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Abstract: A real time simulation of battery conditions is an essential step in the development of energy
harvesting devices. Since it is not possible to have a direct measurement, the battery information,
such as the remaining charge, need to be estimated by means of model-based estimation algorithms.
Most of the existing models describing battery behaviour, are suitable only for a constant discharge
current. This paper proposes a study of the dependence of the equivalent circuit model parameters
on different discharge conditions. The model presented provides a powerful tool to represent the
batteries’ behaviour in energy harvesting systems, involving continuous charge and discharge cycles.
The extraction of parameters was performed, starting from a set of reference curves generated in
Matlab Simulink environment, referring to Li-ion technology batteries. The parameters were extracted
by means of a cascade of global and local search identification algorithms. Finally, the relations
describing parameters’ behaviours as functions of the discharge current are presented.

Keywords: battery; circuital model; identification model

1. Introduction

In recent years, batteries have been widely used both for energy storage and as power sources in
several applications, including electronic devices, electrical vehicles and renewable power systems.
The main goals for each battery-powered system are to extend the battery’s lifetime and include
energy optimisation techniques in battery management systems (BMS). A deep overview of BMS
applications is reported in [1], emphasising its importance in electric vehicles and the smart grids
systems. The relevance of BMS in grid-connected battery-based system is stressed in [2] and a further
strategy to control the battery charge and discharge based on optimisation techniques for energy
accumulation in a stand-alone systems is proposed in [3].

All these applications require an accurate battery model to provide real-time information about
the battery pack conditions; for instance, the state of charge (SoC), referring to the residual capacity of
the battery, and the state of health (SoH), representing the ability of the battery to repeatedly provide
its rated capacity over time. Since the internal characteristic and model parameters change according
to the SoC and the operational temperature, the SoC estimation constitutes a fundamental step to
understand how the battery works. Among the existing techniques, model-based methods are the
most widely used to evaluate the SoC and study the dynamics of the battery. An exhaustive review of
the recent techniques for estimating the model parameters and the SoC is described in [4]. Recently,

Electronics 2020, 9, 78; doi:10.3390/electronics9010078 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-7987-0487
https://orcid.org/0000-0001-8824-3776
http://dx.doi.org/10.3390/electronics9010078
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/1/78?type=check_update&version=2


Electronics 2020, 9, 78 2 of 12

a robustness solution for representing the batteries’ dynamic behaviour based on a combination of
Kalman Filter algorithm and the equivalent circuit model was presented in [5], whereas for real time
applications an accurate evaluation of SoC can be achieved by means of a novel estimator proposed
in [6].

The estimate of battery SoC is a fundamental step to computing the terminal battery voltage.
In this regard, many models have been developed in literature and the respective parameters are
estimated by means of optimisation approaches, given that they are not measurable directly by sensors.
In general, the existing models mainly fall into two categories: electrochemical and equivalent circuit
ones. Electrochemical models are based on the chemical reactions that occur in a battery. Even though
these models are useful to optimise the design of the battery and can achieve high precision, they are
usually computationally intensive in both time and memory to solve partial differential equations [7,8].
On the other hand, the equivalent circuit models, (ECMs), are more straightforward and easier to
implement than electrochemical ones. Moreover, they are especially suited to simulating the dynamic
behaviour of the batteries by using resistance, capacitance, voltage source and other circuit components
to form their circuits; more resistance capacitor (RC) networks usually improve the model accuracy [9].
Compared to electrochemical models that are characterised by partial differential equations, the ECMs
are low order models; therefore, they result in better computational efficiency.

To identify the model parameters with low computational costs while preserving the accuracy,
several identification procedures have been proposed in the literature, mainly involving non-linear
least squares methods [10] and optimisation algorithms, including particle swarm optimisation [11]
and genetic algorithms [12].

Most of these methods involve a set of parameters that are supposed to be constant for reducing
the model complexity, but in practical applications they are subjected to change for different operating
conditions, such as the state of charge (SoC—demonstrated in [13]); temperature; and ageing. Moreover,
they present a limitation in the identification procedure, because they referred to constant current
discharge curves and the parameters that are extracted are suitable only for fixed values of the discharge
current.

To enhance the model accuracy, different sensitivity analyses have been proposed in the literature.
In particular, the effects of changes in the model parameters on battery terminal voltage are analysed
in [14]. Furthermore, a global sensitivity analysis of ECM parameters is studied in [8], reporting the
strong dependence parameter on the SoC. This dependence is confirmed in [9], where a deep
investigation of ECM parameters is presented, emphasising the importance of discharge current
in voltage estimation.

In this work we analyse the parameters’ dependencies on different load conditions, in order
to make the ECM compliant with a variable discharge current. The proposed improvement allows
one to identify the EMC model by starting from curves at constant current, readily available in the
literature and easy to constructed by the knowledge of metadata. Our study follows two main steps.
In the former, the identification of the parameters of ECM was performed for each reference voltage
curve, referred to different values of discharge current and obtained in Simulink by using metadata.
Then, a mathematical model expressing the parameters dependence on the discharge current values
was built from these preliminary results by exploiting a trial and error approach. The proposed model
was then validated by evaluating its error on battery voltage curves different from those used for the
parameter extraction. The results show the possibilities of the adoption of the proposed model for the
evaluation of battery dynamics in an energy harvesting systems.

The paper is structured as follows: in Section 2 the battery equivalent circuit model based on the
state space equations is described; in Section 3 the identification process and the respective results
are illustrated; in Section 4 the model proposed for the dependence of the circuital parameters on
discharge current is presented and validated; finally, the conclusions are explained in Section 5.
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2. Battery Equivalent Circuit Model

As stated before, several models have been developed for the battery according to the required
accuracy and the application. Among these, the 2-RC networks model represents a good trade-off
between the precision and the computational effort [15,16]. Figure 1 shows the ECM consisting of one
C circuit on the left, used for SoC tracking, and two RC circuits on the right, used to simulate the I–V
characteristics and transient response of the battery cell. The following subsections outline some of the
battery’s characteristics that are considered in the model.

𝑖𝑏𝑎𝑡𝑡

𝑖𝑏𝑎𝑡𝑡

𝑉𝑇𝑆 𝑉𝑇𝐿

𝑉𝑇𝑆

𝑉𝐶𝑐

Figure 1. Equivalent circuit model: Cc is the nominal capacity of the battery. The voltage across
the capacitor, VCc , corresponds to the SoC of the battery cell. Voc is the open circuit voltage and it
is a non linear function of the state of charge (SoC). The Ri, RTSCTS and RTLCTL are responsible for
instantaneous voltage drop, short-time and long-time constants, respectively.

2.1. SoC Evaluation

The capacitance Ccapacity refers to the charge stored in the battery cell; the current source ibatt
represents the charge/discharge current of the battery cell; the voltage across the capacitor VCc

represents the SoC of the battery cell quantitatively and varies in the range of 0 V (i.e., the SoC is 0,
standing for the battery being fully discharged) to 1 V (i.e., the SoC is 1, meaning that the battery is
fully charged).

Therefore, the SoC can be calculated as:

Ccapacity
dSoC

dt
= ibatt. (1)

In this work, the Ccapacity corresponds to the usable capacity of the cell, and it is supposed to be
a constant. This approximation, although it does not regard the non-linear capacity behaviours of
the battery, such as the rate capacity and recovery effects, does not compromise the model accuracy,
as will be demonstrated in the following sections. In order to include the non-linear capacity effects,
a detailed extension of the EMC model is described in the Appendix A.

2.2. Voc-SoC Characteristic

In general, the battery open-circuit voltage (Voc) is a non-linear function of battery SoC and
operating temperature. In this paper, the reference discharge curves are obtained by setting the
temperature value as a constant. Therefore, only the dependence on the SoC is considered and the
Voc = f [SoC(t)] is estimated by using:

Voc[SoC(t)] = a0e−a1SoC + a2SoC3 + a3SoC2 + a4SoC + a5, (2)

where the coefficients a0, a1, a2, a3, a4, a5 constitutes the parameter that need to be identified.

2.3. State Space Equations

The state space representation of the equivalent electrical model in Figure 1 is given by:
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Vbatt = Voc[SoC(t)]− Riibatt − VTS − VTL, (4)

where VTS and VTL are the voltages across the first and the second RC circuits, respectively; Ccapacity is
the battery capacity; ibatt is the current, which is assumed to be positive when the battery is discharging
and negative during charging; and Vbatt is the terminal voltage.

3. Identification Process

The knowledge of unknown parameters ai with i = 0...5, Ri, RTS, CTS, RTL and CTL, allows one
to trace the discharge curve at constant current for a fixed operating condition. In order to extract the
parameters, it is useful to manipulate the state space equations, providing the battery voltage Vbatt
depending on time, t and the 11 parameters θ = (a0, a1, a2, a3, a4, a5, Ri, RTS, CTS, RTL and CTL).

Therefore, the identification process consists in finding a combination of model parameters
that minimises a cost function, represented by the squared error (SE) between the values of
voltage Vbatt(tn) = f (tn, θ), computed by means of Equation (4) for any time step tn, and the
reference/measured values of the battery voltage Vn:

SE =
N

∑
n=1

[Vn − f (tn, θ)]2, (5)

where N is the number of samples, Vn is the vector of reference voltage values and tn is the vector time
simulated samples. f (tn, θ) is the computed voltage for each time step tn.

The extraction of parameters from reference curves is a complex, multimodal problem, so in order
to avoid local minima, a cascade of global and local search algorithms was implemented. In particular,
the continuous flock optimisation algorithm, CFSO, is used for exploring the solutions space and
reducing the space size.

It is a swarm intelligence-based strategy that is inspired by a very affirmed algorithm called the
flock of starling optimisation (FSO). The advantage introduced by the CFSO algorithm, with respect
to the FSO, is the availability of analytical expressions for the dynamic system poles. This provides
the knowledge about the dynamic stability of the system, making it possible to have the swarm orbit
around an area, converge in a pseudo-deterministic descent or escape from a local minimum, by simply
tuning the stability parameters. The movement of particles is described by the following equations:

vj
k(t + 1) = ωvj

k(t) + λ(pj
best(t)− xj

k(t)) + γ(gj
best(t)− xj

k(t)) +
N

∑
m=1

hkmvj
m(t) (6)

xj
k(t + 1) = xj

k(t) + vj
k(t + 1). (7)

By the index j = 1...∆, the dimension of the velocity position is taken into account. (∆ is the
number of dimensions of the solution space). The index k represents the particle of the N particles
swarm. The symbols in the equations are from the standard convention used for the literature
formulation of the PSO. The terms ω, λ and γ represent, respectively, the inertial, cognitive and social
coefficients. The three coefficients represent, respectively, the trend of a particle of maintaining its
velocity, the attraction of a particle toward its personal best and the attraction of a particle toward
the global best. The sum term at the far right is the weighted average of the velocities of a subset
of particles belonging to the swarm. The continuous formulation of CFSO allows one to analyse the



Electronics 2020, 9, 78 5 of 12

system by means of domain transformations. A detailed description of the algorithm is reported
in [17].

The main drawback of CFSO is the low degree of accuracy with respect deterministic algorithms;
hence, the Levenberg Marquardt algorithm was implemented to obtain a better accuracy and find
the optimal solution. The Levenberg–Marquardt, LM, algorithm was implemented to update the
parameter vector, θ, at each iteration step, k. The updating rule is:

θk+1 = θk − (JT
k Jk + µk I)−1 JT

k fk, (8)

where J is the Jacobian matrix and µ is a coefficient regulating the the algorithm convergence.
The advantages of this algorithm is the high convergence speed and strong stability.

Data and Identification Method

In the identification phase, we used the reference curves generated in MATLAB Simulink
environment. In particular, by setting the metadata reported in Table 1, it is possible to extract
the discharging curves, reported in Figure 2. Further details can be found in [18,19].

Table 1. Metadata used to extract the reference curves in Simulink.

Nominal Capacity [Ah] 2.6 100
Nominal Voltage [V] 3.7 12
Standard Discharge Current [A] 1.27 43.5
Maximum Discharge Current [A] 2.6 500
Operating temperature Discharge [◦C] −20 −60 −15 −50
Internal Impedance [mΩ] ≤70 8

Figure 2. Discharge characteristics of Li-ion battery having a nominal voltage Vn = 3.7 V and a rated
capacity Cc = 2.6 Ah for different values of discharge current.

As the behaviour of the proposed algorithm strongly depends on the guess values; it was
run several times by setting a random guess values. An average of the solutions found was
used for showing the trend of parameters. Results are reported in Table 2 for different values of
discharge current.
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Table 2. The 11 parameters found versus discharge current for a 2.6 Ah Li-ion battery.

Parameters 0.5 A 1.3 A 1.9 A

a0 −6.350 × 10−1 −7.990 × 10−1 −9.620 × 10−1

a1 2.685 × 101 2.634 × 101 2.630 × 101

a2 3.146 × 10−1 5.160 × 10−1 7.890 × 10−1

a3 −2.024 × 100 −2.597 × 100 −2.612 × 100

a4 −1.269 × 100 −3.505 × 100 −3.419 × 100

a5 7.205 × 100 9.898 × 100 9.518 × 100

Ri [Ω] 3.805 × 10−4 3.768 × 10−4 3.246 × 10−4

RTS [Ω] 7.810 × 10−1 2.572 × 10−1 1.543 × 10−1

CTS [F] 4.616 × 102 4.523 × 102 4.476 × 102

RTL [Ω] 1.551 × 101 1.326 × 101 1.068 × 101

CTL [F] 2.141 × 103 1.265 × 103 1.431 × 103

4. Model for Discharging Current Dependence

The parameters extracted were used to gain insight into their dependence on the discharge
current. This allowed us to develop a model able to estimate the battery voltage for different discharge
conditions. The procedure of modelling the trend of the battery voltage with current is performed as
explained below:

• The first step deals with the observation of the behaviour of any of the parameters influenced by
the discharge current: some known trends can be found.

• Therefore, for each of the parameters, a fitting procedure is performed for identifying a suitable
polynomial or exponential function; the respective coefficients are extracted, too.

• Then, an error is calculated between reference curves, and samples are extracted through the
identified closed-forms.

• Lastly, an analytical expression for the battery voltage is derived thanks to the knowledge of the
trend of the parameters with current.

A regression analysis of some parameters for a Li-ion battery having 2.6 Ah is reported in Figure 3.
The parameters a1 and Ri are considered constant, as can be seen from Table 1, while the others do not
show any particular trend.

In general, the fitting functions assume one of the forms reported below; i.e., linear, quadratic
or exponential:

f (x) = p0 + p1x (9)

g(x) = g0 + g1x + g2x2 (10)

h(x) = a0e(−a1x) + a2. (11)

In Table 3, the coefficients obtained by fitting the parameters trends and the respective coefficient
of determination are illustrated.
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Table 3. Coefficients obtained by fitting the parameters’ trends and the respective coefficient of
determination, R2.

a0 a2 a3 RTS CTS RTL

Linear
p0 −5.527 × 10−1 4.612 × 102

p1 −2.049 × 10−1 −7.032 × 100

2 thorder polynomial
g0 4.184 × 10−1 −1.572 × 100 3.635 × 101

g1 −2.340 × 10−2 −1.233 × 100 −2.933 × 101

g2 1.094 × 10−1 3.584 × 10−1 8.425 × 100

Exponential
a0 1.319 × 100

a1 2.056 × 100

a2 1.399 × 10−1

R2 0.9997 0.9557 0.8429 0.9986 0.9582 0.9396

Figure 3. Parameters’ trends for a Li-ion, C = 2.6 Ah battery: a0, a2, a3, CTS and RTL are represented by
a polynomial function: f (x) = p0 + p1x, g(x) = g0 + g1x + g2x2; meanwhile, RTS is fitted by means of
an exponential function: h(x) = a0e−a1x + a2.

4.1. Validation and Results

To validate the optimisation algorithm implemented and the proposed model, four cases of study
were considered:

• Case 1: Comparison between optimisation algorithms. The CFSO was compared with the classical
optimisation techniques, such as the genetic algorithm, GA, and the particle swarm optimisation, PSO.

• Case 2: Testing for different discharge currents. By considering the same Li-ion battery, C = 2.6 Ah,
the model parameters were updated for different discharge currents, by applying the closed-form
formula obtained in the previous section.

• Case 3: Trend parameters for Li-ion battery for electric vehicles. The identification process was
implemented to extract the parameters trend of another battery technology, Li-ion C = 100 Ah.
This confirms the trends achieved for Li-ion battery with C = 2.6 Ah.

• Case 4: Comparison between the proposed model and fixed parameters model. The discharge
curves computed by our model and other models having fixed parameters but with different
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discharge current values were compared for demonstrating the importance of updating the
parameters.

4.1.1. Case 1: Comparison between Optimisation Algorithms

In order to demonstrate the good performance of CFSO, a comparative analysis against the
PSO and GA for the initialisation of the search space to be investigated by the LM is reported. Both
the PSO and the GA were used considering a set of 50 agents (i.e., 50 particles for the PSO and 50
individuals for the GA). All approaches ran 250 iterations: 150 for each global optimisation algorithm
(CFSO, PSO and GA) and 100 for the refinements via LM. Results are summarised in Table 4.

Table 4. Comparison against classic global optimisation algorithms.

CFSO + LM PSO + LM GA + LM

Iterations 250 250 250
RMSE 0.0447 0.0801 0.0503
Computational time [s] 1.45 1.21 2.69

4.1.2. Case 2: Test for Different Discharge Currents

During the validation phase, we considered four curves referring to discharge currents of 0.2 ,
0.3, 1.5 and 1.7 A that were not involved in the identification step. As can be seen from Figures 4 and 5
the error was always below 1 × 10−2. The results related to the test curves are reported in Table 5,
where the Mean Squared Error, MSE, is very low—about 1 × 10−2.

Figure 4. Test for a discharge current of 0.3 A: comparison between the voltage estimated by means of
a closed-form parameter-based model and the voltage reference values (on the left). Absolute Error in
logarithmic scale between simulated and reference values (on the right).

Table 5. MSEs for different cases of study.

Discharge Current [A] MSE

0.2 6.2 × 10−3

0.3 8.3 × 10−3

1.5 2.1 × 10−2

1.7 3.3 × 10−2
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Figure 5. Test for a discharge current of 1.7 A: comparison between the voltage estimated by means of
a closed-form parameter-based model and the voltage reference values (on the left). Absolute error in
logarithmic scale between simulated and reference values (on the right).

4.1.3. Case 3: Trend Parameters for Li-Ion Battery for Electric Vehicles

A further validation step is considered by referring to a battery technology different from that
one studied in previous section: Li-ion C = 100 Ah for electric vehicles applications. Figure 6 shows
the parameters’ trends and demonstrates that they are similar to the ones obtained from the first
applications. For sake of brevity, we reported the results for some parameters only.

Figure 6. Parameters’ trends for Li-ion, C = 100 Ah: a0 and a2 are represented by a polynomial; RTS is
fitted by means of an exponential function.

4.1.4. Case 4: Comparison between the Proposed Model and Fixed Parameters Model

In order to demonstrate the good performance of the model proposed here, a comparison between
the our model implementing the parameters variation at different current values (10 and 25 Ampere)
and the model with a fixed parameters values is reported in Figure 7.

The results show that the update of parameters, when the discharge current changes, is necessary.
The model maintaining a fixed parameter is not able to approximate correctly the discharge curve.
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Figure 7. Discharge curves for two different current values: comparison between the results obtained
through the proposed closed-form model and the fixed parameters model.

5. Conclusions

This paper has pursued the improvement of an equivalent circuit model able to predict the
behaviour of battery voltage with varying discharge currents. An efficient identification procedure
based on an optimisation algorithm has been developed and applied to a set of reference curves easily
generated in the Simulink environment, starting with the knowledge of metadata; a combination
of the CFSO and the Levenberg–Marquardt algorithm allowed us to extract the value of each of
the parameters influencing the battery voltage at different discharge currents. Therefore, the trends
observed have been used to derive a mathematical expressions able to furnish an analytical solution
not only for each of the parameters, but in general, for the voltage of any battery. This makes the ECM
proposed in literature valid for any applications involving a variable terminal current. In particular,
such improvements are important in battery energy storage systems, where a battery needs to be
interfaced with a DC/DC converter, whose current varies continuously in order to allow the charge
and discharge. The drawback of this method is that there is no physical meaning in the relationship
obtained between parameters and the discharge current.

Author Contributions: Conceptualisation, V.L. and G.M.L.; methodology, V.L.; software, F.R.F.; validation,
V.L.; formal analysis, V.L.; investigation, G.M.L.; resources, V.L.; data curation, G.M.L.; writing–original draft
preparation, V.L.; writing–review and editing, G.M.L. and F.R.F.; supervision, F.R.F. and A.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The equivalent circuit model can be easily extended in order to consider a variable capacity.
It can be integrated by inserting the Kinetic Battery model, which takes into account the non linear
phenomena occurring in a battery, the rate and recovery effects.

As shown in Figure A1, the battery model is assumed to be composed of two charge wells,
where the charge is distributed with a capacity ratio, c (0 < c < 1): one contains the available charge
and supplies the load directly, while the other contains the bound charge and refills the available
charge well (recovery effect) through a valve, k. The charge exchanged between the wells depends on
the difference in their heights, δ = h1 − h2 and k. h1 represents the state of charge, SoC, and when it
becomes zero, the battery is full discharged.
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𝑖𝑏𝑎𝑡𝑡(t)

Bound

Charge

Available

Charge

(1-c) c

ℎ1ℎ2

k

Figure A1. Kinetic battery model: the battery is represented as structure composed by two charge
wells: bound charge and available charge. The capacity ratio, c, defines the charge distribution.

The change of charge between the wells is expressed as follows:{
∂x1
∂t = −i(t) + k[h2(t)− h1(t)]

∂x2
∂t = −k[h2(t)− h1(t)],

(A1)

where x1 and x2 are the total charge in available and bound charge well, respectively, from which comes
h1 = x1

c and h2 = x2
(1−c) . When the battery is discharged with a current, ibatt(t), the available charge,

decreases; thus, the SoC and voltage reduce (rate effect). When the load is removed, the charge flows
from the bound charge well to the available charge well until h1 and h2 are equal; this is the recovery
effect. By assuming the following initial conditions x1,0 = x1(t=0) = c · C x2,0 = x2(t=0) = (1 − c) · C
and x0 = x1,0 + x2,0 with C representing the total battery capacity, the differential equations can be
solved for a constant discharge current, I, for a period t0 < t < t1. The discharge completes when x1

becomes zero. The unavailable charge of the battery can be expressed as:Cun = (1 − c) · δ(t)

δ(t) = h2(t)− h1(t) =
x2

(1−c) −
x1
c .

(A2)

By solving equations and measuring the load current ibatt(t), the state of charge of the battery can
be computed by using:

SOC(t) =
Cavailable(t)

Cmax
= SOCin(t)−

1
Cmax

[∫
i(t)dt + Cun(t)

]
, (A3)

where Cavailable and Cmax are the available and maximum battery capabilities. The SoC decreases when
it delivers charge to load, which is expressed by current integration term.

References

1. Eichi, H.R.; Ojha, U.; Baronti, F.; Chow, M. Battery management system in smart grid and electric vehicles:
An overview. IEEE Ind. Electron. Mag. 2013, 7, 4–16. [CrossRef]

2. Luna, A.C.; Diaz, N.L.; Graells, M.; Vasquez, J.C.; Guerrero, J.M. Mixed-integer-linear-programming-based
energy management system for hybrid PV-wind-battery microgrids: Modeling, design, and experimental
verification. IEEE Trans. Power Electron. 2016, 32, 2769–2783. [CrossRef]

3. Chao, K.H.; Lai, Y.J.; Chang, W.C. Development of a Stand-Alone Photovoltaic System Considering Shaded
Effect for Energy Storage and Release. Electronics 2019, 8, 567. [CrossRef]

4. Rivera-Barrera, J.; Muñoz-Galeano, N.; Sarmiento-Maldonado, H. SoC estimation for lithium-ion batteries:
Review and future challenges. Electronics 2017, 6, 102. [CrossRef]

http://dx.doi.org/10.1109/MIE.2013.2250351
http://dx.doi.org/10.1109/TPEL.2016.2581021
http://dx.doi.org/10.3390/electronics8050567
http://dx.doi.org/10.3390/electronics6040102


Electronics 2020, 9, 78 12 of 12

5. Xu, Y.; Hu, M.; Fu, C.; Cao, K.; Su, Z.; Yang, Z. State of Charge Estimation for Lithium-Ion Batteries Based on
Temperature-Dependent Second-Order RC Model. Electronics 2019, 8, 1012. [CrossRef]

6. Wei, Z.; Lim, T.M.; Skyllas-Kazacos, M.; Wai, N.; Tseng, K.J. Online state of charge and model parameter
co-estimation based on a novel multi-timescale estimator for vanadium redox flow battery. Appl. Energy
2016, 172, 169–179. [CrossRef]

7. Astaneh, M.; Dufo-Lopez, R.; Roshandel, R.; Golzar, F.; Bernal-Agustín, J.L. A computationally efficient
Li-ion electrochemical battery model for long-term analysis of stand-alone renewable energy systems.
J. Energy Storage 2018, 17, 93–101. [CrossRef]

8. Zhao, S.; Howey, D.A. Global sensitivity analysis of battery equivalent circuit model parameters.
In Proceedings of the 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou, China,
17–20 October 2016; pp. 1–4.

9. Farmann, A.; Sauer, D.U. Comparative study of reduced order equivalent circuit models for on-board
state-of-available-power prediction of lithium-ion batteries in electric vehicles. Appl. Energy 2018, 225, 1102–1122.
[CrossRef]

10. Zhang, C.; Allafi, W.; Dinh, Q.; Ascencio, P.; Marco, J. Online estimation of battery equivalent circuit
model parameters and state of charge using decoupled least squares technique. Energy 2018, 142, 678–688.
[CrossRef]

11. Lucaferri, V.; Lozito, G.M.; Fulginei, F.R.; Salvini, A. A novel method for dynamic battery model identification
based on CFSO. In Proceedings of the 2019 15th Conference on Ph. D Research in Microelectronics and
Electronics (PRIME), Lausanne, Switzerland, 15–18 July 2019; pp. 57–60.

12. Blaifi, S.; Moulahoum, S.; Colak, I.; Merrouche, W. Monitoring and enhanced dynamic modeling of battery
by genetic algorithm using LabVIEW applied in photovoltaic system. Electr. Eng. 2018, 100, 1021–1038.
[CrossRef]

13. Hu, X.; Li, S.; Peng, H.; Sun, F. Robustness analysis of State-of-Charge estimation methods for two types of
Li-ion batteries. J. Power Sour. 2012, 217, 209–219. [CrossRef]

14. Rahimi-Eichi, H.; Balagopal, B.; Chow, M.Y.; Yeo, T.J. Sensitivity analysis of lithium-ion battery model
to battery parameters. In Proceedings of the IECON 2013-39th Annual Conference of the IEEE Industrial
Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 6794–6799.

15. Madani, S.S.; Schaltz, E.; Kær, S.K. A Review of Different Electric Equivalent Circuit Models and Parameter
Identification Methods of Lithium-Ion Batteries. Ecs Trans. 2018, 87, 23–37. [CrossRef]

16. Zhang, X.; Zhang, W.; Lei, G. A review of li-ion battery equivalent circuit models. Trans. Electr. Electron.
Mater. 2016, 17, 311–316. [CrossRef]

17. Lozito, G.M.; Salvini, A. Swarm intelligence based approach for efficient training of regressive neural
networks. Neural Comput. Appl. 2019, 31, pp. 1–12. [CrossRef]

18. EEMB Co., Ltd. Li-Ion Batteries Datasheets. Available online: https://www.ineltro.ch/media/downloads/
SAAItem/45/45958/36e3e7f3-2049-4adb-a2a7-79c654d92915.pdf (accessed on 9 December 2019).

19. CSB-Battery. Li-Ion Batteries Datasheets 100 Ah. Available online: http://www.csb-battery.com/upfiles/
dow01341217537.pdf (accessed on 9 December 2019).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/electronics8091012
http://dx.doi.org/10.1016/j.apenergy.2016.03.103
http://dx.doi.org/10.1016/j.est.2018.02.015
http://dx.doi.org/10.1016/j.apenergy.2018.05.066
http://dx.doi.org/10.1016/j.energy.2017.10.043
http://dx.doi.org/10.1007/s00202-017-0567-6
http://dx.doi.org/10.1016/j.jpowsour.2012.06.005
http://dx.doi.org/10.1149/08701.0023ecst
http://dx.doi.org/10.4313/TEEM.2016.17.6.311
http://dx.doi.org/10.1007/s00521-019-04606-x
https://www.ineltro.ch/media/downloads/SAAItem/45/45958/36e3e7f3-2049-4adb-a2a7-79c654d92915.pdf
https://www.ineltro.ch/media/downloads/SAAItem/45/45958/36e3e7f3-2049-4adb-a2a7-79c654d92915.pdf
http://www.csb-battery.com/upfiles/dow01341217537.pdf
http://www.csb-battery.com/upfiles/dow01341217537.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Battery Equivalent Circuit Model
	SoC Evaluation
	Voc-SoC Characteristic
	State Space Equations

	Identification Process
	Model for Discharging Current Dependence
	Validation and Results
	Case 1: Comparison between Optimisation Algorithms
	Case 2: Test for Different Discharge Currents
	Case 3: Trend Parameters for Li-Ion Battery for Electric Vehicles
	Case 4: Comparison between the Proposed Model and Fixed Parameters Model


	Conclusions
	
	References

