
electronics

Article

Cache Servers Placement Based on Important
Switches for SDN-Based ICN

Jan Badshah 1,†, Majed Mohaia Alhaisoni 2, Nadir Shah 1,*,† and Muhammad Kamran 3

1 Department of Computer Science, COMSATS University Islamabad, Wah Campus,
Islamabad 45550, Pakistan; janbadshahsafi@gmail.com

2 Department of Computer Science, College of Computer Science and Engineering, University of Hail,
Hail 2440, Saudi Arabia; majed.alhaisoni@gmail.com

3 Department of Cyber Security, College of Computer Science and Engineering, University of Jeddah,
Asfan Road, Jeddah 21577, Saudi Arabia; m.kamran.nuces@gmail.com

* Correspondence: nadirshah82@gmail.com
† These authors contributed equally to this work.

Received: 21 November 2019; Accepted: 24 December 2019; Published: 27 December 2019 ����������
�������

Abstract: In centralized cache management for SDN-based ICN, it is an optimization problem to
compute the location of cache servers and takes a longer time. We solve this problem by proposing to
use singular-value-decomposition (SVD) and QR-factorization with column pivoting methods of linear
algebra as follows. The traffic matrix of the network is lower-rank. Therefore, we compute the most
important switches in the network by using SVD and QR-factorization with column pivoting methods.
By using real network traces, the results show that our proposed approach reduces the computation
time significantly, and also decreases the traffic overhead and energy consumption as compared to the
existing approach.

Keywords: SDN-based ICN; centralized cache management; SVD; QR factorization

1. Introduction

Recently, Internet users are producing most of the content-centric traffic, and the amount of this
traffic is on the rise due to the popularity of video streaming services among the users, such as YouTube
and Netflix [1]. The Cisco’s Visual Networking Index reported that, due to an exponential increase
in the demand for video streaming, mobile data communication traffic would become sevenfold
by 2021 [2]. In this traffic, video traffic will be 78% of the total mobile traffic. The increasing demand for
video streaming of public users through mobile devices, the Internet speed is significant to fulfill the
desired need for end-users by efficient use of bandwidth. The original TCP/IP (Transmission Control
Protocol/Internet Protocol) model was not enough to handle these services efficiently because the
TCP/IP model uses host-based routing, which does routing and forwarding of data packets based
on hosts (i.e., based on host IP (Internet Protocol) address). Addressing this problem, researchers
proposed information-centric networking (ICN) by implementing the content-based routing at the
network layer instead of host-based routing [3].

ICN is also called named data networking (NDN). A detail working of ICN is that a source node
requests an object by initiating a request message. Named-Data-Object (NDO) specifies the object.
The message is forwarded based on NDO to the destination nodes having a copy of the object specified
by NDO. Upon receiving the request for the object, the destination node forwards the object in the
response message to the source according to the ICN routing algorithm. In the ICN routing algorithm,
each node publishes its shared objects in the network. Each forwarding node also stores a copy of the
object present in response message in the cache. The reason for this is that the forwarding node can

Electronics 2020, 9, 39; doi:10.3390/electronics9010039 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-1173-4272
http://dx.doi.org/10.3390/electronics9010039
http://www.mdpi.com/journal/electronics
http://www.mdpi.com/2079-9292/9/1/39?type=check_update&version=2

Electronics 2020, 9, 39 2 of 17

satisfy subsequent requests for the same object without forwarding to the original destination node
where the object is stored.

The traditional computer network, the one used in practice, is distributed in nature [4,5].
More specifically, the traditional computer network implements both the control and data planes in
each forwarding device (i.e., routers and switches). The distributed nature of the traditional computer
network causes several limitations, e.g., the traditional computer network is challenging to manage
and control [6]. More specifically, the vendors implement (mostly embedded in the hardware) both
the data and control planes in forwarding devices of the traditional computer network. In this closed
system, one can not experiment with the new ideas and innovations due to these hard-coded logics
in these devices [6]. Moreover, traditional computer networks are surprisingly fragile and difficult
to manage. Because these are managed using a low-level configuration of devices, for example,
policies are implemented mostly on these devices; like blocking a user, we need ACL (Access Control
List) entry to be added in the list and knowing the user IP address. To overcome these issues of the
traditional network, recently, Software Defined Network (SDN) has emerged as a new networking
architecture separating the control plane from the data plane of forwarding devices. Due to this
decoupling of the control plane from the data plane, SDN has several advantages over the traditional
network, like ease of traffic engineering and enforcing security policies. The control plane in SDN is
implemented at the logically centralized controller, and the data plane is implemented at forwarding
devices. The centralized controller communicates with forwarding devices using northbound API
(Application Programming Interface), e.g., OpenFlow Protocol. Thus, SDN is a promising technology
to make network programmable, easy to control, and manage.

Due to this paradigm shift in computer network architecture, the ICN approaches proposed for
the traditional network, like the one in [7], cannot be implemented in SDN. The reason is that the
traditional network is distributed in nature, while SDN is centralized architecture. The researchers
have suggested several approaches to support ICN functionalities in SDN; we call these approaches as
SDN-based ICN, addressing different issues like cache management, routing, communication between
the controller and ICN-enabled router, and name-based forwarding [3–5,8–26]. For cache management
in SDN-based ICN, two types of approaches are devised as follows:

(a) Pervasive caching approach: In this approach, all forwarding devices have the capabilities of
content caching according to caching policies [7]. The main advantage of such an approach
is its higher resilience to node failure and short end-to-end delay for data delivery. However,
the disadvantage of this approach is that it caches the content redundantly at many forwarding
devices. This phenomenon, in turn, results in inefficient management of cache storage. An example
approach of the pervasive caching is [4].

(b) Centralized caching approach: In this approach, the content caching storage is not available in every
forwarding device, but, instead, there are one or a few dedicated cache server(s). This approach
has several advantages as follows:

i First, this approach manages the cache storage efficiently by avoiding caching a content
redundantly.

ii Second, this approach makes communication faster as follows. In a pervasive caching approach,
a forwarding device does two primary jobs: routing and content caching. This phenomenon
makes a forwarding device more complex and reduces its performance in pervasive caching.
The centralized caching approach decouples content caching from the forwarding devices,
and the cache server performs content caching. This phenomenon increases the performance
of forwarding devices.

iii Third, the authors in [8] show that the centralized caching approach has a higher cache hit
ratio as compared to the pervasive caching approach. The reason is that the cache storage
avoids storing a large number of redundant contents. It makes space for a greater number
of unique contents in the cache storage.

Electronics 2020, 9, 39 3 of 17

iv Fourth, this approach reduces the installation cost of the network [8].

Moreover, the centralized caching approach is also advocated in many other networking
applications as follows:

i By installing the flow rules proactively for all the possible flows as the network gets running,
this can lead to the overflow of the flow table at the switches. To solve this problem, DIFANE [27]
advocates a centralized caching approach for storing the flow rules generated proactive by the
controller. More specifically, DIFANE attempts to offload the controller by generating the flow
rules for all possible flows proactively as the network gets running. Then, the controller distributes
these flow rules disjointly among the authoritative servers (we can call them cache servers).
When a flow arrives at the switch, and the switch does not have the flow rules for the flow,
then the switch asks one of the authoritative servers instead of the controller for the flow rules.
This phenomenon offloads the controller from these flows. Furthermore, the authoritative servers
are attached to the switches; thus, DIFANE uses an in-band communication model [28].

ii For a Server and Network Assisted DASH (SAND) architecture used for the video streaming
applications, the authors in [29] combine both SDN and NFV (Network Functions Virtualization)
technologies by creating virtualized caches using NFV hosted by the servers connected to
the switches. The authors deploy the virtualized caches in the network by considering the number
of online requesting hosts (clients), bandwidth of the paths, and the locations in the network.

iii The OFELIA project [14] places the cache server outside the SDN switch in order to support the
ICN functionality in SDN.

The recent approaches proposed for centralized cache management in SDN-based ICN do not
place the cache servers efficiently as follows. The authors in [8] deploy the cache servers based
on minimum path-stretch values. However, it produces more traffic overhead. To reduce the
traffic overhead, Badshah et al. [28] suggest deploying the cache servers by considering higher
closeness centrality, minimum path-stretch values, and higher betweenness centrality of the network.
However, when the number cache servers get increased, the time taken to compute the location of
cache servers using the values of closeness centrality, path-stretch, and betweenness centrality is very
computationally extensive due to the NP (non-polynomial) nature of the problem. We observe that the
computation time of this approach, i.e., the existing one in [28], for two cache servers and three cache
serves are about 9 h and 1 month, respectively, in the topology of 415 switches using the real network
traces (https://github.com/fg-inet/panoptisim Accessed on 4 July 2019) on the desktop computer of
Intel CPU i3 which runs Fedora Linux 23 . We solve this problem by using the concept of important
switches as follows.

Through experimental results, the researchers show that the traffic matrices in the networks are
approximately low-rank [30], i.e., the traffic matrices are sparse. This phenomenon means that most of
the data flows are passing through only a few switches/routes. We call these switches as important
switches in the network. The sparse matrices can be solved by using singular-value-decomposition
(SVD) and QR factorization with column pivoting techniques of linear algebra [31]. We describe in
detail these steps in Section 3.2. Our proposed approach reduces the computation time to a few seconds
for our topology of 415 switches. After computing the important switches, this paper proposes to place
the cache servers on the most important switches according to the number of required cache servers.
Through simulation on the real network traces, the results show that this approach reduces not only the
computation time, but also performs better than the existing approach [28] in terms of traffic overhead
in the network.

We organize the rest of the paper as follows. We discuss the related work in Section 2. Section 3
explains the proposed approach in detail. The results are discussed in Section 4. Finally, Section 5
concludes the paper along with future research directions.

https://github.com/fg-inet/panoptisim

Electronics 2020, 9, 39 4 of 17

2. Related Work

We are going to discuss the working of some of the related existing approaches in this section.
Michael et al. [10] extended Home Router Sharing based on Trust (HORST) [32] by adopting HORST
in SDN architecture. HORST [32] is an existing system to share among trusted users the access to
Wi-Fi. Moreover, by utilizing the information of users from their online-social-network (OSN) profiles,
HORST pre-fetches videos and caches at home routers. HORST also interconnects home routers in
the peer-to-peer (P2P) overlay. This paper uses an SDN controller for content distribution and request
forwarding in HORST. Furthermore, the authors introduced three tiers architecture for content sharing
by using home router, caches within Internet Service Provider (ISP), and at the content distribution
network (CDN) as follows. At tier-1, their proposed approach stores the data in the data center of
content provider. At tier-2, their approach caches the data at edge networks and ISPs using the CDN
fashion. At tier-3, their proposed approach utilizes the home routers of the user network to cache data
by using HORST. Their proposed approach forwards the request of the user for video content to the
closest cache in such a way to improve the quality of service and the quality of experience, and reduces
the inter-domain traffic for ISP networks. However, their proposed approach does not consider path
stretch, closeness centrality, and other parameters for cache server placement.

Kalghoum et al. in [11] suggested a novel architecture Forwarding-Content-Caching and Routing
Name Data Networking based Software Defined Networking (FCR-NS). This model resolves the three
main issues related to forwarding strategy, speed of router, and cache replacement policy. The authors
state that the existing architectures are using the best-route forwarding strategy that causes wastage of
different resources. The reason behind the slow processing is the visiting of the Content Store (CS)
table, Pending Interest Table (PIT), and Forwarding Information Base (FIB) table for searching the
request message and lack of efficient cache replacement policy. The authors resolved the problems
as mentioned above by using both the concept of decoupling of SDN and set bloom filter tables.
The efficient cache replacement strategy is calculating the switches’ popularity on a real-time basis.
The SDN controller manages the fast-intra-zone routing, and the bloom filter (BF) tables are using to
manage the fast inter-zone routing process. The default policy for content caching is leaving a copy of
the request message on all routers on the path. This policy leads to content redundancy in the network
and resource consumption. The authors suggest an architecture of several zones, as shown in Figure 1,
and these are further divided into two main planes, the data plane and centralized SDN controller,
which is further composed of four tables.

The proposed FCR-NS has four tables in the Controller and Five Tables in the FCR-NS switch.
The controller tables are Global-Top table, Global-Data table, Routing Information Base (RIB) table,
and Global-Data-BF table. However, the FCR-NS switch is composed of five tables that are CS table
for caching, CS-BF table, FIB table, FIB-BF table, and PIT table. The authors proposed a replacement
policy for content caching that considers the popularity of data. The replacement takes place based
on the FIB table, which stores the record of popular content. Furthermore, the authors improve the
routing by dividing of routing into intra-zone and inter-zone. The FIB tables of switches in intra-zone
and contains popular data the network, which is used for the fast reply of request messages from the
nearest nodes. The controller uses Global-Data and Global-Top tables for the construction of RIB and a
table for the storage for all data in that network. Then, the controller constructs the FIB table for each
switch in the network. The Dijkstra routing algorithm is used to perform this activity and runs for the
addition of new data in the Global-Data table and updates the switches of the zone. The inter-zone
routing in this approach works as follows. If the node response message is pending in a zone, the node
forwards a request message to the controller and delivers to the requester in case of availability in
the controller zone. Otherwise, the request message is forwarded to other controllers of the network.
After receiving the request message from another controller, the controller checks the Global-Data-BF
table and sends the response message back to requesting controller. This process continues among the
controller of all zones. The Global-Data-BF bloom filter plays a basic role to speed up and make more
efficient the search between zones.

Electronics 2020, 9, 39 5 of 17

 Main Zone

 Zone 3

 Zone 2

 Zone 1

Figure 1. The FCR-NS architecture [11].

The authors in [14] implemented a new architecture, called OFELIA, as shown in Figure 2.
The OFELIA project is a pan-European experimental platform open to researchers based on OpenFlow.
In the proposed architecture, “Inter Working Elements” (IWE) in the ICN node translates regular ICN
format of non-Openflow to Openflow format and vice versa. Cache server is implemented outside the
SDN switch (OF-switch). This approach can also be called the centralized caching approach.

Kim et al. [8] suggested a centralized caching approach instead of maintaining a cache at each
router in the network for ICN. Their proposed approach distributes the communication overhead
between the router and cache server by the reduction of inter-domain traffic due to a higher hit ratio at
the cache server as compared to the pervasive caching approach. Second, in the pervasive caching
approach, if a router is processing one request, then other packets will wait. If other packets belong
to real-time traffic, then they will get delayed and may become useless. However, in their proposed
centralized cache server approach, the probabilities of such occurrences are reduced to offloading the
cache lookup from the routers. Figure 3 depicts the working of their proposed approach, and its detail
is as follows.

The proposed approach deploys the cache server such that at least one router between two
edge routers of a domain should be connected to the cache server. It is a set cover problem that is
NP-Complete. To reduce this computation complexity, the authors choose the routers which exist
in most paths (in the shortest paths among the edge routers). Therefore, the proposed approach
is placing the cache server based on path stretch value. This produces more routing overhead in
the network. To address this problem, the authors in [28] place the cache servers in the network
based on the optimum value of closeness centrality, path-stretch, and betweenness centrality values.
However, this is an optimization problem for placing the cache server based on the optimum value of
path-stretch, betweenness centrality, and closeness centrality. More specifically, when the number of
cache servers gets increased, the time taken to compute the location of cache servers using the values of
closeness centrality, path-stretch, and betweenness centrality becomes very computationally extensive
due to NP (non-polynomial) nature of the problem. To address this problem, we suggest placing the
cache servers in the SDN-based ICN based on the important switch/router concept; we describe its
detail in the following section. A comparison of the existing approaches described above are given
in Table 1.

Electronics 2020, 9, 39 6 of 17

Figure 2. Details of OpenFlow solution to support ICN [14].

ER_1 ER_2

ER_3 ER_4

R1 R2

R3

R4 R5

Interest:

(a)

ER_1 ER_2

ER_3 ER_4

R1 R2

R3

R4 R5

Response:

(b)
Figure 3. The working of the proposed approach in [8]; (a) interest forwarding; (b) response forwarding.

Table 1. The comparison of existing approaches for SDN-based ICN.

Approach Centralized/Pervasive Caching Cache Replacement Policy Single/Multiple Controller(s) Cache Deployment

[10] Pervasive Not Discussed Single Random
[11] Pervasive Popularity-based Multiple Random
[14] Centralized Not Discussed Multiple Random
[8] Centralized Not Discussed Multiple Path-Stretch

[28] Centralized lFIFO Multiple Path-Stretch & closeness & betweenness

3. Proposed Work

In our proposed approach, we call it Cache Server Placement based on Important Switches
(CSP-IS), which contain the following components.

Electronics 2020, 9, 39 7 of 17

3.1. Traffic Matrix Computation

We assume that the network is running for some time (may be days or weeks) and has the data
traffic log. From this traffic, we store the number of flows passing through the switches at different time
intervals in a matrix M ∈ <t×s, where t is the number of rows representing the number of consecutive
time intervals, and s is the number of columns representing total number of switches in the network.
More specifically, a row i represents the total number of flows passing through all switches at the
interval i, and a column j denotes the time series of number of flows passing through jth switch in
the network. It is further assumed that t >> s. After obtaining the traffic matrix, we compute the
important switches, as described in the following section.

3.2. Computing Important Switches

As mentioned before that the traffic matrices of the network are spars, we can solve it by using
the SVD and QR factorization with column pivoting techniques of linear algebra as follows. First,
our proposed approach applies SVD function (technique) on the matrix M in order to show how SVD
can reveal the spatial correlation. After applying the SVD on the matrix M, it decomposes the matrix
into three matrices as given in Equation (1):

Mt×s = UtxtSt×sVT
s×s, (1)

where U ∈ <t×t and UTU = I, V ∈ <s×s and VTV = I, and St×s is a diagonal matrix with diagonal
values; they are, say, represented by {σi|i ∈ {1, ..., t}} in descending order (i.e., a diagonal value
σi ≥ σi+1). These diagonal values are also called singular values and represent the importance of
a switch in the matrix M. Utxt is known as the left singular matrix. Utxt’s columns , say they are
represented as {ui|i ∈ {1, ...t}}, represent the left singular vectors and are orthogonal to each other.
Vs×s is the right singular matrix. VT

s×s’s columns, say they are represented by {vi|i ∈ {1, ..., s}},
are known as the right singular vectors and are orthogonal to each other.

The relation given in Equation (2) is the crucial property of SVD:

Mt×s = σ1u1vT
1 + σ2u2vT

2 + ... + σsusvT
s . (2)

It is worth noting that a singular value can be σi ≥ 0 in Equation (2). Suppose that we have
q number of positive singular values out of s number of singular values. Then, one can infer from
Equation (2) that every column of M can be computed by a linear combination of q left singular vectors,
{ui|σi > 0, i ∈ {1, ...q}}, and every one of these vectors ui has its coefficient of a positive singular
value. The q is called the rank of M. These q left singular vectors are orthogonal basic vectors and
spanning the column space of M. This phenomenon indicates that each M’s column represents a linear
combination of these q basic vectors. In other words, the q basic vectors can be recovered using exactly
the q columns of M [31]. We call such q columns in M as its basic columns. Thus, by considering
the traffic matrix M ∈ <t×s of rank q, we compute its q basic columns, which represent the q basic
switches in our target scenario. Therefore, the traffic information passing through each switch is
completely represented using the linear combination of the traffic information passing through such
q basic switches. In other words, we can completely and correctly represent the matrix M through
these q basic columns. For collecting the traffic information passing through the switch, the rank q of a
traffic matrix shows that traffic information passing though q switches can be used to completely and
correctly recover the global traffic matrix. Moreover, the traffic matrix M of a network usually also
has a lower rank, say k, which is also known as effective rank and k� q. This indicates that the set of
singular values are sparsely distributed. In other words, for traffic matrix M, we have only a few large
singular values, and other singular values have minimal values.

To explain this concept, let consider Equation (2) again. This equation shows that the information
of the matrix M is distributed into s terms in the right-hand side of the equation. Each term σiuivT

i is

Electronics 2020, 9, 39 8 of 17

the product of a coefficient σi and a matrix uivT
i . Suppose that the first k terms are very large singular

values, where k � q, and the rest are small singular values. This means that the first k terms in
Equation (2) concentrates a major portion of M’s information . This, in turn, indicates that only k basic
vectors can represent the whole matrix M. In comparison with the considering all columns of M and
using only q basic columns, the approximated representation of M using only k basic columns decreases
the computation time by decreasing a large number of required basic columns. Now, we have to find
k � q basic columns of M such that they can be used to approximately represent M. This problem
belongs to subset selection problems in linear algebra [31] and is NP-complete. There is no algorithm
to determine its optimal solution. However, our proposed approach use an approximation solution
in [31] to compute a subset of k columns of M that represent the space formed by its first k basic
vectors {ui|i ∈ {1, ...k}}. The first k basic vectors represent the basic vectors ui in the first k terms in the
right-hand side of Equation (2). The switches associated with the k basic columns in M are called basic
or important switches. We explain the subset selection problem to find k basic columns as follows.

Problem 1. For the matrix Mt×s and the integer k,the subset selection problem is to find the permutation
matrix P such that

MP = [M1t×k M2t×(s−k)], (3)

where M1t×k and M2t×(s−k) are matrices. The goal is to contain maximum information and to let all the
columns sufficiently independent in M1t×k.

To determine all the columns sufficiently independent of M1, it means to maximize the smallest
singular value of M1. For this purpose, first, our proposed approach performs SVD on M as given in
Equation (1). After this, our proposed approach multiplies the matrix P with the right singular matrix
V and gets:

PTV =

(
V11 V12

V21 V22

)
,

where V11<k∗k. In case V11 is non-singular, we can obtain the lower bound on the smallest singular
value σk(M1) of M1 as follows:

σk(M1) ≥ σk(M)

||V−1
11 ||

, (4)

where σk (M1) represents the kth (smallest) singular value of M1. By maximizing σk (M1),
it is equivalent to maximizing the lower bound of σk (M1). This is equivalent to minimizing ||V−1

11 || in
Equation (4). To solve this problem, then our proposed approach applies the QR factorization with
column pivoting [31] on M . Algorithm 1 describes the overall solution. After computing the important
switches, we configure the cache servers to the important switches and do the necessary configuration;
we describe the procedure in Section 3.3.

Electronics 2020, 9, 39 9 of 17

Algorithm 1 Algorithm for Finding Important Switches.

Input: matrix Mt×s and integer k

Output: MP = (M1, M2) where M1 is matrix of t× k

Step1: Apply SVD over Mt×s using Equation (1)

Step2: Apply QR factorization with column pivoting to M using following Equation:

M = QRPT

Here, Q, R, and P are matrices. P is a permutation matrix.

Step2: Perform permutation to all columns of M through multiplication of M with P. After this,
the first k columns of M is M1 as given below

MP = [M1t×k M2t×(s−k)]

3.3. Configuring Cache Server Information

After computing the k number of the most important switches as described in Section 3.2,
we place these cache servers by attaching a cache server with one of the important switches at a
time. After placing the cache servers in the network, our proposed approach configures the location
information at the data plane by using the access control list (ACL) commands at the controller. Then,
the controller forwards the flow rules to all forwarding devices by instructing the forwarding devices
to forward a request for content to one of the closest cache servers. As the network gets configured,
we assume that every content provider publishes the information of its all contents at the controller.
Thus, the controller has the global view of which content is available at which content provider. When a
host wants to retrieve the content (say C1), the host forwards the content request to the first switch.
After receiving a content request, a switch forwards the content request to the nearest cache server
(as the controller at each switch already configures this). When the cache server (say CS1) receives the
content request, CS1 looks for the matching in its cache. If CS1 finds the matching, then the content
reply is sent to the requesting host. Otherwise, CS1 forwards the content request to the controller.
After receiving the content request, the controller computes the best path to the content provider and
installs the path in the data plane. After this, the controller forwards the content request to the content
provider. When the content provider receives the content request, the content provider looks for in
its list of shared content for matching. If the content provider finds the matching, then the content
provider sends the content reply on the reverse path established by the controller toward the CS1.
After receiving the content reply, CS1 stores a copy of the content with itself and forwards the content
reply toward the requesting host. If the cache is full, then first-in-first-out (FIFO) replacement is used
by the CS1. We divide content into chunks, and a node transmits a chunk at a time.

4. Results and Analysis

For performance comparison, we took the network traces from the website (https://github.com/
fg-inet/panoptisim). We assume that there are 2590 hosts that are accessing/sharing 10,000 files.
The traces have 415 forwarding devices. Furthermore, we assume a file of size 106 chunks and a
chunk of 1500 bytes. Moreover, we assume that the cache server can process 1200 content requests
per second and storage capacity of 4× 108 chunks. Our simulation runs on desktop Intel CPU i3,
which runs Fedora Linux 23. The exiting scheme [28] deploys the cache servers using the values
of path-stretch, betweenness, and closeness centralities. We analyze the performance comparison
of the existing approach [28] and our proposed approach in terms of computation time and traffic
overhead. We present the results considering the number of cache servers from 1 to 3, and the number
of sources requesting the contents from 1000 to 1800. The traffic overhead shows the number of
transmissions at the network layer. Table 2 shows that the computation time of the existing approach

https://github.com/fg-inet/panoptisim
https://github.com/fg-inet/panoptisim

Electronics 2020, 9, 39 10 of 17

increases as the number of cache servers is increasing. In our assumed simulation environment, it took
about a month to compute the location for three cache servers. However, the proposed approach can
compute the importance of all switches in a few seconds. Our proposed approach reduces not only the
computation time, but also reduces the traffic overhead when there is more than one cache server as
indicated in Figures 4–6. From these figures, one can also note that the reduction of traffic overhead
increases as the number of sources increases. Thus, our proposed approach solves the problem by
reducing not only the computation time, but also decreasing the traffic overhead in the network.

Table 2. The comparison of computation time in hours.

Number of Cache Servers Proposed Approach Existing Approach

1 0.001111111 h 1.887333333 h
2 0.001111111 h 20.3 h
3 0.001111111 h 1492.323001 h

0

2

4

6

8

10

12

1000 1200 1400 1600 1800

Existing Approach Proposed Approach

The Comparison of Routing Overhead

Number of Sources

R
o
u
ti

n
g
 o

v
e
rh

e
a
d
 (

n
u
m

b
e
r

o
f

p
a
c
k
e
ts

 t
ra

n
sm

is
si

o
n
s)

 i
n

M
e
g
a
 U

n
it

Figure 4. The comparison of traffic overhead of the existing and proposed approaches for one cache server.

Energy consumption is an important parameter for evaluating a protocol of computer networking.
As we have stated above that our proposed approach reduces traffic overhead, this can also reduce the
energy consumption in the network and, consequently, can achieve the objective of green computing.
We use the energy model described in [33] to show the results of energy consumption for per-byte
transmit and receive, and per-packet processing by varying both the number of cache servers and
the number of flows. We show the reduction of energy consumption as compared to the existing
approaches in order to show the significance of our proposed approach. The traffic overhead of both
our approach and the existing approach is the same, as shown in Figure 4. Therefore, the difference
between the energy consumption of our proposed approach and the existing approach is zero, and we
do not show it in the graph. Figures 7–9 show that our proposed approach reduces significantly
the per-byte transmit and receive energies, per-packet processing energy, respectively, for two cache
servers. Similarly, one can note from Figures 10–12 that our proposed approach reduces more per-byte
transmit and receive energy, and per-packet processing energy when we increase the number of cache

Electronics 2020, 9, 39 11 of 17

servers from 2 to 3. The reason is that, when we have more number of cache servers in the network,
then the path length from a content requester to the closest cache servers is decreased. This reduces
the number of transmissions and the energy consumption.

0

1

2

3

4

5

6

7

8

9

10

1000 1200 1400 1600 1800

Proposed Approach Existing Approach

R
o

u
ti

n
g
 o

v
er

h
ea

d
 (

n
u

m
b
er

 o
f

p
ac

k
et

s
tr

an
sm

is
si

o
n
s)

 i
n

M
eg

a
U

n
it

The Comparison of Routing Overhead

Number of Sources

Figure 5. The comparison of traffic overhead of the existing and proposed approaches for two
cache servers.

0

1

2

3

4

5

6

1000 1200 1400 1600 1800

Proposed Approach Existing Approach

R
o
u

ti
n
g
 o

v
er

h
ea

d
 (

n
u
m

b
er

 o
f

p
ac

k
et

s
tr

an
sm

is
si

o
n

s)
 i
n

M
eg

a
U

n
it

The Comparison of Routing Overhead

Number of Sources

Figure 6. The comparison of traffic overhead of the existing and proposed approaches for three
cache servers.

Electronics 2020, 9, 39 12 of 17

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1000 1200 1400 1600 1800

Reduction in Transmission Energy Consumption for our
proposed approach in comparison to the existing approach

R
ed

uc
ti

on
 i

n
tr

an
sm

is
si

on
 e

ne
rg

y
fo

r
ou

r
pr

op
os

ed

ap
pr

oa
ch

 in
 J

ou
le

s

Reduction in Transmission Energy for Our Proposed Approach

Number of Sources

Figure 7. Reduction in Transmission Energy for our proposed approach in comparison to the existing
for two cache servers.

0

0.05

0.1

0.15

0.2

0.25

0.3

1000 1200 1400 1600 1800

Reduction in Receive Energy Consumption for our proposed
approach in comparison to the existing approachR

ed
uc

ti
on

 i
n

re
ce

iv
e

en
er

gy
 c

on
su

m
pt

io
n

fo
r

ou
r

pr
op

os
ed

ap

pr
oa

ch
 i

n
 J

ou
le

s

Reduction in Recieve Energy Consumption

Number of Sources

Figure 8. Reduction in Receive Energy for our proposed approach in comparison to the existing for
two cache servers.

Electronics 2020, 9, 39 13 of 17

0

0.005

0.01

0.015

0.02

0.025

0.03

1000 1200 1400 1600 1800

Reduction in Processing Energy Consumption for our
proposed approach in comparison to the existing approachR

ed
uc

ti
on

 i
n

pr
oc

es
si

ng
 e

ne
rg

y
 f

or
 o

ur
 p

ro
po

se
d

ap
pr

oa
ch

in

 J
ou

le
s

Reduction in Processing Energy

Number of Sources

Figure 9. Reduction in Processing Energy for our proposed approach in comparison to the existing for
two cache servers.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1000 1200 1400 1600 1800

Reduction in Transmission Energy Consumption of our proposed
approach in comparison to the existing approach

R
ed

u
ct

io
n

in
 t

ra
ns

m
is

si
on

 e
n

er
gy

 f
o

r
ou

r
pr

op
os

ed

ap
pr

oa
ch

 i
n

Jo
ul

es

Reduction in Transmission Energy for Our Proposed Approach

Number of Sources

Figure 10. Reduction in Transmission Energy for our proposed approach in comparison to the existing
for three cache servers.

Electronics 2020, 9, 39 14 of 17

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1000 1200 1400 1600 1800

Reduction in Receive Energy Consumption of our proposed
approach in comparison to the existing approach

R
ed

uc
ti

on
 i

n
re

ce
iv

e
en

er
gy

 f
or

 o
ur

 p
ro

po
se

d
ap

pr
oa

ch
 i

n
Jo

ul
es

Reduction in Receive Energy for Our Proposed Approach

Number of Sources

Figure 11. Reduction in Receive Energy for our proposed approach in comparison to the existing for
three cache servers.

0

10

20

30

40

50

60

70

1000 1200 1400 1600 1800

Reduction in Processing Energy Consumption of our proposed
approach in comparison to the existing approach

R
ed

uc
ti

on
 i

n
pr

oc
es

si
ng

 e
ne

rg
y

fo
r

ou
r

pr
op

os
ed

 a
pp

ro
ac

h
in

 J
ou

le
s

Reduction in Processing Energy for Our Proposed Approach

Number of Sources

Figure 12. Reduction in Processing Energy for our proposed approach in comparison to the existing
for three cache servers.

Electronics 2020, 9, 39 15 of 17

5. Conclusions

The paper solved the cache servers placement problem for SDN-based ICN using SVD and QR
factorization techniques of linear algebra. The proposed approach reduces the computation time from
one month to a few seconds as compared to the existing approach. Moreover, the proposed approach
also reduces traffic overhead and energy consumption.

Author Contributions: Conceptualization, J.B. and N.S.; methodology, J.B. and N.S.; software, J.B. and N.S.;
validation, J.B. and N.S.; formal analysis, J.B. and N.S.; investigation, J.B. and N.S.; resources, J.B. and N.S.;
data curation, J.B. and N.S.; writing—original draft preparation, J.B. and N.S.; writing—review and editing, J.B.,
M.M.A. and N.S.; visualization, J.B. and N.S.; writing—review and editing, supervision, N.S. and M.K.; project
administration, J.B. and N.S.; funding acquisition, M.M.A.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

TCP/IP Transmission Control Protocol/Internet Protocol
SDN Software Defined Network
ICN Information-Centric Networking
IP Address Internet Protocol Address
NDN Name Data Networking
NDO Name-Data-Object
API Application Programming Interface
ACL Access Control List
NFV Network Functions Virtualization
SAND Server and Network Assisted DASH
NP Non-Polynomial
SVD Singular Value Decomposition
HORST Home Router Sharing based on Trust
OSN Online Social Network
ISP Internet Service Provider
CDN Content Distribution Network
P2P Peer-to-Peer
LIFO Last-In-First-Out

References

1. Cisco Systems. Cisco Visual Networking Index: Forecast and Methodology; Technical Report, White Paper; Cisco
Systems: San Jose, CA, USA, 2016.

2. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update; White Paper; Cisco Systems: San Jose,
CA, USA, 2017.

3. Kalghoum, A.; Gammar, S.M.; Saidane, L.A. Towards a novel cache replacement strategy for Named Data
Networking based on Software Defined Networking. Comput. Electr. Eng. 2018, 66, 98–113. [CrossRef]

4. Torres, J.V.; Alvarenga, I.D.; Boutaba, R.; Duarte, O.C.M.B. An autonomous and efficient controller-based
routing scheme for networking Named-Data mobility. Comput. Commun. 2017, 103, 94–103. [CrossRef]

5. Gao, S.; Zeng, Y.; Luo, H.; Zhang, H. Scalable control plane for intra-domain communication in software
defined information centric networking. Future Gener. Comput. Syst. 2016, 56, 110–120. [CrossRef]

6. Shah, N.; Giaccone, P.; Rawat, D.B.; Rayes, A.; Zhao, N. Solutions for adopting software defined network
in practice. Int. J. Commun. Syst. 2019, 32, e3990. [CrossRef]

7. Ioannou, A.; Weber, S. A survey of caching policies and forwarding mechanisms in information-centric
networking. IEEE Commun. Surv. Tutor. 2016 18, 2847–2886. [CrossRef]

8. Kim, D.; Kim, Y. Enhancing NDN feasibility via dedicated routing and caching. Comput. Netw. 2017, 126,
218–228. [CrossRef]

http://dx.doi.org/10.1016/j.compeleceng.2017.12.025
http://dx.doi.org/10.1016/j.comcom.2017.02.001
http://dx.doi.org/10.1016/j.future.2015.10.017
http://dx.doi.org/10.1002/dac.3990
http://dx.doi.org/10.1109/COMST.2016.2565541
http://dx.doi.org/10.1016/j.comnet.2017.07.011

Electronics 2020, 9, 39 16 of 17

9. Van Adrichem, N.L.; Kuipers, F.A. NDNFlow: Software-defined named data networking. In Proceedings of
the 1st IEEE Conference on Network Softwarization (NetSoft), London, UK, 13–17 April 2015; pp. 1–5.

10. Seufert, M.; Burger, V.; Wamser, F.; Tran-Gia, P.; Moldovan, C.; Hoßfeld, T. Utilizing home router caches to
augment CDNs toward information-centric networking. In Proceedings of the European Conference on
Networks and Communications (EuCNC), Paris, France, 29 June–2 July 2015; pp. 1–5.

11. Kalghoum, A.; Saidane, L.A. FCR-NS: A novel caching and forwarding strategy for Named Data Networking
based on Software Defined Networking. Clust. Comput. 2019, 22, 1–14. [CrossRef]

12. Kalghoum, A.; Gammar, S.M. Towards new information centric networking strategy based on software
defined networking. In Proceedings of the IEEE Wireless Communications and Networking Conference
(WCNC), San Francisco, CA, USA, 19–22 March 2017.

13. Veltri, L.; Morabito, G.; Salsano, S.; Blefari-Melazzi, N.; Detti, A. Supporting information-centric functionality
in software defined networks. In Proceedings of the IEEE International Conference on Communications
(ICC), Ottawa, ON, Canada, 10–15 June 2012; pp. 6645–6650.

14. Salsano, S.; Blefari-Melazzi, N.; Detti, A.; Morabito, G.; Veltri, L. Information centric networking over SDN
and OpenFlow: Architectural aspects and experiments on the OFELIA testbed. Comput. Netw. 2013, 57–16,
3207–3221. [CrossRef]

15. Mai, H.L.; Aouadj, M.; Doyen, G.; Mallouli, W.; de Oca, E.M.; Festor, O. Toward Content-Oriented
Orchestration: SDN and NFV as Enabling Technologies for NDN. In Proceedings of the IFIP/IEEE
Symposium on Integrated Network and Service Management (IM),Arlington, VA, USA, 8–12 April 2019;
pp. 594–598.

16. Aubry, E.; Silverston, T.; Chrisment, I. SRSC: SDN-based routing scheme for CCN. In Proceedings of the 1st
IEEE Conference on Network Softwarization (NetSoft), London, UK, 13–17 April 2015.

17. Marchal, X.; Cholez, T.; Festor, O. µNDN: An Orchestrated Microservice Architecture for Named Data
Networking. In Proceedings of the ACM-ICN1́8-5th ACM Conference on Information-Centric Networking,
Boston, MA, USA, 21–23 September 2018.

18. Zhang, Q.Y.; Wang, X.W.; Huang, M.; Li, K.Q.; Das, S.K. Software defined networking meets information
centric networking: A survey. IEEE Access 2018, 6, 39547–39563. [CrossRef]

19. Lai, J.; Fu, Q.; Moors, T. Using SDN and NFV to enhance request rerouting in ISP-CDN collaborations.
Comput. Netw. 2017, 7, 176–187. [CrossRef]

20. Arumaithurai, M.; Chen, J.; Maiti, E.; Fu, X.; Ramakrishnan, K.K. Prototype of an ICN based approach for
flexible service chaining in SDN. In Proceedings of the IEEE Conference on Computer Communications
Workshops (INFOCOMWKSHPS), Hong Kong, China, 26 April–1 May 2015.

21. Petropoulos, G.; Katsaros, K.V.; Xezonaki, M.E. OpenFlow-compliant topology management for
SDN-enabled Information Centric Networks. In Proceedings of the IEEE Symposium on Computers and
Communications (ISCC), Heraklion, Crete, Greece, 3–6 July 2017.

22. Nascimento, E.B.; Moreno, E.D.; de Macedo, D.D.J. A Programmable Network Architecture for
Information Centric Network using Data Replication in Private Clouds. In Proceedings of the IEEE 26th
International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE),
Poznan, Poland, 21–23 June 2017; pp. 137–142.

23. Mahmood, A.; Casetti, C.; Chiasserini, C.F.; Giaccone, P.; Härri, J. Efficient caching through stateful SDN in
named data networking. Trans. Emerg. Telecommun. Technol. 2018, 29, 3271. [CrossRef]

24. Ghosh, U.; Chatterjee, P.; Tosh, D.; Shetty, S.; Xiong, K.; Kamhoua, C. An SDN based framework for
guaranteeing security and performance in information-centric cloud networks. In Proceedings of the
IEEE 10th International Conference on Cloud Computing (CLOUD), Honolulu, CA, USA, 25–30 June 2017;
pp. 749–752.

25. Liu, Z.; Zhu, J.; Zhang, J.; Liu, Q. Routing algorithm design of satellite network architecture based on SDN
and ICN. Int. J. Satell. Commun. Netw. 2019, 38, 1–15. [CrossRef]

26. Xing, C.; Ding, K.; Hu, C.; Chen, M.; Xu, B. SD-ICN: Toward Wide Area Deployable Software Defined
Information Centric Networking. KSII Trans. Internet Inf. Syst. 2016, 10, 2267–2285.

27. Yu, M.; Rexford, J.; Freedman, M.J.; Wang, J. Scalable flow-based networking with DIFANE. ACM Sigcomm
Comput. Commun. Rev. 2011, 41, 351–362.

http://dx.doi.org/10.1007/s10586-018-02887-w
http://dx.doi.org/10.1016/j.comnet.2013.07.031
http://dx.doi.org/10.1109/ACCESS.2018.2855135
http://dx.doi.org/10.1016/j.comnet.2016.12.010
http://dx.doi.org/10.1002/ett.3271
http://dx.doi.org/10.1002/sat.1304

Electronics 2020, 9, 39 17 of 17

28. Badshah, J.; Kamran, M.; Shah, N.; Abid, S.A. An Improved Method to Deploy Cache Servers in Software
Defined Network-based Information Centric Networking for Big Data. J. Grid Comput. 2019, 17, 255–277.
[CrossRef]

29. Clayman, S.; Kalan, R.S.; Sayit, M. Virtualized Cache Placement in an SDN/NFV Assisted SAND Architecture.
In Proceedings of the IEEE International Black Sea Conference on Communications and Networking
(BlackSeaCom), Batumi, Georgia, 4–7 June 2018.

30. Hohlfeld, O.; Kempf, J.; Reisslein, M.; Schmid, S.; Shah, N. Guest editorial scalability issues and solutions for
software defined networks. IEEE J. Sel. Areas Commun. 2018, 36, 2595–2602. [CrossRef]

31. Golub, G.H.; Van L.C.F. Matrix computations. In Matrix Computations; JHU Press: Baltimore, MD, USA, 2007;
pp. 32–58.

32. Seufert, M.; Burger, V.; Hoßfeld, T. HORST-Home router sharing based on trust. In Proceedings of the
IEEE 9th International Conference on Network and Service Management (CNSM), Zurich, Switzerland,
14–18 October 2013; pp. 402–405.

33. Orgerie, A.C.; Amersho, B.L.; Haudebourg, T.; Quinson, M.; Rifai, M.; Pacheco, D.L.; Lefèvre, L. November.
Simulation toolbox for studying energy consumption in wired networks. In Proceedings of the 13th IEEE
International Conference on Network and Service Management (CNSM), Tokyo, Japan, 26–30 November 2017.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10723-019-09477-z
http://dx.doi.org/10.1109/JSAC.2018.2872214
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Proposed Work
	Traffic Matrix Computation
	Computing Important Switches
	Configuring Cache Server Information

	Results and Analysis
	Conclusions
	References

