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Abstract: The strap-down missile-borne image guidance system can be easily affected by the 
unwanted jitters of the motion of the camera, and the subsequent recognition and tracking functions 
are also influenced, thus severely affecting the navigation accuracy of the image guidance system. 
So, a real-time image stabilization technology is needed to help improve the image quality of the 
image guidance system. To satisfy the real-time and accuracy requirements of image stabilization 
in the strap-down missile-borne image guidance system, an image stabilization method based on 
optical flow and image matching with binary feature descriptors is proposed. The global motion of 
consecutive frames is estimated by the pyramid Lucas-Kanade (LK) optical flow algorithm, and the 
interval frames image matching based on fast retina keypoint (FREAK) algorithm is used to reduce 
the cumulative trajectory error. A Kalman filter is designed to smooth the trajectory, which is 
conducive to fitting to the main motion of the guidance system. Simulations have been carried out, 
and the results show that the proposed algorithm improves the accuracy and real-time performance 
simultaneously compared to the state-of-art algorithms. 
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1. Introduction 

The strap-down missile-borne image guidance system is a sort of real-time guidance system 
based on computer vision, which has been applied in practice, such as the image-guided miniature 
ammunition, Spike [1]. The Spike munition has the advantages of being a light weight, low cost, and 
no gimbaled system, which makes it simpler to design the strap-down seekers’ mechanical 
configurations [2]. Spike is one of the smallest and the cheapest guided missiles with outstanding 
maneuverability performance, which can reach a speed of 600 miles per h in 1.5 s after launch, and 
the onboard guidance system can manipulate the control surfaces to complete the movements of 
missile on pitch, roll and yaw axes in a prelimited time. 

The general working process of strap-down missile-borne image guidance system consists of 
three steps. First, after launching of the missile, the onboard camera turns on to search, capture, and 
track the target during the flight. Then, when the target is locked, the onboard computer calculates 
the angular deviation between the center of the target and the visual central axis. At last, the deviation 
is sent to the autopilot to manipulate the control surfaces of the vehicle and guide the missile to the 
target automatically till hitting the target. 

During the process, the quality of image sequences is an important factor affecting the 
navigation accuracy in the image guidance system. Since the strap-down seekers do not require any 
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moveable gimbal parts to isolate the motion disturbance of the missile and the seeker [3], there are 
jitters produced by windy condition and attitude adjustment, and the image sequences obtained by 
the image guidance system may have a large degree of shaking, which will seriously affect the 
performance of the image guidance system. Therefore, before recognition, matching, and other 
subsequent processing, image preprocessing is needed to eliminate the influence of jitters. So, it is 
necessary to stabilize the digital video acquired by the missile-borne guidance system in real time. 
Through the image stabilization technology, the impact of the moving camera on the image can be 
eliminated or reduced, which greatly improves the quality of image sequences. In addition, with the 
development of large area scientific imaging arrays, as well as the high speed processing elements 
such as DSP (digital signal processing), FPGA (field programmable gate array), GPU (graphics 
processing unit) and CUDA (compute unified device architecture), real-time image processing 
technology for high resolution images has become a hot topic in recent years [4,5], while real-time 
electronic image stabilization technology as one of the significant image processing techniques has 
also been extensively studied. 

In general, video stabilization algorithms are mainly carried out with three steps: global motion 
estimation, motion compensation, and image compensation. Current motion estimation algorithms 
include the gray projection algorithm [6,7], block-matching algorithm [8,9], bit-plane-matching 
algorithm [10,11], optical flow algorithm [12], and representative point matching (RPM) algorithm 
[13]. These algorithms are easy to implement with low computational cost. However, the accuracy of 
these algorithms can be insufficient under the circumstances of severe dithering, complicated 
movements, or image distortions of the video. Further, the cumulative error of motion estimation 
makes the estimated image trajectory deviate from the true trajectory susceptibly. Except the 
algorithms above, the binary point feature matching-based video stabilization algorithms could deal 
with these situations efficiently, but with higher computational cost. For instance, the scale-invariant 
feature transform (SIFT) algorithm can be used to estimate global motion precisely, even when the 
scale, rotation, illumination, and angle of view of the images change [14–16]. The speeded up robust 
features (SURF) algorithm is widely used for video stabilization for it has effective image matching 
performance with less computational cost [17–19] compared with SIFT. Other point feature matching 
algorithms such as the binary robust independent elementary features (BRIEF) [20], binary robust 
invariant scalable keypoints (BRISK) [21], and fast retina keypoint (FREAK) [22] algorithms are also 
proposed for faster computational speed while trying to retain the robustness to noise, scale 
invariance, and rotation invariance properties as much as possible. 

These algorithms are hard to achieve video stabilization independently due to the limitation of 
their computational cost or accuracy. Therefore, some research teams have tried to achieve real-time 
image stabilization by combining or improving the existing image processing algorithms. For 
example, Dong et al. [23] proposed a motion model based on inter-frame homographic estimation 
with Kalman filter for the video completion. Lim et al. [24] proposed an algorithm to tackle the 
problem of real-time video stabilization for unmanned aerial vehicles (UAVs), where they designed 
a suitable model for the global motion of UAV and employed the optical flow tracking. Hu et al. [25] 
proposed a real-time video stabilization system for the video sequences captured by a fast-moving 
in-vehicle camera. The proposed method used feature points to evaluate the global motion and the 
feature points are checked based on LK (Lucas-Kanade) optical flow method. 

However, due to the particular environment where the strap-down missile-borne image 
guidance system is mounted, the strap-down camera keeps moving when the projectile tracks the 
target, and the projectile would generate jitters when adjusting its attitude. So, an image stabilization 
algorithm with low computational cost and steady stabilization performance, which can also 
distinguish and preserve the low-frequency movements and remove the high-frequency jitters of the 
video, needs to be found. 

Therefore, a real-time image stabilization algorithm for missile-borne strap-down image 
guidance system is proposed to distinguish the low-frequency movements, and remove the high-
frequency jitters of the video. In this paper, an image stabilization algorithm using feature point 
matching to correct optical flow error with the random sample consensus (RANSAC) algorithm 
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[26,27] to eliminate false matching is proposed to meet the requirements of image processing accuracy 
and real-time performance. Moreover, a Kalman filter is designed to smooth the motion trajectory to 
make the video fit the intentional motion as much as possible. 

The structure of this paper is as follows. In Section 2, the overall framework of the proposed 
algorithm is analyzed and illustrated. Then, in Section 3, the global motion of missile-borne image 
guidance system is established and estimated by the pyramid LK optical flow algorithm. In Section 
4, the computational costs of different feature point matching algorithms are analyzed, and the 
FREAK algorithm is selected to conduct correction of the trajectory generated by the optical flow 
algorithm. The equations of Kalman filter are also established based on the global motion of the 
missile-borne image guidance system. The specific framework of the proposed algorithm is given in 
the last paragraph. Experiments have been carried out to verify the feasibility and effectiveness of the 
proposed algorithm in Section 5. Conclusions are presented in Section 6. 

2. Proposed Framework 

The block diagram of the overall proposed framework is shown in Figure 1. 

 
Figure 1. Block diagram of the proposed framework. 

As shown in Figure 1, the global motion trajectory between the adjacent frames of the image 
sequence is obtained by the optical flow algorithm. Then, the image matching algorithm is conducted 
periodically to correct the cumulative error of the optical flow algorithm. The trajectory generated by 
optical flow is filtered by a Kalman filter in every frame, and the measurements that corrected by the 
point feature matching algorithm are taken as input of the Kalman filter to correct the cumulative 
error of optical flow algorithm as well. 

The motion trajectory of the image sequence obtained by the strap-down image guidance system 
consists of intentional motion and shaky motion components, while the intentional motion 
components indicate the main motion of the guidance system, and the shaky motion components are 
the noises produced by jittery control and atmospheric turbulence during the flight of the missile. So, 
the Kalman filter is introduced to filter out the shaky components of the image sequences. Because 
the shaky components of the strap-down camera are Gaussian noise like high-frequency jitters, the 
intentional motion components with low frequency can be well reserved by Kalman filter, where the 
high-frequency jitters would be removed separately. 

3. Global Motion Estimation 

In this section, the global motion model of the missile-borne strap-down image guidance system 
is established based on the four-parameter similarity transformation model. Further, the global 
motion of video is firstly estimated by the optical flow algorithm. 

The main motion of the image sequences captured by the strap-down image guidance system 
mainly consists of rotation, translation and scale transformation, while jitters of the projectile mainly 
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contribute to the high-frequency rotations and translations. Therefore, the four-parameter similarity 
transformation model is chosen to represent inter-frame global motion of the missile-borne image 
guidance system. The similarity transformation matrix is represented by T, which is given by 

cos sin
sin cos
0 0 1

s s dx
T s s dy

θ θ
θ θ

− 
 =  
  

, (1) 

where θ  is the rotation angle, S  is the scale factor, dx  and dy  are translations of horizontal and 
vertical direction respectively. Thus, the corresponding feature points in two adjacent frames can be 
represented by 
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where 
1 1( )n n

i ix , y− −
 is the location of feature point i in the previous frame and ( )n n

i ix , y  is the 
location of the corresponding feature point in the current frame. 

Then, the global motion from the first frame to the current frame can be expressed as 
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where ( )n n T
n i iX x , y=  represents the location of a feature point in the current frame, 

1 1
1 ( )n n T

n i iX x , y− −
− =  is the location of a feature point in the previous frame, and nT  represents the 

transformation matrix from 1nX −  to nX . 
There are many different methods to extract the optical flow out of image sequences, among 

which the Lucas-Kanade (LK) optical flow algorithm [28] is one of the widely applied optical flow 
algorithms for it has less computational cost with acceptable accuracy [29,30]. Considering the 
background of this technology, the LK optical flow algorithm could be invalid in the case of fast 
movement and the error of the LK optical flow algorithm would accumulate rapidly if the objects of 
the video move too fast. In order to track the target which moves fast and to reduce the cumulative 
error of the LK optical flow algorithm, the pyramid LK optical flow algorithm [31] is introduced to 
solve this issue. 

With the pyramid LK optical flow algorithm, the key points matching between adjacent frames 
can be conducted. The RANSAC algorithm is used to eliminate the mismatched keypoints and the 
matching pairs of foreground objects. In order to verify the tracking accuracy of optical flow method, 
experiments were carried out and the experimental results are shown in Figures 2 and 3, where there 
are three levels in the pyramid. The jitters are manually added to the original image sequence, so that 
the trajectory tracking results of optical flow can be compared with the real trajectory of the image 
sequence as shown in Figure 3. Three consecutive frames of the image sequence are presented to 
compare the images before and after stabilization. The image sequence with 450 frames and 360 × 360 
sresolution in Figure 2 is filmed by a handheld Daheng Mercury USB3 VISION digital camera. Images 
in Figure 2a are a sequence with jitters and images in Figure 2b show the stabilized image sequence. 
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(a) 

 

(b) 

Figure 2. The image sequence that stabilized by optical flow. (a) Before stabilization; (b) After 
stabilization. 

 
Figure 3. Simulation results of pyramid LK (Lucas-Kanade) optical flow algorithm. 

Figure 3 shows the real trajectory, trajectory obtained by optical flow, and the filtered optical 
flow trajectory that conducted by Kalman filter. As shown in Figure 3, the trajectory obtained by 
optical flow gradually deviates from the real trajectory, and the tracking error of optical flow becomes 
larger when it is not compensated or corrected. In order to reduce the accumulative error of optical 
flow, an image matching algorithm with higher tracking accuracy is introduced to correct it. 

4. Motion Trajectory Correction and Filtering Based on Binary Feature Descriptors Matching 

To achieve accurate image matching with minimum computational cost, multiple image 
matching algorithms are compared and the FREAK algorithm is applied to obtain the transformation 
matrix between two images with a constant number of frames apart. The Kalman filter is designed 
based on the transformation matrix of the missile-borne image guidance system to filter out the high-
frequency jitters of the intentional motion trajectory. 
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4.1. Trajectory Correction Based on FREAK Feature Descriptor 

The point feature matching algorithms are state-of-art image matching algorithms for video 
stabilization, where the computational costs are also comparably higher. Schaeffer [32], Jared [33], 
and Bekele [34] compared and evaluated different binary key point descriptors such as BRIEF, BRISK, 
SURF, and FREAK, etc., and conclusions have been drawn that the accuracy of the FREAK algorithm 
is comparably better with less computational cost among these algorithms. A number of videos were 
tested with different feature matching algorithms, and the time consumptions are compared in 
milliseconds. The tests were carried out on a computer with Core i5 of 2.4 GHz, and RAM of 8 GB, 
with Visual Studio 2015 C++ and Open CV. The results are shown in Table 1, where the selection of 
feature points of the FREAK algorithm is conducted by SURF algorithm. 

It can be seen from Table 1 that the efficiency of the FREAK algorithm is better than other binary 
feature point matching algorithms, which is consistent with other studies performed. The 
computational cost of the SIFT algorithm is the highest, and it is more than 300 ms per frame even at 
the resolution of 360 × 360, which is not suitable for real-time implementation. As for the SURF 
algorithm, it is a little bit higher in computational cost compared to the FREAK algorithm. In addition, 
considering the FREAK algorithm has better scale invariance [32] performance, while the scale 
variation is the main factor as the missile approaching the target. So, the FREAK algorithm is selected 
to correct the tracking error of optical flow. 

Table 1. The average time-consuming of each feature matching algorithm (ms). 

Video Case 
Algorithms 1 (720 × 720 pixel) 2 (640 × 480 pixel) 3 (480 × 480 pixel) 4 (360 × 360 pixel) 

SIFT 667 424 336 313 
SURF 127 80 64 40 

FREAK 105 60 51 32 
Pyramid LK 
Optical Flow 

27 18 13 9 

The accuracy of the three-level pyramid LK optical flow algorithm and image matching based 
on the FREAK descriptors are tested and compared using an image sequence where jitters are 
manually added as well. The image sequence with 120 frames and 1280 × 720 resolution in Figure 4 
is filmed by the Daheng Mercury USB3 VISION digital camera, where the false matching is detected 
by RANSAC algorithm. The stabilized image sequences are shown in Figure 4, and the tracking errors 
are given in Figure 5. 

 
(a) 

 
(b) 
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(c) 

Figure 4. Stabilized image sequences. (a) Image sequence before stabilization; (b) Stabilized by optical 
flow; (c) Stabilized by image matching with FREAK (Fast Retina Keypoint) descriptor. 

 
Figure 5. Trajectory tracking error of optical flow and image matching with FREAK (Fast Retina 
Keypoint) descriptor. 

As shown in Figure 5, the image matching with FREAK descriptors has a much better 
performance of image stabilization accuracy than that of optical flow, which indicates that it can be 
used to correct the trajectory generated by the optical flow algorithm. In order to determine the period 
of point feature matching to correct the trajectory of optical flow, simulations were carried out to test 
the optical flow and FREAK algorithm. For the missile-borne image guidance system moves fast in 
the air, image sequences with moving objects were tested. The motion trajectories generated by 
optical flow and the FREAK algorithm are compared, as shown in Figure 6. 
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(c) 

Figure 6. Comparison of the trajectories obtained by optical flow and FREAK (Fast Retina Keypoint) 
algorithm with different image sequences. (a) Image sequence of moving vehicle; (b) Image sequence 
of unmanned aircraft; (c) Image sequence of missile. 

It can be seen from Figure 6 that the deviation between the trajectory obtained by optical flow 
and FREAK is getting larger from about the 10th frame, and there is no obvious difference between 
them before that point. To ensure high trajectory tracking accuracy with as low computational cost 
as possible, the trajectory tracking results of the optical flow method are corrected by FREAK once 
every 10 frames, and the trajectory of each frame is then filtered by a Kalman filter. 

4.2. Motion Trajectory Filtering Based on Kalman Filter 

To filter out the high-frequency noises of the motion trajectory, a Kalman filter is designed to 
obtain the intentional motion of the trajectory, for the motion of missile-borne image guidance system 
is predictable, which is suitable for the application of Kalman filter. According to the global motion 
model in Section 3, the state model of the trajectory can be expressed as 

( ) [ ( ), ( ), ( ), ( ), ( ), ( )]Tx yX k k dx k dy k v k dv k dv kθθ=
, (4) 

where ( )v kθ  is the velocity of rotation angle, ( )xdv k  and 
( )ydv k

 are velocities of pixels in x- 
and y-direction. 

The measurements of the Kalman filter obtained by optical flow and the image matching 
algorithm are represented by 

( ) [ ( ), ( ), ( )]TZ k k dx k dy kθ= . (5) 

Assuming that the motion of adjacent frames is uniformly varying, according to Equations (4) 

and (5), the dynamic description model A and the observation model H  are given by 
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(6) 

With the equations above, the Kalman filter can be achieved through the following procedures, 
where the equations of the prediction phase of the Kalman filter from k−1 to k are given by 

( | 1) ( 1| 1)X k k A X k k− = ⋅ − − , (7) 
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( | 1) ( 1| 1) TP k k A P k k A Q− = ⋅ − − + , (8) 

where Q  is the covariance matrix of processing noises and R  is the covariance matrix of 
measurements noises of the Kalman filter. 

The updated equations of the Kalman filter from k−1 to k are given as follows: 
1( ) ( | 1) ( ( | 1) )T T

gK k P k k H HP k k H R −= − − +
, (9) 

( | ) ( | 1) ( )( ( ) ( | 1))gX k k X k k K k Z k HX k k= − + − −
, (10) 

( | ) ( ( ) ) ( | 1)gP k k I K k H P k k= − −
. (11) 

The motion trajectories obtained by FREAK, which has higher accuracy, are brought into the 
Kalman filter as the measurements to update the state matrix for every 10 frames, while the optical 
flow trajectory is taken as input of the Kalman filter at other times. 

From the analysis above and the overall framework in Figure 1, the specific framework of the 
proposed algorithm is shown in Figure 7. By using this method, fast image stabilization can be 
realized. Experiments were carried out to verify the proposed method. 

 
Figure 7. Block diagram of the specific framework of proposed algorithm. 

5. Experimental Results 

Experiments were conducted on a computer with an i5-8265U CPU, and 8 GB of RAM. The 
algorithms were implemented in Visual Studio 2015 C++ and OpenCV. To examine the accuracy of 
the proposed algorithm, the inter-frame transformation fidelity (ITF) which is based on the peak 
signal-to-noise ratio (PSNR) is used to evaluate the image stabilization results. The PSNR value 
between two consecutive frames represents how similar an image is to another by measuring the 
similarity between them, which is defined as follows, 

2255PSNR( ) 10log
MSE( )k-1 k

k-1 k

I ,I =
I ,I

, (12) 

where k -1I  and kI  refer to the two adjacent frames, MSE( )k-1 kI ,I  refers to the mean square error 

of the two frames. MSE( )k-1 kI ,I  is defined as, 
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MSE( ) ( ( ) ( ))
N M

2
k-1 k k-1 k

i=1 j=1

1I ,I = I i, j - I i, j
MN , (13) 

where M  and N  refer to the number of rows and columns. 
1

1
1

1ITF PSNR( , )
1

frameN

k k
iframe

I I
N

−

−
=

=
−  , (14) 

where Nframe is the total number of video frames. 
By comparing the ITF values of video sequences before and after stabilization, the performance 

of the video stabilization algorithm can be evaluated, and the higher the ITF value, the better the 
image stabilization is. 

In order to evaluate the performance of the proposed method objectively and show the 
advantages intuitively, the proposed method is compared with two state-of-the-art methods, the 
Deshaker [35] and the real-time video stabilization system presented by Hu et al. [27], on the accuracy 
performance and computational costs of image stabilization. The two publicly available video 
sequences named 0004TU and 2WL are used for tests, which can be downloaded on the website [36]. 
The frame numbers of 0004TU and 2WL are 450 and 500 respectively. The resolution of them is 1280 
× 720 pixels. Figures 8 and 9 show the video stabilization results of different methods. The figures in 
Figures 8 and 9 were trimmed to remove the black peripheries after image stabilization. Table 2 shows 
the ITF results of the stabilized image sequences. Table 3 shows the computational cost of video 
stabilization for various methods. 

   
(a) 

   
(b) 

   
(c) 

Figure 8. Video stabilization of 0004TU video sequence. (a) Original frames (30th, 200th, and 430th 
frames); (b) Stabilized by Deshaker; (c) Stabilized by proposed method. 
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(a) 

   
(b) 

   
(c) 

Figure 9. Video stabilization of 2WL video sequence. (a) Original frames (30th, 200th, and 430th 
frames); (b) Stabilized by Deshaker; (c) Stabilized by proposed method. 

Table 2. ITF values of image sequences (dB). 

 0004TU 2WL 
Original 19.5356 17.6181 
Deshaker 22.0803 21.1841 
Hu et al. 20.43 19.30 

Proposed method 21.9681 19.97 

Table 3. Computational cost of video stabilization for various methods (ms/frame). 

  0004TU 2WL 

In our condition 1 
Deshaker 55.5 54.25 

Proposd method 46.3 48.0 

In Hu’s condition 2 
Deshaker 34.51 34.20 
Hu et al. 31.01 30.07 

1 Computer with an Intel i5-8265U CPU and 8GB of RAM. 2 Computer with an Intel i7–4790 CPU and 
16GB of RAM. 

A s shown in Table 2, the Deshaker has the best performance of the video stabilization in both 
0004TU and 2WL image sequences, where the ITF values are improved with 2.54 dB and 3.56 dB, 
respectively. The ITF values of the image sequences stabilized by Hu et al.’s method improved with 
0.89 dB in 0004TU and 1.68 dB in 2WL compared to the original image sequences, while the proposed 
method improved the ITF values with 2.43 dB in 0004TU and 2.35 dB in 2WL. As a result, the 
proposed method has a better accuracy performance than Hu et al.’s method in both cases, but a bit 
worse than the Deshaker. And it can be noticed from Table 3 that the proposed method has 
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approximate performance in 0004TU compared to Deshaker, which is about 0.1 dB less improved. 
The ITF value of proposed method in 2WL is 1.2 dB less improved than the Deshaker. 

For the difference of the experimental environment between the proposed method and Hu et al., 
it is not fair to compare the computational cost of proposed method directly. So, the Deshaker has 
been taken as the reference to examine the computational cost of different methods, for it has the 
same characteristics in different computers. Table 3 shows that the computational costs of Deshaker 
are 55.5 ms/frame and 54.25 ms/frame in our hardware environment, which is 1.2 times higher than 
our proposed method. Meanwhile, the experimental results of the method of Hu et al. show that the 
computational costs of Deshaker are 34.51 ms/frame and 34.20 ms/frame, which is 1.1 times higher 
than Hu et al.’s method in their hardware environment. Thus, the proposed method has the best 
performance on computational cost among these methods. 

To ensure that the algorithm can be applied to various of harsh application environments, and 
validate the robustness of it, the algorithm on another 15 image sequences are tested as well, which 
can be obtained publicly on the website [37]. 

The first frames of these stabilized image sequences are shown in Figure 10. And their features 
and tracking results are given in Table 4. 

   
(a) (b) (c) 

   

(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 
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Figure 10. The tested image sequences. (a) Image sequence 2; (b) Image sequence 3; (c) Image 
sequence 4; (d) Image sequence 5; (e) Image sequence 6; (f) Image sequence 7; (g) Image sequence 8; 
(h) Image sequence 9; (i) Image sequence 10; (j) Image sequence 11; (k) Image sequence 12; (l) Image 
sequence 13 (m) Image sequence 14; (n) Image sequence 15; (o) Image sequence 16;. 

Table 4. Features and ITF values of image sequences (dB). 

Video Name Resolution Total Number of Frames Original Image 
Sequence (ITF) 

Stabilized by Proposed 
Method (ITF) 

2 640 × 360 449 19.366389 23.760345 
3 640 × 360 574 24.587738 27.230761 
4 640 × 360 401 26.471917 26.996680 
5 640 × 360 599 21.075880 22.299292 
6 640 × 360 434 21.181671 23.129672 
7 640 × 360 389 23.744771 24.069733 
8 640 × 360 434 21.506194 25.739252 
9 640 × 360 999 15.904668 17.523298 
10 640 × 360 404 14.737232 16.787729 
11 640 × 360 434 16.129186 21.106888 
12 640 × 360 494 17.427601 21.500074 
13 640 × 360 509 18.040385 20.447358 
14 640 × 360 299 16.936780 21.077630 
15 640 × 360 479 15.899816 20.115547 
16 640 × 360 449 14.282314 18.031555 

By analyzing the ITF values of these stabilized videos in Table 4, the ITF values have been 
improved by 2–5 dB compared to the original videos in the great majority of cases. However, the ITF 
value of Video 4 has only been improved by about 0.52 dB. This is because the original image 
sequence already has the comparably higher ITF value of 26.47 dB. In addition, the proposed 
algorithm is used to distinguish and maintain the low-frequency motion in the image sequence, and 
eliminate the high-frequency jitters in the video which are caused by the shaky movements of missile. 
So, the low-frequency movements in Video 4 are preserved after processing, while a small number 
of high-frequency jitters are removed, and the ITF value is not improved significantly. 

Generally, the proposed method is verified with multiple video cases and compared with the 
existing methods. The experimental results in Tables 2 and 3 show that the accuracy performance of 
proposed method is close to that of Deshaker and it performs best in computational cost. Considering 
the background of this technology, the Deshaker method is the most difficult to apply in practice due 
to its poor real-time performance, while the method of Hu et al. has a lower accuracy with higher 
time cost than the proposed method. In addition, the simulations carried out in Figure 4 show that 
the proposed method has a good performance on the stability and robustness in various conditions. 
As a result, the proposed method has the advantages of real-time performance compared to previous 
methods with preferable accuracy, and it has been proven as well to be steady and robust, which is 
applicable in the strap-down image guidance system. 
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6. Conclusions 

The results of comparative simulations show that the proposed method can be competitive to 
the existing state-of-art image stabilization methods, whether in terms of accuracy or real-time 
performance, making it suitable to meet the real-time and high accuracy requirements of a strap-
down image guidance system. 

Aiming at the problem of imaging dithering and real-time requirements of the strap-down 
missile-borne image guidance system, a real-time electronic image stabilization algorithm which 
combines the optical flow and binary feature matching algorithm is proposed. The overall framework 
of this algorithm is proposed at first. Then, the global motion of the image sequences is established 
and estimated by the pyramid LK optical flow algorithm. The efficiency of different image matching 
algorithms is analyzed, and the FREAK binary feature matching algorithm is selected to correct the 
cumulative error caused by optical flow with an interval of 10 frames. The Kalman filter is introduced 
to filter out the high-frequency jitters of the motion trajectory. The experimental results show that the 
image sequences can be stabilized by the proposed algorithm with comparably less computational 
cost and better accuracy. The proposed algorithm has not been implemented on an image guidance 
system for the immature test conditions. The implementation of this algorithm on board will be 
investigated in the future. 
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