering simultaneous interactions 
between these three spectral components: i.e., the quadratic phase coupling. The simultaneous use of 
three spectral components and the simultaneous interactions between these components provides an 
advantage of the bicoherence, comparing with the second order techniques, in terms of early fault 
identification. Another important advantage of the bicoherence, comparing with the second order 
techniques, is its ability to suppress noise in data [24] and, thus, to improve the effectiveness of early 
fault identification in presence of noise. 

Finally, it is shown in the present work by the modelling trials and by the experimental trials 
that the proposed higher order spectral triple correlation is superior over the bicoherence for local 
fault identification for motor bearings. 

Considering all above-mentioned comparisons, it is concluded here on superiority of the 
proposed technology over the second order technologies and the bicoherence technology for fault 
identification in motor bearings via motor current signature analysis. 

Future experimental validation of the proposed technologies is planned via test rig and in-field 
conditions for higher rotation speeds and variable loads, smaller fault severities (e.g., 0.25–0.5%), and 
less isolated components and systems. 

6. Conclusions 

1. It is proposed for the first time in worldwide terms new fault identification technologies, the 
generic higher order spectral multiple correlation of order n and particular technologies, the higher 
order spectral triple correlation and the higher order spectral fourth correlation of order 3 and 4, 
respectively, for stationary and non-stationary random signals, related to stationary and transient 
operations, respectively, of electromechanical systems. The higher order spectral triple correlation is 
applied for motor fault identification by motor current signature analysis. 

The main novel contributions of the paper from theoretical development are the novel data 
processing/fault identification technologies, the generic higher order spectral multiple correlation, 
the higher order spectral triple correlation, and the higher order spectral fourth correlation. The 
intensive literature search has shown that nobody made such a novel proposition. 

Further novel contribution from theoretical development of the proposed technologies is made 
for non-stationary operation of electromechanical systems via applying various time-frequency 
transforms for the higher order multiple cross-correlations. 

2. Validation via modelling of 500 signals has shown that the spectral triple correlation 
technology successfully detects faults. The estimates of the complete probabilities of correct fault 
detection are 100% and 100% and the Fisher criteria are 176.3 and 36.8 for the proposed two detection 
features for early local fault: the fault severity ratio is 5% and in a noisy environment: the signal to 
noise ratio is 30 dB. The novel comparison of the proposed technology and the higher order spectra 
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via modelling shows the higher fault identification effectiveness by the proposed technology over the 
bicoherence technology. The effectiveness gains in the Fisher criterion are 3.1 and 1.9 for the proposed 
two detection features. 

The novel contribution from theoretical development is the identification feature, the triple 
correlation TC (1,1,2), that is not developed in the classical multivariate analysis. This identification 
feature is successfully validated via modelling. 

3. The test rig, consisting of a motor/break assembly, was used for experimental trials of the 
proposed technology for two conditions of motor shaft operation with: (1) two pristine bearings, (2) 
one pristine, and one faulty bearing. 

4. The novel contribution from theoretical development is the estimation methodology for the 
proposed higher order spectral triple correlation for diagnosis of rolling element bearings via motor 
current signature analysis. Experimental validation of the proposed technology, applied to fault 
identification for motor rolling bearing by motor current signature analysis, has shown that the 
proposed technology successfully identifies bearing fault. 

The estimates of the complete probabilities of incorrect bearing fault identification are 4% and 
3% and the Fisher criteria are 6.7 and 7.8 (these results obtained for two signal segment sizes) for very 
early stage of bearing local fault: the fault severity ratio is 0.78%. The preliminary novel experimental 
comparison of the proposed technology and the higher order spectra was performed, using both the 
complete probability of incorrect bearing fault identification and the Fisher criterion and shows the 
higher bearing fault identification effectiveness by the proposed technology over the bicoherence 
technology. The effectiveness gains in the probability of incorrect bearing fault identification and in 
the Fisher criterion are 6.5 and 9.6. 

5. The experimental fault identification results and experimental fault identification preliminary 
comparison results confirm and match with technology effectiveness results and technology 
comparison results via modelling. Therefore, the proposed technology is superior over the 
bicoherence technology for bearing fault identification via motor current signature analysis, and is 
an important step towards early fault identification. 

6. The performed research is promising and leading in the research area, related to fault 
identification via motor current signature analysis. The proposed spectral multiple correction, the 
spectral triple correlation, and the spectral fourth correlation technologies present a new concept and 
will make a major influence on fault identification by motor current signature analysis for electrical 
engineering and also can be effectively employed for other fault identification technologies. 
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Nomenclature 

MC The multiple correlation 
TC The triple correlation 
FC The fourth correlation 
BC The bicoherence  
FCr The Fisher criterion 
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