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Abstract: When training a deep learning model with distributed training, the hardware resource
utilization of each device depends on the model structure and the number of devices used for training.
Distributed training has recently been applied to edge computing. Since edge devices have hardware
resource limitations such as memory, there is a need for training methods that use hardware resources
efficiently. Previous research focused on reducing training time by optimizing the synchronization
process between edge devices or by compressing the models. In this paper, we monitored hardware
resource usage based on the number of layers and the batch size of the model during distributed
training with edge devices. We analyzed memory usage and training time variability as the batch
size and number of layers increased. Experimental results demonstrated that, the larger the batch
size, the fewer synchronizations between devices, resulting in less accurate training. In the shallow
model, training time increased as the number of devices used for training increased because the
synchronization between devices took more time than the computation time of training. This paper
finds that efficient use of hardware resources for distributed training requires selecting devices in
the context of model complexity and that fewer layers and smaller batches are required for efficient
hardware use.

Keywords: deep learning; distributed training; edge computing; Internet of Things; performance
monitoring

1. Introduction

The number of Internet of Things (IoT) devices connected to cloud servers is growing, which
increases the amount of data that needs to be processed by those servers [1]. Consequently, network
response latency between cloud servers and IoT devices is increasing. To reduce latency, edge
computing [2] can be applied for real-time calculation on a device that generates and collects data.

Recently, intelligent environments such as smart homes and smart factories that combine deep
learning (DL) with edge devices are more common [3-6]. Offloading the calculation of the edge
device to the server reduces the execution time of the DL application. However, edge devices with
high-performance chipsets, such as quad-cores, enable DL applications to be handled locally. However,
only the inference phase is executed locally, while the training phase is executed on the server [7].
The training phase requires significant hardware resources and time.

Training a DL model requires sending collected data from the edge device to the server. As security
threats to edge computing systems increase, server dependence needs to be reduced [8,9]. This problem
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can be solved by applying distributed training to the edge devices [10,11]; this enables training with
multiple devices without a server to update the weight values of the DL model.

Existing research proposes a method to reduce the model size to minimize the computation
time and hardware resources used [12]. One study proposes to improve the synchronization time
between devices in the training phase in a mobile environment [13]. These studies focus on improving
model-training time or reducing communication latency. Edge devices have limited hardware
resources; thus, excessive hardware resources can be a bottleneck when training a model. Also,
the hardware resource usage characteristics of each device depend on the number of devices and
model configuration for distributed training. Existing studies do not consider the efficiency of hardware
resource usage of edge devices. Based on the model and device configurations, we monitored the
hardware usage required for training and demonstrated how to use the hardware efficiently.

We trained LeNet [14] and ResNet [15] with distributed training on ten Raspberry Pi 3 Model B
boards. We demonstrated that to make efficient use of the hardware resources of the edge device, it was
necessary to construct a small batch with fewer model layers. This configuration reduced training
time by more than 300% and increased training accuracy by approximately 2%. We monitored central
processing unit (CPU) utilization, memory usage, and network packets transmitted by each device
during training and confirmed our efficient model configuration for training.

Furthermore, we monitored hardware resource usage while varying the number of layers, batch
size, and the number of devices used for training. The batch size did not affect the training time. As the
number of layers increased, the training time increased by approximately 350%. As the number of
devices increased for training LeNet, the training time increased rather than the calculation of the
training phase due to the increase in synchronization overhead between devices. Consequently, when
training LeNet, the CPU utilization decreased by approximately 10% as the number of devices for
distributed training increased. In ResNet’s training, the computation time was approximately 1000%
faster as the number of devices increased, but the training accuracy decreased by approximately 15%.
ResNet's training demonstrated a CPU utilization difference of less than 3% depending on the number
of devices.

The contributions of this paper are as follows:

o  We trained the DL model using distributed training on edge devices. We demonstrate that DL
models can be trained locally on edge devices without offloading to the server.

e  We demonstrated a hardware resource-efficient distributed training model configuration for
resource-constrained edge devices. We monitored the hardware resources used during the
training phase. Results find that distributed training with smaller batch sizes and fewer layer
sizes reduces training time and increases accuracy.

The remaining parts of this paper are organized as follows. Section 2 explains distributed training.
In Section 3, we describe our distributed training environment. Section 4 presents the experimental
environment and analysis results for distributed training. Section 5 discusses related works and the
paper concludes in Section 6.

2. Backgrounds

Figure 1 shows the DL model as presented in several devices. The parallelization method is
divided into two types, namely data parallelization and model parallelization. Data parallelization
separates the input data and sends it to each device for training the model, as shown in Figure 1a. Each
device uses the same DL network to train the data, the accuracy of which is based on the splitting of
the input data.

Model parallelization divides the network of the model into different parts and assigns them to
each device, as shown in Figure 1b. Each device learns using the same input data, although the model
code must be modified and assigned to each device. Hence, the accuracy of the training is based on
the division of the model.
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Figure 1. Parallelization method of distributed training.

In distributed training, both synchronous and asynchronous methods are used to synchronize
the training data between devices [10]. The synchronization method synchronizes the training data of
each device at the end of the epoch. Thus, the accuracy of the model is enhanced with the repetition
of the epoch, and the training accuracy of each device depends on the data distribution. In the
synchronization method, waiting time is generated owing to a variation in the epoch completion
time between devices. By contrast, the asynchronous method synchronizes each device at the end of
the entire training phase. The training time is shorter than that of the synchronous method because
synchronization does not occur at each epoch, which reduces the accuracy of the final model.

In this paper, data parallelization is used for the experiment as shown in Figure 1a. We aim to use
the existing model without any modification and apply the synchronization method to improve the
accuracy of the trained model.

3. Distributed Training on Edge Devices

Figure 2 shows the configuration of an edge computing environment. It consists of a master node
that stores the datasets and weights for distributed training, and a slave node that receives and trains
the data. A monitoring server, which collects data on the hardware resource usage of each device,
is present. Each device is connected to a 100 Mbps Ethernet.

The DL model undergoes distributed training using ten Raspberry Pi 3 Model B boards.
Each board is composed of a 1.2 GHz quad-core CPU, 1 GB of memory, and a Linux 4.4 based
Raspbian operating system.

The deep learning framework MXNet 0.9.5 [16] is used for distributed training. MXNet is
preferably applied to edge devices owing to its small memory footprint [17]. MXNet uses a KVStore
parameter server to update the model weight for synchronization, which is installed on all devices
during distributed training. As discussed earlier, distributed training is carried out using data
parallelization where each device communicates using a message passing interface (MPI). As the
training begins, the master node is split and transmits the dataset to each slave node. Each slave node
trains using the same model as the master node and sends the trained weights to the master node for
synchronization between devices at the end of each batch.

Ganglia 3.7.2 [18] is used as the monitoring tool for the cluster environment to identify the CPU,
memory, and network usage for training the model. The monitoring server device is further configured
to collect the use of hardware resources for each device. Each edge device further sends the data to the
monitoring server through the user datagram protocol (UDP) at 30 s intervals.
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Figure 2. Distributed training environment.

4. Evaluations

In this section, we describe the experimental environment and analyze the results of the model
training through distributed training.

4.1. Experimental Environment

MNIST [14] and CIFAR-10 [15] datasets are used for the model training of LeNet and ResNet.
Each dataset consists of 60,000 images. The MNIST dataset consists of 32 x 32 monochrome images
with handwritten numbers of 0-9, whereas the CIFAR-10 dataset has 32 x 32 RGB images consisting of
ten classes.

The LeNet is trained in two different manners, using either a multi-layer perceptron (MLP) [19]
or a convolution neural network (CNN) [20]. In an MLP, several layers of a perceptron are connected
sequentially. As a major disadvantage of an MLP, it flattens the image into a vector for an input of
the first fully connected layer. This issue is resolved using a CNN through a structural representation
of a weight. A CNN trains the features of the image through the convolution and pooling layers.
The batch size is set to 64 for distributed training along with a mini-batch stochastic gradient descent
(SGD) optimization.

ResNet helps resolve the gradient vanishing problem in deep depth networks [15] by connecting
the input of the layer to its output through a residual block. ResNet comprises 152 layers for higher
training accuracy. It is infeasible for Raspberry Pi 3 to train all layers of ResNet due to its low memory
capacity. Approximately 17 GB of memory is required to train ResNet with 152 layers with 16 batch
sizes [21]. Thus, the number of layers and the batch size of ResNet is set to match the target hardware.
The numbers of layers and the batch sizes are set to 32, 80, and 110, and 32, 64, and 128, respectively.
By contrast, LeNet comprises five layers. Therefore, it is possible to conduct training on the target
board without any modification. As with LeNet training, we applied the SGD optimizer to the
ResNet training.

The accuracy and time of training at each epoch is measured using this experiment. The effect of
variance on the number of devices during distributed training is also examined. Thus, based on the
characteristics of the model, the most efficient training method is determined.
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4.2. Comparison of Synchronization Method

As described in Section 2, there are two types of methods, namely synchronous and asynchronous,
that synchronize the trained weights during distributed training. The training time and accuracy are
measured based on each synchronization method during distributed training. Figure 3a shows LeNet
and ResNet 32 x 32 with ten devices to train one epoch using both synchronous and asynchronous
methods. The figure shows the average value of each device during distributed training. The left
Y-axis represents the training execution time and the right Y-axis represents the validation accuracy
of the trained model. During LeNet training, the synchronous approach takes 1000 s more than the
asynchronous approach. The training accuracy of the synchronous method is approximately 9-times
higher than that of the asynchronous method. For ResNet, the training time for both the synchronous
and asynchronous methods is approximately 2500 s. The training accuracy for the synchronous method
is twice that of the asynchronous method.
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Figure 3. Training results in synchronous and asynchronous method. (a) Comparison of time and
accuracy according to synchronization method. (b) Accuracy in asynchronous distributed training
of LeNet.

Figure 3b shows the variance in accuracy at the time of asynchronous distributed training of
LeNet when using one, five, and ten devices. When training a single device, an accuracy of 0.95 is
observed from the first batch. By contrast, while training using five or ten devices, an accuracy of 0.1 is
observed despite a repetition of batches. Thus, it can be stated that shallow models such as LeNet with
asynchronous distributed training reduce the training time with lesser accuracy. In a deep model of
distributed training such as ResNet, it was found that the synchronous method is time-efficient for
homogeneous devices. In the case of heterogeneous devices, a synchronization method that considers
the difference in the computing performance of the devices is required. Therefore, each model is
trained using the synchronization method based on the above-mentioned results.

4.3. Experiment Results: LeNet

Table 1 illustrates the training results of LeNet using MLP. Training the model with a single
device takes 105 s, and the verification accuracy is calculated to be 0.961. Depending on the number
of devices, the training time increases by approximately 460 s when training with ten devices, and
the training accuracy also increases. Table 2 lists the results when training LeNet using CNN. It takes
1079 s (=18 min) to train with a single device and approximately 2625 s (~45 min) with ten devices.
The accuracy increases from 0.982 to 0.991. During LeNet training, a CNN is more accurate than
an MLP by 0.02 because CNN exhibits less distortion while extracting the features of an image.
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Table 1. Time and accuracy for training LeNet (multi-layer perceptron (MLP)).

# of Devices
1 2 3 4 5 6 7 8 9 10

Elapsed Time (s) 105 168 228 286 342 287 442 453 510 566
Validation Accuracy 0.961 0971 0970 0970 0975 0974 0974 0974 0973 0.971

Table 2. Time and accuracy for training LeNet (convolution neural network (CNN)).

# of Devices
1 2 3 4 5 6 7 8 9 10

Elapsed Time (s) 1079 1177 1338 1484 1778 2009 1970 2436 2665 2625
Validation Accuracy 0.982 0.988 0989 0990 0990 0991 0989 0990 0990 0.991

Figure 4 shows the use of hardware resources during the training phase. The X-axis of each graph
represents the number of devices applied for training, and the Y-axis indicates the value of each item.
As shown in Figure 4a, the CPU utilization is approximately 20% for a single device and 14% for an
average of ten devices. During LeNet model training, the use of more devices increases the training
time owing to a lesser utilization of the CPU. The design simplicity of LeNet makes it less efficient for
use with multiple devices. LeNet comprises of five layers, which are classified into a small number
of categories. The memory usage increases from approximately 300 to 330 MB as more devices are
used, as shown in Figure 4b. In Figure 4c,d, no network usage is shown in distributed training using
one or two devices. Model training with three or more devices requires over 1000 KB of network
packets for synchronization. It was observed that more packets are generated with a longer training
time. The results of the LesNet experiment indicate that training with more devices takes a longer
time, whereas the training of lesser devices uses the hardware resources efficiently. The peak values
shown in Figure 4c,d are due to an excess transmission when the device is in KVstore [16] during
synchronization.

The experimental results indicate that shallow structures such as LeNet decrease the utilization of
the CPU and increase the training time as more devices undergo distributed training.
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Figure 4. Cont.
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Figure 4. Hardware resources for training LeNet (CNN).
4.4. Experiment Results: ResNet

The number of layers and batch sizes are varied to identify a suitable model for the efficient
training of ResNet in Raspberry Pi. Figure 5 shows the time and accuracy of training based on the
number of layers and the batch size, as well as the number of devices (denoted as number of layers x
batch size). The X-axis represents the number of layers and the size of the batch, and the Y-axis
represents the value of each item. In the case of a 32 x 32 configuration, as shown in Figure 5a,
the maximum training time for each device is 20,000 s (=5 h) and the minimum is 2000 s. The maximum
training time for 80 x 32 and 110 x 32 configurations is 50,000 s (=14 h) and 80,000 s (=22 h) and the
minimum is 6000 and 8000 s, respectively. Here, a configuration of 110 x 128 cannot be trained due to
the low memory of Raspberry Pi. The accuracy for each case is calculated to be 0.49, 0.44, and 0.42,
respectively, as shown in Figure 5b. The batch size does not affect the training time but does affect the
training accuracy. As the batch size increases, the training accuracy decreases owing to a decrease in
the number of synchronizations.
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Figure 5. ResNet training time and accuracy by number of layers and batch size (1 epoch).

Figure 6 shows the hardware resources required to train ResNet with a 32 x 32 configuration.
The X-axis represents the number of devices for training, and the Y-axis is the value of each item.
The utilization of the CPU decreases by 3% because it is training with a greater number of devices
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as compared to LeNet, as shown in Figures 4a and 6a. The CPU utilization was calculated to be
approximately 40% in most cases. The memory usage while training is calculated to be 280 MB for
a single device and approximately 250 MB for ten devices, as shown in Figure 6b. ResNet requires
50 MB less memory for training than LeNet. During ResNet training, approximately 150 to 250 KB
of packets are sent and received depending on the number of devices, as shown in Figure 6¢,d.
Training with LeNet requires nine synchronizations, whereas 72 are required with ResNet for a 32 x 32
configuration. Therefore, the overall network usage is higher for training with ResNet as compared to
that with LeNet.
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Figure 6. Hardware resources for training ResNet 32 x 32.

To examine the effect of the number of layers and batch size on hardware utilization during
distributed training, the layers and batches are set to 110 and 64, respectively. Figure 7 shows the usage
of hardware resources for 110 x 64 ResNet training. The CPU utilization (Figure 7a) is calculated to be
approximately 40%, which is similar to that in the case of ResNet with 32 x 32. The memory required
for training ResNet with a 110 x 64 configuration increases by approximately 2.5-fold to 600 MB owing
to an increase in the batch size and the number of layers, as shown in Figure 7b. The training time
increased by approximately 6-fold compared to that of ResNet with a 32 x 32 configuration owing
to the batch size and the number of layers, as shown in Figure 5a. The accuracy is slightly reduced,
as shown in Figure 5b. Network packets sent (Figure 7c) and received (Figure 7d) for synchronization
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are reduced by up to 100 KB as compared to those in the case of ResNet with a 32 x 32 configuration
due to a decrease in the number of synchronizations and an increase in the batch size.
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Figure 7. Hardware resources for training ResNet 110 x 64.

Table 3 shows the use of hardware resources based on the number of layers and batch size.
The CPU utilization is calculated to be approximately 39%. When 32 layers are present in a model,
a difference of 60 MB is observed based on the batch size. As the batch size increases, the packet
transmission decreases by approximately 50%. In other words, as the number of synchronizations
decreases, the accuracy decreases by 0.1, as shown in Figure 5b. When the number of layers is 80 and
110, the memory usage increases owing to an increase in the number of calculations, as compared to
32 layers. The packet transmission is observed to be similar.

Experiments show that a configuration of 32 x 32 is required to train ResNet efficiently. Training
with more devices reduces the training time by up to 90%, as shown in Figure 5a. The training
accuracy decreases by approximately 0.1. As illustrated in Table 4, it is possible to recover the
accuracy by repeating the training of the epoch for half of the time. For distributed training on
ten devices, the elapsed time after five epochs was calculated to be 10,989 s (=3 h) with an accuracy of
0.649. Training with one device took approximately 5 h and provided an accuracy of 0.55. Previous
experiments showed no significant change in the utilization of the CPU and memory based on the
number of devices. Hardware resources can be made more efficient by iterating more epochs with
ten devices.
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Table 3. Hardware resources by number of layers and batch size.

Number of Layers x Batch Size
3232 32x64 32x128 80x32 110X 32

CPU utilization (%) 39.5 38.9 38.9 39.3 39.3
Memory usage (MB) 253.6 314.5 3145 348.8 398.1
Network-receive (KB) 245.3 121.3 121.3 246.1 242.6
Network-send (KB) 245.7 119.6 119.6 250.8 243.7

Table 4. Time and accuracy of ResNet 32 x 32 with epoch iteration on ten devices.

# of Epochs
1 2 3 4 5

Elapsed time (s) 2212 4391 6598 8787 10,989
Validation accuracy 0.384 0.510 0.584 0.669 0.649

5. Related Works

When the complexity and number of objects to be classified increase, distributed training [10]
with multiple devices is used to train the deep neural network model.

Frameworks such as SINGA [22], Poseidon [23], and MXNet have been proposed for the
distributed training of deep learning models. In addition, TensorFlow [24] and Caffe [25] can also be
used for distributed training. The performance of distributed training frameworks has been studied
on the high-performance computing (HPC) architecture, in a previous study [26]. This study analyzed
the training time of Caffe, TensorFlow, and SINGA with respect to the CPU and GPU configurations
in HPC, using an Intel Xeon and IBM Power 8 Processor. The results show that the training time of
Caffe is approximately two times shorter than that of TensorFlow and SINGA, during the distributed
training of GoogLeNet [27]. A performance analysis of the frameworks on the edge device was also
performed [28]. In this study, inference tasks were performed on TensorFlow, Caffe2, PyTorch [29], and
MXNet, using SqueezeNet [30], which is a lightweight model for mobile environments. Based on the
experimental results, TensorFlow achieved the shortest training time on large CPU-based platforms.
In contrast, Caffe2 achieved the shortest training time for the small-scale model. Additionally, PyTorch
and MXNet were memory efficient and energy efficient at FogNode, respectively.

A previous study suggested a method to reduce the communication overhead between devices
during distributed training on thousands of commodity off-the-shelf high-performance computers
(COTS HPC) [31]. This study used MPI and InfiniBand to solve bottlenecks on GPUs between devices
during distributed training. A study on distributed training using large-scale distributed GPUs
provided a solution to the memory limitation, stalls, and data movement overhead of a GPU [32].
Using the proposed method, the training phase becomes more efficient with a parameter server that
supports efficient memory management in data-parallel deep learning on distributed GPU devices.
The effect remains constant while training on 108 CPUs with four GPUs.

Distributed training has been studied in both mobile and IoT environments. Personal information
is important in a mobile environment because it contains sensitive user data. Federated learning
(FL) [33,34] has been suggested as an approach to create a global model by training in a distributed
manner in a mobile environment. The leakage of personal data is prevented by sending only trained
weight from each mobile device. FL is an asynchronous method with a difference in accuracy between
devices. In a heterogeneous network environment between mobile devices, it may take longer to
upload a device with a slow network speed at the time the device-to-device synchronization process
is applied. Federated training eliminates this overhead because no device-to-device synchronization
occurs during the training process. An updating of the global model used in the device requires
communication with the server. In one study, an extension of FL was proposed to efficiently manage
client resources in a heterogeneous mobile environment [35]. This study proposes a synchronized
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node selection based on the hardware and communication resource constraints of a device during
device-to-device synchronization through a protocol called Fed CS, reducing the Fashion-MNIST
training time by approximately 33 min.

A study was conducted to optimize the synchronization time between devices in the distributed
training of heterogeneous mobile systems [13]. In this study, a delay method is applied to the weight
synchronization during the distributed training on heterogeneous devices, mobile devices, and servers.
This suggests that synchronization should be carried out by considering the computational speed
between nodes and configuring the system with three threads, namely, data distribution, a model
update, and parameter communication. This reduces the training time by more than 3-fold compared
to a parallel synchronization method. Another study proposed an adaptive periodic parameter
averaging approach to reduce the communication overhead in distributed training on 16 GPUs [36].
This study applies adaptive SGD to reduce the bottleneck of a distributed SGD. Adaptive SGD reduces
the communication time during distributed training by more than 500 s by automatically adjusting the
average period of parallel SGD through data parallelism and parameter variance.

Recently, container-based virtualization has been applied to edge devices [37]. To achieve
distributed learning on edge devices, the environment configured between the edge devices must be
identical. Therefore, as the number of edge devices increases, the time required to build an environment
also increases. To address this issue, a training environment for edge devices can be efficiently created
by deploying a container environment.

6. Conclusions

Deep learning models are trained through distributed training on edge devices. It was proved
that a distributed training configuration can apply hardware resources efficiently in an edge device.
Thus, to use the hardware resources efficiently during distributed training, the number of layers in
the model and the batch size should both be reduced. This configuration reduces the training time by
4-fold and increases the accuracy by 15%.

Both LeNet and ResNet were trained on ten Raspberry Pi boards. The shallow architecture of
LeNet requires twice as much training time as compared to that required when it is trained with more
devices, as the synchronization time between devices is longer than the computational time of the
model. In the distributed training of ResNet, the training time is 10 times faster with 10 devices as
compared to that with a single device. The training accuracy of the model is reduced by approximately
10%, owing to the variance of the input data. With distributed training, the variation in the number of
devices does not significantly affect the CPU utilization or memory usage. The number of network
packets required for device-to-device synchronization increases, along with a 100 MB increase in
memory usage based on the number of layers in the model and the batch size.
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