i\;lg electronics m\py

Article

Comparison of FPGA and Microcontroller
Implementations of an Innovative Method for Error
Magnitude Evaluation in Reed—Solomon Codes

Valentina Bianchi‘®, Marco Bassoli *'*’ and Ilaria De Munari

Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze, 181/A,
43124 Parma, Italy; valentina.bianchi@unipr.it (V.B.); ilaria.demunari@unipr.it (I.D.M.)
* Correspondence: marco.bassoli@unipr.it; Tel.: +39-0521-906043

check for
Received: 23 October 2019; Accepted: 12 December 2019; Published: 1 January 2020 updates

Abstract: Reed—Solomon (RS) codes are one of the most used solutions for error correction logic
in data communications. RS decoders are composed of several blocks: among them, many efforts
have been made to optimize the error magnitude evaluation module. This paper aims to assess the
performance of an innovative algorithm introduced in the literature by Lu et al. under different
systems configurations and hardware platforms. Several configurations of the encoded message
chosen between those typically used in different applications have been designed to be run on an
FPGA (field programmable gate array) device and an MCU (microcontroller unit). The performances
have been evaluated in terms of resource usage and output delay for the FPGA and in terms of
code execution time for the MCU. As a benchmark in the analysis, the well-established Forney’s
method is exploited: it has been implemented in the same configurations and on the same hardware
platforms for a proper comparison. The results show that the theoretical finding are fully confirmed
only in the MCU implementation, while on FPGA, the choice of one method with respect to the other
depends on the optimization feature (i.e., time or area) that has been decided as a preference in the
specific application.

Keywords: error correction codes; Reed—Solomon; embedded devices; FPGA; microcontroller

1. Introduction

The information exchange represents a significant aspect pervading all modern systems, from
miniaturized wireless earphones to heavyweight space satellites. Considerable research work has
been done to improve the efficiency of communication processes [1,2] and, among all the introduced
techniques, errors management is of utmost importance.

The basic errors management implementation involves the error detection and message resend [3]:
if the message is corrupted by random and burst errors, the receiver is configured to require subsequent
retransmissions of the same message until the error is no longer present. A clear downside of this
approach is the increase of the number of messages in the communication channel, which may bring
band saturation and limitations in high-speed applications.

One solution is the introduction of error correction features [4]. With this approach, the receiver is
able to detect the error and, under certain conditions, to correct the message. At the price of an increase
in the receiver complexity and in the messages’ length, the channel traffic is reduced, with a positive
effect for the communication speed [5].

Considerable research work has been done on this topic [6,7], and a variety of systems based
on different algorithms have been proposed. Among them, Hamming error correction codes (ECCs)
were one of the first introduced, in 1950, to correct errors in punched card readers [8]. Hamming

Electronics 2020, 9, 89; doi:10.3390/electronics9010089 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-3035-7903
https://orcid.org/0000-0003-1010-4885
https://orcid.org/0000-0002-9872-1695
http://www.mdpi.com/2079-9292/9/1/89?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9010089
http://www.mdpi.com/journal/electronics

Electronics 2020, 9, 89 2 of 15

ECCs can correct up to one error in the message and are characterized by low parity information,
which makes them suitable for applications requiring high data rates, but low error occurrence.
To improve Hamming codes, Bose-Chaudhuri-Hocquenghem (BCH) codes were presented in the
works of [9-11]. They solve the limitation of the maximum correctable errors by introducing Galois
Fields [12]. By exploiting the multiplication, the addition, and the inversion defined in the field, the
system can be configured to correct the desired amount of errors in the message by increasing the
parity information appended to the message itself. A subset of BCH codes are Reed—Solomon (RS)
codes [13], which ease the implementation in binary encoded messages. RS codes are among the most
implemented solutions in a wide set of areas, such as data storage, bar and QR (quick response) codes,
space and TV transmission, and so on [14-17].

As all communication systems, RS ECCs are composed of an encoder at the sender side and a
decoder at the receiver side. Most of the works in the literature [18-20] focus on the decoder part,
as it holds the most complex operations. Several approaches have been proposed to improve the
performance of the decoder [21,22]. Among them, many research works focus on the optimization of
error magnitude evaluation [23-25]. A traditional implementation exploits the Forney method [23].
Komo and Joiner proposed an iterative algorithm in the work of [24] based on a Vandermonde matrix,
which results in an improvement of the processing speed of about 2.8 times compared with the
Forney method. Then, an innovative method has been proposed by Lu et al. [25], allowing the same
result to be obtained with less system complexity and computational effort. However, to the best of
our knowledge, this algorithm has not yet been implemented and only a theoretical description is
provided in the literature. The aim of this paper is to complete Lu’s theoretical work applying two
different implementation strategies to the method and estimating the performance. For this purpose,
two different platforms were considered, an FPGA (field programmable gate array) and an MCU
(microcontroller unit), to evaluate the behavior over different possible solutions: the first fully parallel
and the latter fully sequential. The performance is evaluated in terms of processing time (in both MCU
and FPGA implementations) and area (for the FPGA only). To properly compare the results, the Forney
method was deployed on the same platforms and its behavior was assessed as well. This method
was adopted as a benchmark as it is, to date, the most implemented in RS decoders [26-28], and is
considered the most efficient method. The results of this work can then be exploited to identify when
Lu’s method is preferable with respect to Forney’s method, depending on the platform chosen to
implement the whole decoder. The purely algorithmic and theoretical comparison already reported in
the literature [25] does not take into account the implementation peculiarities of the two platforms
considered (i.e., functions that can/cannot be parallelized or simplified) that may affect the final results.
The paper is organized as follows. In Section 2, after a summary on error magnitude evaluation in
RS codes, Forney’s and Lu’s methods are briefly reported. Then, the MCU and FPGA system setups
used for the implementations and evaluation are illustrated. In Section 3, the results are reported and
discussed. Finally, in Section 4, conclusions are drawn.

2. Error Magnitude Evaluation in Reed-Solomon Codes

An RS encoded message is composed of a sequence of n symbols (each one of m bits), of which
k symbols represent the original uncoded message and the remaining are the added parity [29].
An example of an encoded message is shown in Figure 1.

In an RS system, the maximum number of detectable and correctable errors in the message is
defined as follows:

)

The architecture of a traditional RS decoder is shown in Figure 2.

Electronics 2020, 9, 89 3o0f15

Code word (n symbols)

A
A

Symbol
(m bits)

-

Original message (k symbols) a Parity -
(n-k=2t symbols)

A

Figure 1. A Reed-Solomon encoded message.

Received Codeword
Data Delay
Error

Error | Compensation

Magnitude
| Evaluation
Error

Polynomial

Calculation
S | Error
Positions

Extraction

Corrected Codeword

Syndrome
Calculation

Figure 2. Traditional RS decoder scheme.

The decoder is typically composed of five subsystems [30,31]: syndrome calculation, error
polynomial calculation, error positions extraction, error magnitude evaluation, and error compensation.
Once a message is received by a Reed-Solomon decoder, the first step should be to divide the received
polynomial by the generator polynomial chosen for encoding: the remainders of this division are
known as syndromes, and they do not depend on the transmitted code word, but rather only on errors.
The syndrome calculation block computes the 2t syndromes contained into a Reed—Solomon code word,
usually exploiting Horner’s method [32]. The next step is to introduce the error locator polynomial that
contains the information about the location of the errors and their magnitudes. Two methods are widely
used in error polynomial calculation, the Euclidean algorithm [33] and Berlekamp’s algorithm [34].
Once the coefficients of error location polynomial are carried out, the error position block identifies
the corrupted symbols, by means of the Chien search algorithm [35], while the error magnitude block
computes the error values. Finally, the error compensation block uses this information to fix the errors.
In traditional RS decoders, as depicted in Figure 2, the whole process typically takes several clock
cycles: each block contributes to this delay and the optimization of a single block can improve the
performance of the entire system.

In classical RS decoders, the search for error position is carried out in parallel with the error
position estimation and, within the blocks, a serial strategy is adopted. This implies a number of clock
cycles equal to n for the error magnitude and position evaluation. Recently, many efforts have been
made to speed up the whole process, exploiting parallel Chien search strategies [36,37]. Combining
these methods with parallel algorithms for error magnitude extraction can potentially reduce the
required number of clock cycles to 1n/p, where p is the Chien search parallelism, plus one clock cycle for
the subsequent error magnitude evaluation. In this context, the analysis of the parallelism capability
and the analog in—out time of the available error magnitude strategies can be very useful to identify
the preferred method to optimize the whole process. For this reason, in the following, we will focus
only on the error magnitude subsystem.

There are many approaches to compute error magnitudes in the literature [23-25] and, among
these, the one with the most promising performance is the one introduced by Lu et al. [25]. The error
magnitude subsystem can be schematically represented as in Figure 3.

Electronics 2020, 9, 89 4 0f 15

alk
—
O, Error Sk
—> Magnitude —
Sk Evaluation

Figure 3. Error magnitude evaluation block.

To compute the error magnitudes 0y, the subsystem takes as inputs the positions of the errors
alk in the code word; the error-location polynomial coefficients oy, computed in the previous error
polynomial calculation phase; and the syndrome polynomial coefficients Sy, computed in the syndrome
calculation phase.

The RS error magnitude evaluation performed with a standard technique (the Forney method)
will be compared with the alternative method introduced by Lu et al. Table 1 shows the theoretical
number of required Galois additions (NEB)’ multiplications (N, ®), and inversions (N~!) when the
message includes a number v of errors.

Table 1. Number of Galois field operations required by Forney’s and Lu’s methods.

Galois Operation Forney’s Method Lu’s Method
Addition Ne = V(% n 3<v2—1)) N = (1)
Multiplication N® = V(% + 3V£1) N® _ v(31£—1)
Inversion N1 = N-1=v_1

In Table 2, a numerical example of the equations of Table 1 with v = 3 is reported.

Table 2. Numerical example of equations of Table 1.

Number of Errors Forney’s Method Lu’s Method
NEB =12 N@ =9
v=3 N® =18 N® =12
N1=3 N1=2

In the following, for the sake of clarity, the two methods are briefly summarized and, as an
example, implementation in terms of addition, multiplication, and inversion blocks in the case of an
error magnitude v = 3 is presented.

2.1. Forney Method

The Forney method relies on the Forney equation (2):

B Zo(a_lk>

Op, = —— ,fork=1,2,...,v, 2
k o) or v)

where v is the number of error actually present in the code word (v < t), and

a 'k =1/ak, 3)
oz(a—lk) =01+ oz P + .+ gpgga @Dl | @
Zo(a_lk) =S1+ (S2+aS)a + ... +(Sy+ 0181 + ...+ 0y 1Sk, (5)

with odd as the largest odd number less than or equal to v.

Electronics 2020, 9, 89 50f 15

In Figure 4, an example of an implementation of Equation (3) is presented. For simplicity, the
Zy (a‘lk) and o/(a‘lk) notations are replaced by Zy and o}, respectively.

=1 -2 — ' "
i g — |9 CH)

Oli—» ()

v

|

-1 2 . i
Op—»] ()7 —2 % P>+ Oz] (02)

*
; . | b l » > ()
Oy = ' "
Og—! (" +3 3] = |2 ::El P |08 [l (o) x 5,
1).
— s
> .4

‘|‘

A4

O3 (o)
01 02 63
1 ” x
oy ’ l
» > -+ Z
R 1 * R o1
I } > e
oy '—» *
5 : Zy,
> X 012 x — +
> <
> 1 uzg—b' ; ZUB
e[B <
S1 Sz Sa S1

Figure 4. Error magnitude evaluation with v = 3 implemented with the Forney algorithm. The blocks
shown are additions, multiplications, and inversions ((-)_1) over the Galois field.

In this case, the system is configured to perform the error magnitude evaluation of up to three
errors (v = 3). Inside the system, the two operands of Equation (3) (Zy and ol’{) can be identified
and the number of required operations to perform the result is found to follow the equation of
Table 1: 3 inversions (plus 3 required to generate the inverses of « coefficients), 12 additions, and
18 multiplications.

2.2. Lu Method

The method presented by Lu et al. [25] performs error magnitude computation with less
computational effort in respect to the Forney method, as shown in Table 1. It is composed by
three main phases, each one performing different operations: preprocessing phase, syndrome refining
phase, and error-magnitude extraction phase. In the preprocessing phase, partial results, P; j and Q; ,
are introduced for convenience, and are defined as follows:

Piop=Qio=al, fori=1,2,...,v, (©)
pi/].:alf—|—alf,f0rlﬁj<iﬁv,)
Qi,]’ — Qi,j—lpi,j ,forl<j<i<v. ®)

In the subsequent syndrome refining phase, following the idea that, to evaluate v error magnitudes,
knowing all error location numbers, only the first v syndromes are needed, the original syndromes Sj

are re-elaborated to compute Sg{) as

Sz(yl):sw,forwzl,Z,...,v,)

s =5 4 58Py, fork=3,4,...,vandw=3,4, ...,v—k+1. (10)

Electronics 2020, 9, 89 6 of 15

Finally, in the error magnitude extraction phase, 0y can be recursively computed as

S(V)
5, = L , 11
Y Qv,v—l ()
SO 4 xy . 6iQu
o = 1 i=k+1 l'kllfor =v-1,v-2,...,1. (12)
Qkk-1

An implementation for v = 3 is reported in Figure 5.

Preprocessing Oy 0O
C(I—T—b +
» Lt x = Q
> » Q2
. o ox . »Q
o —p v *
»i+ —|—’ X f——»Qq
Syndrome Refine » S,
O > %
S » "t 5
> So—p+ o ox]
e
S, » X > 2 i . 5@
s, "

Error Magnitude Evaluation

Qz1—» (7 —I | X »5
8 —p L’ L]
Qao—»f (17 |—> i g N
I [t o % + » 8,
ot —p] (7 o L
a R
2 Lt b +
>+ »
N |+* X L6,
) *
81‘3} Q3.I 5@ S

Figure 5. Error magnitude evaluation with v = 3 implemented with the Lu algorithm. The blocks
shown are additions, multiplications, and inversions ((-)_1) over the Galois field.

As for the Forney example in Figure 4, the number of used operations is found to follow the
equations of Table 1: 2 inversions (plus 1 required to generate the inverse of the a; coefficient),
9 additions, and 12 multiplications. Compared with the Forney method, the new method requires less
operations to obtain the result. Moreover, as can be seen in the diagram, the new method does not
need the values of the error locator polynomial (oy) as input.

3. Hardware Configuration

The aim of this work is to give an evaluation of Lu’s method for estimating error magnitudes in a
received code word in Reed-Solomon code, considering practical implementations. As a benchmark
for the evaluation, Forney’s method was considered. The two algorithms were designed with different
configurations of the n, k, t, and m values, as shown in Table 3. Two different m values were chosen:
code-words with symbols composed by 4 bits are typically used in image transmission [38,39], while
code-words with 8-bit symbols are practically implemented in Quick Response (QR) codes [14], Digital
Video Broadcasting—Terrestrial (DVB-T) [40], and the Consultative Committee for Space Data Systems
(CCSDS) standard for space applications [41].

Electronics 2020, 9, 89 7 of 15

Table 3. Configurations designed for the implementation comparison.

Configuration Name m (n,k) Notation Number of Correctable Errors (t)
A 4 (15,11) 2
B 4 (15,9) 3
C 4 (15,7) 4
D 8 (255,249) 3
E 8 (255,239) 8
F 8 (255,223) 16

All configurations were designed to correct any number of errors v < t in the code-word. However,
as the worst performance is obtained when the maximum number of errors occurs, the number of
errors introduced in the code-word was set to be equal to the maximum detectable error (i.e., v =).
The configurations were designed for implementations both on an FPGA device and on an MCU, as
different behaviors are to be expected on the two hardware devices because of the different nature of
the two platforms.

The FPGA platform was used to evaluate the parallelization capability of the two algorithms.
For this purpose, the configurations presented in Table 3 for both the Forney and Lu algorithms were
designed in full concurrent VHDL code, and results were evaluated in terms of resources’ usage and
delay to obtain a valid output. The platform environment is Xilinx Vivado 2019.1 and the target device
was set to Artix-7 XC7A100T-CSG324 FPGA. As an example, in Figures 6 and 7, the register transfer
level (RTL) results of the RS (15,11) configuration are reported.

alphat_i[3:0]>
- d1_o[3:0]
InverseLUT L _il/ — RTL. MUX
GaloisMult19 RTL_XOR aloisMu
S2_i[3:0] D—:)D_
RTL_XOR B_
InverseLUT
sigmal_i[3:0]&
S1_13:0) D—-H)
GaloisMult19 GaloisMult19 RTL_XOR
| P] I d2_o[3:0]
[@ InverseLUT
alpha2_i[3:0]> GaloisMult19 RTL_MUX

T
InverseLUT

l

Figure 6. Register transfer level (RTL) result of the Forney method for the RS(15,11) configuration.

$1_i[3:0] D

2_i[3:0
l3

alpha2_i[3:0

52 i
alphal_i[3: }D—
(m o

SR

SyndromeRefining

GaloisMult19|RTL_

XOR

(<]
T

|Galois

!

o @
RTL XOR[—

Mult19 GaloisMult19

T

dl_of

G-of39)

RTL_XCR

I
GaloisMult19

—7
nverselLUT

o]

—1
InverseLUT

Preprocessing

Galoahutt
ErrorMag

Figure 7. RTL result of the Lu method for the RS(15,11) configuration.

To evaluate the performance of the Forney and Lu methods when implemented on an FPGA
platform, a Nexys DDR 4 board hosting the target FPGA was exploited. The measurement set-up is

shown in Figure 8.

Electronics 2020, 9, 89 8 of 15

o e e o e = - - - —
| ———start
Q —Ly controller
.
|
! dethfdt == comparator
: EPGA under tes:

Figure 8. Measurement set-up for the field programmable gate array (FPGA) platform.

A button is pressed to begin the elaboration and a controller takes care of signaling the start by
raising the start signal. As the outputs of the method under the test consist of several bits (up to 128 in
the worst case), it would be impossible to monitor all of them with an oscilloscope. Thus, a comparator
was introduced to assert the end signal when a valid data matches a constant that represents the
expected value. Thus, the fest pin rises with the start signal and falls when the end signal goes high.
The time between the two transitions of the test pin gives the algorithm output delay. The measurements
were carried out with a Tektronix DPO7254 oscilloscope, exploiting its 40 GSa/s, real-time sample rate.

Exploiting the full sequential architecture of an MCU platform, the speed of the two algorithms
without parallelization was evaluated. The platform environment in this case is JAR Embedded
Workbench, in which the different configurations of Table 3 were coded in C language and flashed on a
Texas Instruments (TI) LaunchPad XL development board. The board hosts a TI CC3200 system on chip
(SoC) device, with a 32-bit architecture ARM Cortex-M4 MCU clocked at 80 MHz. This device, thanks
to an embedded Wi-Fi radio module, is widely used to implement devices and systems compatible
with the Internet of Things and wireless sensor network paradigms [42—47], topics in which error
correction techniques were demonstrated to gain an advantage in recent implementations [48,49].
Data about execution speeds were collected by measuring a general-purpose input/output (GPIO) pin
voltage, which was toggled inside the C code at the computation’s start and end. The time between
the low-to-high and high-to-low transitions gives the code execution time. The measurements were
carried out by means of a Tektronix MSO 2024 oscilloscope. In Figure 9, the Forney and Lu versions of
the C code flow chart for the RS (15,11) configuration are reported.

t=2;
GPIO = High;

Zox =Sy + (82 + S10)mk;
k=k+1;

e=aiph
k=k+1;

(@)

Figure 9. Cont.

Electronics 2020, 9, 89

[GPIO ngb

10—(1!,

F 3

Ql() =ag;

(b)

Figure 9. Flowcharts used for the C language implementation of the Forney (a) and Lu (b) methods.

GPIO, general-purpose input/output.

4. Results and Discussion

590 = U+ SUTVP
w=w+1;

9of 15

Qtt 17

i=k+1;
tmp=0; |
L2

i=i+1;

tmp =tmp +6;Qir_1;

O = (Sgk) + tmp) * Qi1
k=k-1;

Y

[GPIO = Low,

In Figure 10, an example of measurement carried out with the 40GSa/s Tektronix DPO7254
oscilloscope in the case of the FPGA platform is reported.

|

[(F' S00mVidiv

MO By:500M

][:’F‘;-numv (a)72.208] [rﬁ_‘]‘ﬁjju‘sw

][zu‘ona 40.0GS/s 1T 1.0pslpt

]

(a)

Figure 10. Cont.

Electronics 2020, 9, 89

10 of 15

(&) seomvidiv MO B 500M

I 8)14, 3mv

&) 136440

| (e s

[20.0ns 400088 T topwnt

(b)

Figure 10. Oscilloscope measurements of the GPIO pin for the configuration F of Table 3 in the

case of FPGA implementation. (a) Measurement of the execution time of the Forney algorithm.

(b) Measurement of the execution time of the Lu method.

In Table 4, the performance of the Forney and Lu methods when implemented on an FPGA
platform are compared. Data about cell LUTs’ (look-up tables’) usage refer only to the block performing
Forney or Lu algorithm (excluding logic used to compute the output delay, shown in Figure 8).

Table 4. Field programmable gate array (FPGA) implementations results. LUTs, look-up tables.

System Forney Lu
Configuration Cell LUTs Time (ns) Cell LUTs Time (ns)
A 56 6.7 62 8.3
B 163 10.2 138 15.2
C 263 11.7 268 22.5
D 828 20.8 760 32.8
E 7126 47 6081 71
F 27,100 72.2 21,082 136.4

To better appreciate the results, the same are also represented in Figure 11.

As can be seen, as theorized by the model presented in the literature, Lu’s method performs better
in terms of resources usage in respect of Forney’s one. The difference between the two algorithms
increases with the system complexity (i.e., increasing the m and t parameters), and it is clearly
appreciable for the R5(255,223) configuration. Nevertheless, from the output delay point of view,
Forney’s algorithm definitely performs better: this behavior is justified by the fact that Lu’s algorithm
computes the result in a strong, recursive way (as can be seen, for example, in the error magnitude
extraction phase). This leads to deep architectures in which the last output is strongly dependent on
the previous one, negatively affecting the overall latency. From this point of view, Forney’s algorithm
is more efficient thanks to its parallel-prone structure, as can be seen in the RTL resulting scheme
(Figure 6).

Therefore, if the target application is to be implemented on an FPGA platform, Forney’s should be
preferred, unless the available resources in terms of area are not binding.

In Table 5, the performance of the two algorithms when the implementation platform is an MCU
is reported. The measurement technique can be better visualized in Figure 12, where the outputs from
the Tektronix MSO 2024 oscilloscope in the case of configuration RS (255,223) are reported. The output
delays obtained in the case of MCU implementation are not intended for a direct comparison with ones
measured in the case of FPGA implementation. The FPGA solution outperforms the MCU one: the

Electronics 2020, 9, 89 11 of 15

comparison must be made between the two methods, considering the same implementation platform
and the same system configuration.

FPGA resources usage FPGA output delay
30,000 160
140
25,000
120
20,000
100

Time (ns)
=

60
10,000
40
5,000
20
0 0
A B C D E F A B C D E F
Configuration Configuration
—_— Porney ~=-e-=-Lu —_— F(_)rncy -==g=== Lu
(a) (b)

Figure 11. Graphical representation of the results of Table 4. (a) FPGA implementations resources’
usage in terms of cell look-up tables (LUTs), (b) FPGA implementations” output delay.

Table 5. Microcontroller unit (MCU) implementations results.

. X Forney Lu
System Configuration
Time (us) Time (us)
A 186.1 169.8
B 668.1 389.3
C 1400 699.2
D 1100 607.3
E 15,900 4500
F 110,600 18,300
Tek stop i B e e— l‘#ols‘eF\IterU!fI Tek stop i B e e— Nols:aFlIterElf!I
0 VU VUL UURS VU N S SHUOY DRUDY IRUOE SRRUESSRUE DRRUE PRRTE DORRE PO
..........................
; ; N Wil <Tor ; ; ; N D Wil o
.00 | [12 30ms 141338 100 | 2 025ms 11338
(a) (b)

Figure 12. Oscilloscope measurements of the GPIO pin for the configuration F of Table 3 in the case of
MCU implementation. (a) Measurement of the execution time of Forney’s algorithm, (b) Measurement
of the execution time of Lu’s method.

As can be seen in MCU implementation, the improvements made by the method proposed by
Lu et al. are fully evident. In this case, as opposed to the FPGA implementation, all the operations are
computed sequentially, and Lu’s method can take full advantage of the minor number of operations
required to produce the result. Also, in this case, the advantage grows with the system complexity: in

Electronics 2020, 9, 89 12 of 15

the RS(255,223) configuration, the time needed to get a valid result with Lu’s method is three times
lower than that required with Forney’s algorithm. To better appreciate these results, the execution
times are also compared in Figure 13.

MCU execution time
120,000

100,000

80,000
w0
=

o 60,000
E
l_‘

40,000

20,000

0 *~— * g
A B C D E F
Configuration
—e— Forney ---e---Lu

Figure 13. Graphical representation of the results of Table 5 regarding the MCU implementations’ code
execution time.

Considering the overall results, it appears that the conclusions drawn by Lu et al. in the paper
introducing their method are fully valid only in the case of MCU implementation. In case of FPGA (or
in general parallel architectures), the choice between Lu and Forney’s algorithms depends on what
optimization strategy has to be followed. If the output delay is a strong constraint, Forney’s method
should be preferred, owing to the minor delay required. However, if a circuit with less occupied area
is needed, Lu’s method is the better choice.

5. Conclusions

In this paper, an innovative method, originally introduced by Lu et al. [25] to compute
error magnitude values in an RS decoder, was implemented to evaluate its realistic performance.
Two platforms, an ARM based MCU and an Artix-7 FPGA, were considered to assess different
implementation strategies, fully sequential and fully combinational, respectively. As a benchmark for
the analysis, we selected Forney’s algorithm because it is widely used and, to date, it is considered the
standard method for error magnitude evaluation in Reed-Solomon code. For both implementations,
the two algorithms were designed considering six practical configurations, normally used in specific
applications. All the solutions were evaluated in terms of output delay, that is, time to get a valid result
when the system is fed with valid inputs. The FPGA based solutions were also evaluated in terms
of resources’ (LUTs") usage. The results show that, when implemented with a parallel strategy, Lu’s
method performs better in respect to Forney’s one in terms of occupied LUTs, while suffering from the
strongly recursive approach in terms of output time. However, Lu’s method performs definitively
better in case of MCU, when it can take advantage of the minor number of operations required to
produce the output, with an output delay up to three times lower in the configurations examined in
this paper. From these results, we can conclude that, if an FPGA platform has been considered for the
implementation of the whole decoder, the designer should select Forney’s method if there are stringent
time constraints, while Lu’s method is eligible when the area occupation is critical. Instead, when the
decoder has to be implemented on an MCU platform, Lu’s method should be preferred owing to the
reduced execution time.

Electronics 2020, 9, 89 13 of 15

Author Contributions: Conceptualization, V.B. and I.D.M.; Methodology, V.B., M.B., and I.D.M.; Validation,
V.B., M.B,, and I.D.M.; Formal Analysis, V.B. and M.B.; Investigation, V.B., M.B., and I.D.M.; Data Curation, V.B.
and M.B.; Writing—Original Draft Preparation, V.B., M.B., and I.D.M.; Writing—Review & Editing, V.B., M.B.,
and I.D.M.; Visualization, V.B., M.B., and I.D.M.; Supervision, .D.M.; Project Administration, I.D.M.; Funding
Acquisition, I.D.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Wang, J.; Yang,].Y.; Fazal, LM.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M.; et al.
Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics
2012, 6, 488-496. [CrossRef]

Saltzberg, B.R. Performance of an Efficient Parallel Data Transmission System. IEEE Trans. Commun. Technol.
1967, 15, 805-811. [CrossRef]

Peterson, W.W.; Brown, D.T. Cyclic Codes for Error Detection. Proc. IRE 1961, 49, 228-235. [CrossRef]
Zhang, Z. Linear network error correction codes in packet networks. IEEE Trans. Inf. Theory 2008, 54, 209-218.
[CrossRef]

McAuley, A.J. Reliable Broadband Communication Using a Burst Erasure Correcting Code. In Proceedings of
the ACM Symposium on Communications Architectures and Protocols, SIGCOMM, Philadelphia, PA, USA,
26-28 September 1990; Association for Computing Machinery Inc.: New York, NY, USA, 1990; pp. 297-306.
Sudan, M. Decoding of Reed Solomon Codes beyond the Error-Correction Bound. J. Complexity 1997, 13,
180-193. [CrossRef]

Sathananathan, K.; Tellambura, C. Forward Error Correction Codes to Reduce Intercarrier Interference in
OFDM. In Proceedings of the ISCAS 2001-2001 IEEE International Symposium on Circuits and Systems,
Sydney, Australia, 6-9 May 2001; IEEE: Piscataway, NJ, USA, 2002; Volume 4, pp. 566-569.

Hamming, R.W. Error Detecting and Error Correcting Codes. Bell Syst. Tech.]. 1950, 29, 147-160. [CrossRef]
Bose, R.C.; Ray-Chaudhuri, D.K. On a class of error correcting binary group codes. Infect. Control 1960, 3,
68-79. [CrossRef]

Hocquenghem, A. Codes correcteurs d’erreurs. Chiffres 1959, 2, 147-156.

Poolakkaparambil, M.; Mathew, J.; Jabir, A. Multiple Bit Error Tolerant Galois Field Architectures Over
GF(2m). Electronics 2012, 1, 3-22. [CrossRef]

Carlitz, L. The Arithmetic of Polynomials in a Galois Field. Am. . Math. 1932, 54, 39. [CrossRef]

Reed, L.S.; Solomon, G. Polynomial Codes Over Certain Finite Fields. J. Soc. Ind. Appl. Math. 1960, 8, 300-304.
[CrossRef]

Kieseberg, P.; Leithner, M.; Mulazzani, M.; Munroe, L.; Schrittwieser, S.; Sinha, M.; Weippl, E. QR Code
Security. In Proceedings of the MoMM 2010—=8th International Conference on Advances in Mobile Computing
and Multimedia, Paris, France, 8-10 November 2010; pp. 430-435.

Sun, X.; Skillman, D.R.; Hoffman, E.D.; Mao, D.; McGarry,].F,; McIntire, L.; Zellar, R.S.; Davidson, EM.;
Fong, W.H.; Krainak, M.A; et al. Free space laser communication experiments from Earth to the Lunar
Reconnaissance Orbiter in lunar orbit. Opt. Express 2013, 21, 1865. [CrossRef] [PubMed]

Tan, G.; Herfet, T. Application Layer Hybrid Error Correction with Reed-Solomon Code for DVB Services
Over Wireless LANs. In Proceedings of the 2007 International Conference on Wireless Communications,
Networking and Mobile Computing, WiCOM 2007, Shanghai, China, 21-25 September 2007; pp. 2952-2955.
Bocharova, I.; Kudryashov, B.; Lyamin, N.; Frick, E.; Rabi, M.; Vinel, A. Low Delay Inter-Packet Coding in
Vehicular Networks. Future Internet 2019, 11, 212. [CrossRef]

Shao, H.; Truong, T.; Deutsch, L.; Yuen, J.; Reed, I. A VLSI Design of a Pipeline Reed-Solomon Decoder.
IEEE Trans. Comput. 1985, 34, 393-403. [CrossRef]

Moon, H.L.; Seung, B.C.; Jin, S.C. A High Speed Reed-Solomon Decoder. In Proceedings of the IEEE
Workshop on VLSI Signal Processing, Sakai, Japan, 16-18 September 1995; IEEE: Piscataway, NJ, USA, 1995;
pp. 362-367.

Torres, V.; Valls,].; Canet, M.].; Garcia-Herrero, F. Soft-decision low-complexity chase decoders for the RS
(255,239) code. Electronics 2019, 8, 10. [CrossRef]

http://dx.doi.org/10.1038/nphoton.2012.138
http://dx.doi.org/10.1109/TCOM.1967.1089674
http://dx.doi.org/10.1109/JRPROC.1961.287814
http://dx.doi.org/10.1109/TIT.2007.909139
http://dx.doi.org/10.1006/jcom.1997.0439
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://dx.doi.org/10.1016/S0019-9958(60)90287-4
http://dx.doi.org/10.3390/electronics1010003
http://dx.doi.org/10.2307/2371075
http://dx.doi.org/10.1137/0108018
http://dx.doi.org/10.1364/OE.21.001865
http://www.ncbi.nlm.nih.gov/pubmed/23389171
http://dx.doi.org/10.3390/fi11100212
http://dx.doi.org/10.1109/TC.1985.1676579
http://dx.doi.org/10.3390/electronics8010010

Electronics 2020, 9, 89 14 of 15

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Lee, H. An Area-Efficient Euclidean Algorithm Block for Reed-Solomon Decoder. In Proceedings of the IEEE
Computer Society Annual Symposium on VLSI, Tampa, FL, USA, 20-21 February 2003; IEEE: Piscataway, NJ,
USA, 2003.

Sarwate, D.V.; Shanbhag, N.R. High-speed architectures for Reed-Solomon decoders. IEEE Trans. Very Large
Scale Integr. Syst. 2001, 9, 641-655. [CrossRef]

Forney, G.D. On Decoding BCH Codes. IEEE Trans. Inf. Theory 1965, 11, 549-557. [CrossRef]

Komo, J.J.; Joiner, L.L. Fast Error Magnitude Evaluations for Reed-Solomon Codes. In Proceedings of the
IEEE International Symposium on Information Theory, Whistler, BC, Canada, 17-22 September 1995; IEEE:
Piscataway, NJ, USA, 1995.

Lu, EH.; Chen, T.C; Lu, PY. A new method for evaluating error magnitudes of Reed-Solomon codes.
IEEE Commun. Lett. 2014, 18, 340-343. [CrossRef]

Mhaske, S.D.; Ghodeswar, U.; Sarate, G.G. Design of Area Efficient Reed Solomon Decoder. In Proceedings
of the 2014 2nd International Conference on Devices, Circuits and Systems (ICDCS), Combiatore, India, 6-8
March 2014; IEEE: Piscataway, NJ, USA, 2014. [CrossRef]

Li, X.; Zhang, W,; Liu, Y. Efficient architecture for algebraic soft-decision decoding of Reed-Solomon codes.
IET Commun. 2015, 9, 10-16. [CrossRef]

Lee, H. A High-Speed Low-Complexity Reed—Solomon Decoder for Optical Communications. IEEE Trans.
Circuits Syst. II Express Briefs 2005, 52, 461-465. [CrossRef]

Clark, G.C.; Cain,].B. Error-Correction Coding for Digital Communications; Springer: New York, NY, USA, 1981.
Blahut, R.E. Theory and Practice of Error Control Codes; Addison-Wesley Pub. Co.: Boston, MA, USA, 1983;
ISBN 9780201101027

Lin, S.; Costello, D.J. Error Control Coding: Fundamentals and Applications (Prentice-Hall Computer Applications
in Electrical Engineerin); Prentice Hall: Upper Saddle River, NJ, USA, 1983; ISBN 013283796X.

Rabaey,].M.; Potkonjak, M.; Wakabayashi, K. Efficient Throughput Optimization of Feedback Linear
Computations Using Generalized Horner’s Scheme. In Proceedings of the 1995 International Conference on
Acoustics, Speech, and Signal Processing, Detroit, MI, USA, 9-12 May 1995; IEEE: Piscataway, NJ, USA, 2002.
[CrossRef]

Sugiyama, Y.; Kasahara, M.; Hirasawa, S.; Namekawa, T. A method for solving key equation for decoding
goppa codes. Infect. Control 1975, 27, 87-99. [CrossRef]

Berlekamp, E.R. Algebraic Coding Theory; McGraw-Hill: New York, NY, USA, 1968.

Chien, R.T.; Watson, T.J. Cyclic Decoding Procedures for Bose-Chaudhuri-Hocquenghem Codes. IEEE Trans.
Inf. Theory 1964, 10, 357-363. [CrossRef]

Hu, Q.; Wang, Z.; Zhang,].; Xiao,]. Low Complexity Parallel Chien Search Architecture for RS Decoder. In
Proceedings of the 2005 IEEE International Symposium on Circuits and Systems, Kobe, Japan, 23-26 May
2005; IEEE: Piscataway, NJ, USA, 2005. [CrossRef]

Lin, Y;; Yang, C.; Hsu, C.; Chang, H.; Lee, C. A MPCN-Based Parallel Architecture in BCH Decoders for
NAND Flash Memory Devices. IEEE Trans. Circuits Syst. II Express Briefs 2011, 58, 682—-686. [CrossRef]
Nergui, M.; Sripati Acharya, U.; Rajendra Acharya, U.; Yu, W.; Dua, S. Reliable Transmission of Retinal
Fundus Image with Patient Information using Encryption, Watermarking, and Error Control Codes. In
Computational Analysisi of the Human Eye with Applications; World Scientific Publishing: Singapore, 2011;
pp. 319-348.

Ejaz, M.Z.; Khurshid, K.; Abbas, Z.; Aizaz, M.A.; Nawaz, A. A Novel Image Encoding and Communication
Technique of B/W Images for IOT, Robotics and Drones Using (15,11) Reed Solomon Scheme. In Proceedings
of the 2018 Advances in Science and Engineering Technology International Conferences (ASET), Abu Dhabi,
UAE, 6 February-5 April 2018; IEEE: Piscataway, NJ, USA, 2018.

European Telecommunications Standards Institute. Digital Video Broadcasting (DVB); Framing Structure,
Channel Coding and Modulation for Digital Terrestrial Television; ETSI-EN-300-744; European Telecommunications
Standards Institute: Sophia Antipolis, France, June 2009.

CCSDS. TM Synchronization and Channel Coding—Summary of Concept and Rationale; CCSDS: Washington, DC,
USA, November 2012.

Bassoli, M.; Bianchi, V.; De Munari, I. A plug and play IoT Wi-Fi smart home system for human monitoring.
Electronics 2018, 7, 200. [CrossRef]

http://dx.doi.org/10.1109/92.953498
http://dx.doi.org/10.1109/TIT.1965.1053825
http://dx.doi.org/10.1109/LCOMM.2013.122713.132334
http://dx.doi.org/10.1109/ICDCSyst.2014.6926169
http://dx.doi.org/10.1049/iet-com.2014.0460
http://dx.doi.org/10.1109/TCSII.2005.850452
http://dx.doi.org/10.1109/icassp.1995.480108
http://dx.doi.org/10.1016/S0019-9958(75)90090-X
http://dx.doi.org/10.1109/TIT.1964.1053699
http://dx.doi.org/10.1109/ISCAS.2005.1464594
http://dx.doi.org/10.1109/TCSII.2011.2161704
http://dx.doi.org/10.3390/electronics7090200

Electronics 2020, 9, 89 15 of 15

43.

44.

45.

46.

47.

48.

49.

Zantalis, F.; Koulouras, G.; Karabetsos, S.; Kandris, D. A Review of Machine Learning and IoT in Smart
Transportation. Future Internet 2019, 11, 94. [CrossRef]

Tang, X.; Wang, X.; Cattley, R.; Gu, F; Ball, A.D. Energy Harvesting Technologies for Achieving Self-Powered
Wireless Sensor Networks in Machine Condition Monitoring: A Review. Sensors 2018, 18, 4113. [CrossRef]
Bianchi, V.; Bassoli, M.; Lombardo, G.; Fornacciari, P.; Mordonini, M.; De Munari, I. IoT Wearable Sensor and
Deep Learning: An Integrated Approach for Personalized Human Activity Recognition in a Smart Home
Environment. IEEE Internet Things J. 2019, 6, 8553-8562. [CrossRef]

Giannetto, M.; Bianchi, V.; Gentili, S.; Fortunati, S.; De Munari, I.; Careri, M. An integrated IoT-Wi-Fi board
for remote data acquisition and sharing from innovative immunosensors. Case of study: Diagnosis of celiac
disease. Sens. Actuators B Chem. 2018, 273, 1395-1403. [CrossRef]

Bianchi, V.; Boni, A.; Fortunati, S.; Giannetto, M.; Careri, M.; De Munari, I. A Wi-Fi cloud-based portable
potentiostat for electrochemical biosensors. IEEE Trans. Instrum. Meas. 2019. [CrossRef]

Brokalakis, A.; Chondroulis, I.; Papaefstathiou, I. Extending the Forward Error Correction Paradigm for
Multi-Hop Wireless Sensor Networks. In Proceedings of the 2018 9th IFIP International Conference on New
Technologies, Mobility and Security, NTMS 2018, Paris, France, 26-28 February 2018; IEEE: Piscataway, NJ,
USA, 2018; Volume 2018, pp. 1-5.

Bettayeb, M.; Ghunaim, S.; Mohamed, N.; Nasir, Q. Error Correction Codes in Wireless Sensor Networks: A
Systematic Literature Review. In Proceedings of the 2019 3rd International Conference on Communications,
Signal Processing, and their Applications, ICCSPA 2019, Sharjah, UAE, 19-21 March 2019; IEEE: Piscataway,
NJ, USA, 2019.

® © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/fi11040094
http://dx.doi.org/10.3390/s18124113
http://dx.doi.org/10.1109/JIOT.2019.2920283
http://dx.doi.org/10.1016/j.snb.2018.07.056
http://dx.doi.org/10.1109/TIM.2019.2928533
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Error Magnitude Evaluation in Reed–Solomon Codes
	Forney Method
	Lu Method

	Hardware Configuration
	Results and Discussion
	Conclusions
	References

