
electronics

Article

A Novel Intrusion Detection Model Using a Fusion of
Network and Device States for Communication-Based
Train Control Systems

Yajie Song * , Bing Bu and Li Zhu

State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China;
bbu@bjtu.edu.cn (B.B.); lizhu@bjtu.edu.cn (L.Z.)
* Correspondence: 17120267@bjtu.edu.cn; Tel.: +86-1352-076-6670

Received: 17 December 2019; Accepted: 16 January 2020; Published: 18 January 2020
����������
�������

Abstract: Security is crucial in cyber-physical systems (CPS). As a typical CPS, the communication-
based train control (CBTC) system is facing increasingly serious cyber-attacks. Intrusion detection
systems (IDSs) are vital to protect the system against cyber-attacks. The traditional IDS cannot
distinguish between cyber-attacks and system faults. Furthermore, the design of the traditional IDS
does not take the principles of CBTC systems into consideration. When deployed, it cannot effectively
detect cyber-attacks against CBTC systems. In this paper, we propose a novel intrusion detection
method that considers both the status of the networks and those of the equipment to identify if the
abnormality is caused by cyber-attacks or by system faults. The proposed method is verified on a
hardware-in-the-loop simulation platform of CBTC systems. Simulation results indicate that the
proposed method has achieved 97.64% true positive rate, which can significantly improve the security
protection level of CBTC systems.

Keywords: CPS; CBTC; cybersecurity; IDS

1. Introduction

Urban rail transit plays an important role in addressing the issues of traffic congestion and
environmental pollution. Communication-based train control (CBTC) is an automated train control
system using communication technologies to ensure the safe operation of rail vehicles [1]. CBTC can
improve the utilization of railway infrastructure and help to provide better services to passengers.

CBTC systems are typical cyber-physical systems (CPS) which bridge the computing and
communication of the cyber world with the control of the physical world [2]. The extensive application
of computer, communication and control technologies in CBTC has greatly improved the automation
level of the system but exposed it to the threats of cyber-attack at the same time [3].

Over the last years, cyber security incidents in the rail transit field are increased. For instance,
about 60 computers of the metro system in Seoul were infected by malware, which caused data and
information leaks in March of 2014 [4]. In November 2016, the hackers hijacked the San Francisco
metro-rail system by attacking the station fire systems [5]. The attack caused 2112 computers to be
damaged. In 2018, an unprecedented distributed denial of service attacks interfered with Danish
state rail operators. Passengers across the country were prevented from buying tickets on Sunday [6].
Since CBTC systems are safety-critical, cyber-attacks could result in emergency brake and affect the
travel time of passengers seriously.

Intrusion detection systems (IDSs) are deployed to detect cyber-attacks against the system.
It monitors the system for abnormal activities and policy violations to take appropriate actions
immediately [7]. Building an IDS for CBTC is an efficient way to increase the security protection
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level. As a result, a complete and deep analysis of the intrusion detection issue is important for
CBTC systems.

Although lots of researches have been carried out on IDSs of CPS, few studies are suitable for
CBTC systems. The features of CBTC have not been considered in the design of traditional IDSs.
In addition, attacks are likely to trigger the fault-safety mechanism of CBTC systems. They may be
misjudged as random faults, such as faults of equipment and failures of communication. As faults may
have the same impact as cyber-attacks do on CBTC systems [8], traditional IDSs cannot distinguish
between faults and cyber-attacks. They will lead to false negatives or false positives, as well as reduce
the performance of the IDS.

This paper proposes a novel intrusion detection method for CBTC systems. A detection model that
integrates the status of networks with the states of devices is set up to get comprehensive information
on CBTC systems. A hidden Markov model (HMM) is used to fuse the information from different
models to make decisions on the results of detection. The main contributions of this paper can be listed
as follows:

1. Unlike the traditional IDS, which focus on the anomaly analysis of packets, the throughput of the
network and the characteristics of the data packets in the CBTC systems are jointly considered in
the detection model based on the status of networks.

2. A detection model based on the status of devices is adopted to take the fault-safe principle of
CBTC systems into consideration.

3. A HMM classifier is designed that synthesizes the anomalies detected by different models.
Experimental results show that the proposed IDS can differentiate cyber-attacks from random
system faults.

The remaining part of the paper is organized in the following way. Section 2 introduces the related
intrusion detection technologies in CPS and CBTC. A brief introduction of CBTC systems is given in
Section 3. The impact of cyber-attacks on CBTC systems is analyzed. In Section 4, the architecture,
the different detection models and the HMM classifier are proposed. The proposed IDS method is
applied and tested on a hardware-in-the-loop simulation platform of CBTC systems in Section 5.
In Section 6, the performance of the proposed IDS is discussed in detail. Last but not least, the
conclusions and future work are given in Section 7.

2. Related Works

Currently, intrusion detection is an essential technology of security protection. It can be classified
into signature based detection and anomaly based detection [9]. As signature based IDSs rely on
fixed signatures to detect attacks, it is unable to identify unknown cyber attacks. The anomaly based
methods identify attacks by detecting a deviation from normal behavior. As the anomaly based IDS can
be used to detect “zero day” attacks that have not been disclosed before, it has attracted the attention
of more and more researchers [10,11]. The anomaly based methods in CPS can be categorized into
associated rule mining, statistical-based, and machine learning algorithms [12].

The rule-based IDS checks whether events occur together to detect attacks. It digs out the relations
among the attributes of the data set to identify if the system is under cyber attack [13]. Yang designs an
IDS for supervisory control and data acquisition (SCADA) systems using the associated rule mining
algorithm. The IDS can realize the in-depth analysis of the protocol and deep inspection of packets [14].
As traditional IDSs cannot monitor physical behaviors, Koyena adopts association rule mining to
process the data of sensors and actuators to detect more attacks [15]. Besides, most rule mining
algorithms can not deal with continuous attributes. Li proposes a fuzzy if-then rules mining method
to handle the vague and imprecise among data. The novel algorithm can significantly reduce false
alarms in medical CPS [16].

Rare events are regarded as anomalies in the statistical based intrusion detection method [17].
Both parametric and non-parametric techniques have been applied to design statistical models for
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anomaly detection. While parametric techniques estimate the parameters from the given data [18],
such systems may generate incorrect results in non-stationary systems. To overcome the problem,
non-parametric techniques are used [19], which can provide accurate notification of abnormal activities
and detect DoS attacks without delay [20]. However, the detection rate is low when the anomaly
traffic intensity is lower than 5% of the background traffic. Manikopoulos introduces a multi-window
statistical method using statistical modeling and neural network classification to achieve high detection
rate along with a low misclassification rate [21].

Machine learning algorithms are widely used in IDSs [11], such as decision trees, neural networks,
support vector machines, clustering, and so on. Among the algorithms, decision tree is easily
comprehensible and requires little data preprocessing. Sindhu uses it to construct a lightweight
IDS that can discover specific attacks with a true positives rate of 98.4% [22]. When the data set
becomes larger, the decision tree grows deeper and broader, and it is much more challenging to
extract rules. Thus, random forest is used instead to process the vast amounts of data [23]. However,
the traditional decision tree may have a low detection rate on highly imbalanced data. Jahromi
combines a deep unsupervised learning approach with the decision tree for effective detection [24].

Although extensive research has been carried out on intrusion detection of CPS, few single studies
exist which are suitable for CBTC systems. Melaragno proposes a signature-based rail radio intrusion
detection system (RRIDS) to detect command replay, guessing, and message corruption attacks [25].
RRIDS detects intrusion by modeling each type of attack, which relies on fixed signatures and requires
frequent database updates. As CBTC systems are continuously running and widely distributed in
space, frequent updates may be unsuitable for CBTC systems. Zhang studies on the data tampering
attacks on trains and proposes an intrusion detection method based on the running status of the train
through Kalman filter and χ2 detector [26]. However, the method can only detect data tampering
attacks, which may not be effective against other anomalies. Gao proposes an improved Adaboost
multi-classification IDS based on the n-gram model [27]. Experiments show that the IDSs can effectively
detect attacks on the train-ground communication subsystem.

Analysis of the related works shows that the existing methods mostly focus on a certain attack
or subsystem. They can not provide security protection for an entire CBTC system. Therefore,
the intrusion detection mechanism should adopt a combination of different techniques to achieve
good performance.

3. CBTC Systems and Cyber-Attacks

In this section, an overview of CBTC systems is firstly presented, followed by the impacts of
cyber-attacks on CBTC systems.

3.1. An Introduction of CBTC Systems

As shown in Figure 1, a CBTC system consists of cyber networks and physical processes. A typical
CBTC system is comprised of wayside equipment, on-board equipment, and data communication
systems (DCS). The wayside equipment, including automatic train supervision (ATS), zone controller
(ZC), computer interlocking (CI), and data storage unit (DSU), is connected through the wired backbone
network. Through the wireless network, the wayside equipment communicates with the onboard
equipment, which is called the vehicle onboard controller (VOBC), including automatic train protection
(ATP), automatic train operation (ATO), and mobile station (MS). Due to the high reliability and safety
requirements of CBTC systems, redundant and fault-tolerant equipment is adopted [28]. Meanwhile,
redundant networks and dedicated safe communication protocols are deployed for data transmission.

In a CBTC system, the position and speed of the foregoing train are transmitted to ZC through
the wireless network. After receiving the information from the foregoing train and the information of
the safe route from CI, ZC generates and forwards the limitation of the movement authority (LMA),
a location on the line that the train cannot travel cross, to the following train. The VOBC controls
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the train to run below the protective curve, which is calculated based on the LMA and the status of
the train.

  
ATP ATO MS

  
ATP ATO MS

Emergency braking curve

Service braking curve

Stop Point LMA

ATS CI DSU ZC

APn-1 APn APn+1

DCS Wireless Network

LMA

State Information
(Position/Speed)

Figure 1. A communication-based train control (CBTC) system.

3.2. Impacts of Cyber-Attacks on CBTC Systems

The traditional rail system is a track-based train control (TBTC) system, which uses track circuits
to transmit information [29]. As TBTC is designed physically isolated from external networks,
issues of cybersecurity are not considered. With the increasing passenger volume of urban rail
transit, CBTC systems are widely deployed all over the world. Commercial off-the-shelf (COTS)
products are extensively used in CBTC systems, including general computers, commercial operating
systems, standard communication protocols, etc. COTS improves the automation level of the system,
shortens the headways between trains, enhances the capacity of the urban rail transit, however,
introduces the risk of cyber-attacks at the same time. In this paper, we consider cyber-attacks that have
serious impacts on CBTC, including denial of service (DoS) and data integrity attacks (DIA) [30].

When the CBTC systems operate normally, the ATP of the following train calculates the protective
position/speed curve based on the received LMA. As shown in Figure 2, the LMA of the following
train at time t is Lm(t), the safe position of the tail of the foregoing train. The ATO of the following
train calculates a service braking curve under the ATP curve and controls the train to run under the
service braking curve. In this paper, we consider the cyber-attacks interfere with the operation of trains.
To achieve this goal, the cyber-attacks impair the availability or the integrity of the LMAs directly
or indirectly.

Former trainBack train

Normal LMA

Tampered LMA

Missing LMA

Curve 2 Curve 1 Curve 3

Lm(t) Lm(t)’

Figure 2. Schematic diagram of normal train operation.

DoS attack reduces the availability of a train’s LMA. When a train cannot receive LMA, it uses
the latest received LMA to calculate the ATP and the ATO curves. If the train unable to receive LMAs
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continuously and the interruption time exceeds a specified threshold, it applies an emergency brake
to ensure safety. As depicted in Figure 2, if the following train does not receive Lm(t), it uses the
latest received LMA, Lm(t− 1), to generate the ATP curve, C2. As C2 is closer to the following train
than C1, the speed of the train may be lower down unnecessarily, the efficiency of the train’s operation
is decreased.

If an attacker has prior knowledge of CBTC systems, he may launch a DIA attack that tampers with
the LMA of a train directly or indirectly to cause more damage. There are three possible consequences.
If the tampered LMA violates the communication protocol or is unreasonable in logic, it is perceived
and discarded by the train. In this case, the DIA attack has the same impact on the train’s operation
as the DoS attack. If the tampered LMA is behind the real LMA and is used to calculate the ATP
and ATO curves, the DIA attack may impair the efficiency of the train’s operation. If the tempered
LMA is in front of the real LMA and passes the inspection of the train, the DIA attack may lead to an
accident. The train may crash into barriers after crossing the real LMA. As shown in Figure 2, if Lm(t)
is tampered into L′m(t), which is in front of the foregoing train. The following train runs under the
ATP curve C3, it may collide with the foregoing train.

This paper presents an IDS to detect specific CBTC attacks including DoS and DIA. The main
technical challenges and proposed solutions are summarized in Table 1.

Table 1. Technical challenges and proposed solutions.

Issues Challenges Solutions

DoS detection Small changes in traffic flow
are difficult to detect.

• Using the sequential analysis technique

DIA detection Existing detection model can
hardly identify DIA attacks.

• In-depth analysis of CBTC protocols.
• Checking the authenticity of LMAs

Distinguishing
attacks from faults

Faults may have the same
impact as attacks do.

• Adding a detection model based on device states.
• Designing an HMM classifier.

4. The Intrusion Detection Model Using a Fusion of Network and Device States

In this section, the framework of the proposed IDS is presented firstly. Then the detection models
based on the network status and the device states are described in detail, respectively. Lastly, an HMM
classifier is adopted to distinguish between random faults and cyber attacks.

As depicted in Figure 3, the intrusion detection process of the IDS is divided into two phases.
One is the anomaly detection phase. The other is the result classification phase. The anomaly detection
phase includes two models which are the network detection model and the device detection model.
The network detection model analyzes the data throughput and the content of packets to detect the
anomalies of networks. The device detection model detects abnormalities of devices based on the tasks
and resource usage of hosts in CBTC systems. In the classification phase, the anomalies of network and
devices are fused through the HMM model to distinguish between random faults and cyber-attacks.
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Figure 3. A novel intrusion detection system (IDS) for CBTC systems.

4.1. The Network Detection Model

As shown in Figure 4, the network detection model includes a throughput analysis module
and a packet analysis module. Before being used to detect anomalies, the model is trained through
historical packets to model the normal behavior of a CBTC system in throughput and transmitted
packets. A DoS attack may hinder the normal operation of an IDS through a very high data throughput
as lots of packets consume excessive resources of the IDS. To avoid the above situation, a threshold of
throughput is predefined. The throughput analysis module delivers packets to the packet analysis
module only if the throughput is below the threshold. Otherwise, the throughput analysis module
outputs detection results directly.

Training phase

Detection phase

Data flow Knowledge transfer

Historical
Data

Normal flow sequence Packet processing

Threshold UCL,LCL Decision tree model

Real time
Data

Flow detection 
module

Packet detection 
module

Output results

Low or 
Normal

High

Figure 4. The anomaly detection model based on network states.

Due to the periodic communication between different equipment, the data throughput in a CBTC
system is stable. A successful DoS attack on a CBTC system leads to abrupt changes in throughput.
Consequently, a sudden change in the statistics parameters can be observed. The data throughput
detection is equivalent to the problem of change point detection [31,32]. The exponentially weighted
moving average (EWMA) control chart, a sequential analysis technique, is typically used for change
point detection. EWMA is an efficient statistical method in detecting small shifts, which is superior
to other control charts. EWMA can detect small changes more easily and quickly as it combines the
current and historical data [33,34]. In this paper, EWMA is used to identify sudden changes in data
throughput of a CBTC system.

Taking the data throughput between VOBC and ZC as an example, the predicted throughput of
EWMA is calculated as [35]

z(i) = λ · x(i) + (1− λ) · z(i− 1), 0 < λ ≤ 1, (1)
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where x(i) is the throughput at time i. λ is the smoothing factor indicating the sensitivity of z(i) to the
observed x(i). The mean and variance of z(i) can be expressed as

µz = µx, (2)

σ2
z = σ2

x ·
λ

2− λ
, (3)

where µx and σx are the mean and variance of x(i), which can be estimated from historical data in the
training phase. µz and σz are the mean and variance of z(i), respectively. A change point is detected if
z(i) is outside the interval, [Dz, Uz]. It has

Dz = µz − L · σz, (4)

Uz = µz + L · σz, (5)

where L is a coefficient that effects the results.
However, due to the communication of CBTC systems is periodic, the observed data of throughput

have strong autocorrelation. The traditional EWMA is not suitable for highly autocorrelated data [36].
To solve this problem, the error between x(i) and z(i− 1) is defined and used to detect change point,
which is defined as

e(i) = x(i)− z(i− 1). (6)

The variance of e(i) can be rewritten as

σ2
e = α · e(i)2 + (1− α) · σ2

e (i− 1), 0 < α ≤ 1, (7)

where α is a coefficient that affects the sensitivity of upper and lower limits of the interval to e(i),
which is identified in the fourth chapter. Accordingly, the lower and upper limits of e(i) for change
point detection are

De = −L · σe, (8)

Ue = L · σe, (9)

In the EWMA control chart, the values of L have an important influence on the performance of
the detection. When L becomes larger, the threshold of the EWMA control chart will become higher,
which may cause more attacks to be missed. However, if L is small, it may cause more false alarms.
In the detection phase, an anomaly is discovered if z(i) falls outside the D or U.

As the types of packets in CBTC are much less than those in a general network [37], a decision
tree is adopted in the proposed IDS. A decision tree is one of the most popular and useful machine
learning algorithms mainly used for classification. It uses a tree-like structure in which each internal
node denotes a test on an attribute, each branch represents the output of the test, each leaf node
corresponds to a class label. The merits of the decision tree include high classification accuracy
and simple implementation. The best-known method to build a decision tree automatically is the
ID3 algorithm [38]. Information gain, I, is defined to choose the attribute for each internal node to
classify data.

The entropy of D and Dv can be calculated as follows

E(D) = − ∑
k∈C

|Dk|
|D| log

|Dk|
|D| , (10)

E(Dv) = − ∑
k∈C

|Dvk|
|Dv|

log
|Dvk|
|Dv|

, (11)
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where Dk and Dvk are the subset of D and Dv, respectively. All the samples of Dk and Dvk belong to
the kth category. |Dvk| and |Dv| are the number of samples in Dvk and Dv, respectively.

The information gain of using property a to classify D is defined as

I(D, a) = E(D)− ∑
av∈A

|Dv|
|D| E(Dv). (12)

The attribute with the highest information gain is chosen as the root node. Then I is computed on
the other attributes to select a branch node until all the remaining samples belong to the same class.
The root node, branch nodes, and leaf nodes make up a decision tree.

In the proposed IDS, the following attributes of the data are chosen for detecting anomalies in
CBTC systems.

AN = {sMAC, sIP, sPort, dMAC, dIP, dPort, Len, P, M} (13)

where the first six parameters represent the MAC, IP, port of the source and the MAC, IP, port of
the destination, respectively. Len indicates the length of a packet. P represents the protocol type,
including TCP, UDP, and ICMP. M is the position of the train.

As a CBTC system adopts the specified protocol, the packet length varies in a predictable range.
It is found through analyzing a typical CBTC system that the normal value of Len is between 0 and 400
or in the range of 800 to 900.

A vicious cyber attacker may try to threaten the safety of a train through tampering with the LMA
of the train to create a great sensation. The most predictable DIA method is adding an offset to the real
LMA. To detect the anomaly caused by DIA, attribute M is adopted in the decision tree to check if the
position change of the foregoing train conforms to the kinematic equation.

The position change of the foregoing train is equivalent to the difference between two consecutive
LMAs, which should be less than

Smax = vtT +
1
2

amT2, (14)

where Smax is the maximum position change of the foregoing train during one communication period
of T. vt is the train speed.

If the difference between two consecutive LMAs is larger than Smax, the attribute M is defined
as abnormal.

4.2. The Detection Model Based on Device States

To satisfy the high requirement on reliability and safety, different redundant architectures are
adopted in a CBTC system [39], such as hot-standby, two-out-of-three, and double 2-vote-2. Taking the
hot-standby structure shown in Figure 5 which is adopted in ATS as an example, if the processing
unit A is not working properly, the switching unit automatically switches to the processing unit B.
The redundant device maintains the normal operation of the system even when the other unit is out of
order due to random faults or cyber-attacks. It can be seen that the redundant architectures in CBTC
which are adopted for safety can also protect against security risks to a certain extent. On the one hand,
since the cyber-attack has not caused any communication abnormal behavior at this stage, the network
detection model can not detect it yet. On the other hand, random faults and cyber-attacks may cause
the same communication abnormal behaviors, the network detection model along can not identify the
causes of the anomalies. To solve the above problem, the states of devices are analyzed to distinguish
the anomalies caused by random faults from those introduced by cyber-attacks.



Electronics 2020, 9, 181 9 of 24

Processing Unit A
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Switching
Unit

Input Output

Working

Hot spare

Figure 5. The hot-standby structure.

As the trains of a CBTC system run in fixed headways, the tasks and load of the key subsystems
are stable. The hosts of the subsystems have stable resource utilization, including CPU, memory,
disk, and network. Association rule mining is a rule-based machine learning method to discover
the potential relations among variables in large databases [40,41]. In the device detection model,
the associated rule mining method is used to check the resource usage of hosts. A set of all the items is
defined as follows

I =
{

St, Sip, Rc, Rm, Rd, Rn
}

, (15)

where St is the task running on the host, Sip is the IP address of the host, Rc, Rm, Rd, and Rn are the
usage of the CPU, memory, disk, and network of the host, respectively.

Based on the item set, the status of the concerned hosts are gathered to form the database of CBTC,
which is a collection of transactions. Each transaction is a non-empty subset of I, such as

Tj = {ZC1, 192.168.1.2, 11%, 2%, 0%, 0.1%} , Tj ⊆ I, (16)

where ZC1 represents a task running on the host with an IP address of 192.168.1.2. Its occupancy of
CPU, memory, disk, and network are 11%, 2%, 0%, 0.1%, respectively.

Then an association rule is defined as

X → Y(s, c), X, Y ⊆ I, X ∩Y = ∅, (17)

where X is the antecedent, Y is the consequent, s is the support of the rule that indicates the percentage
of the transactions that contain both X and Y. c is the confidence of the rule that represents the ratio of
the number of transactions containing both X and Y compared to the number of transactions containing
only X.

The Apriori algorithm is a classical association rule mining algorithm working in two steps. It
finds frequent itemsets firstly and then generates association rules. However, Apriori can not handle
continuous attributes such as CPU usage. For example, to discretize the CPU usage, the value range of
Rcpu is divided equally into ten intervals. The Rcpu is discretized as follows:

R̄cpu = n, Rn
l < Rcpu < Rn

u, (18)

where R̄cpu is the discretized Rcpu. Rn
l and Rn

u are the lower and upper limits of the nth
interval, respectively.

In addition, Apriori may suffer from heavy computational load in mining association rules.
Since different subsystem implements variable functions, they have unique rules of their own.
The computational load is closely related to the size of the database [42]. Thus, each subsystem
can manipulate its own database and mine association rules individually. Furthermore, as the
running processes in the concerned hosts are determined in a CBTC system, transactions with illegal
processes can be directly classified as anomalies. Assuming that s and c are 60% and 70%, respectively,
some associated rules obtained through the Apriori algorithm are listed in Table 2.
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Table 2. Some detection rules of the device detection model.

X Y s c
St Sip Rc Rm Rd Rn

ZC1 192.168.1.2 1 1 1 1 81 76
DSU 192.168.7.1 0 — 1 1 77 90
ATS 192.168.10.11 0 — — 2 69 71
CI — 1 0 0 0 71 74

4.3. The HMM Classifier Distinguishing Faults and Attacks

Due to the fail-safe mechanism of CBTC systems, both random faults and cyber-attacks may lead
to anomalies. If anomalies are caused by failures, the broken devices should be repaired or replaced.
However, if abnormalities are intrigued by cyber-attacks, not only the equipment should be restored,
but also defensive measures should be taken to prevent similar incidents. Adopting an anomaly
detection model based on network status or device states alone, the IDS cannot identify the causes of
anomalies, not to mention advising administrators to take appropriate measures.

HMM is a statistical method to characterize observation samples arranged in discrete time series,
which can predict the hidden states through observations [43]. As investigated by Hindy, HMM can
meet the requirements of network detection, such as high detection rate, online learning ability, and
high stability [44]. Besides that, HMM requires little time to train the detection models.

In the proposed IDS, the results of different detection models are observable, while the state of
the system is invisible. An HMM classifier can fuse the results of different models to differentiate
cyber-attacks from failures and improve the performance of detection effectively.

In an HMM, Q is a set of possible hidden states. V is a set of possible observations.

Q = {q1, q2, ..., qN}, (19)

V = {v1, v2, ..., vM}, (20)

where N is the number of hidden states and M is the number of observations.
In this paper, the hidden states are normal, fault, and attack, N = 3. The most typical structure

of a CBTC system is hot-standby, where two redundant devices are connected to two physically
independent networks, respectively. Based on the structure, the observation is designed as shown in
Figure 6. An observation includes data obtained from the two networks, indicated by Network A and
Network B. The data get from network A includes FA, PA, HA, and TA, which are the analysis results
of throughput, packet content, running process, and host state, respectively. The possible values of
FA are “0,” “1,” and “2,” indicate “normal,” “low,” and “high,” respectively. The values of PA, HA,
and TA are “0” and “1,” represent “normal” and “abnormal,” respectively. The data get from network
B are the same as those collected from network A. The M of the HMM classifier is 576.

An observation is given as an example

vm = {1, 0, 0, 0, 0, 0, 0, 0}, 1 ≤ m ≤ M,

where the throughput is lower than the predefined threshold, the other results are normal.

F_A P_A H_A T_A

Network A

Communication Device states

F_B P_B H_B T_B

Network B

Figure 6. The format of the input data.
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The following sequences are defined:

S = {s1, s2, ..., sT}, ∀t ∈ [1, T] , st ∈ Q,
O = {o1, o2, ..., oT}, ∀s ∈ [1, T] , os ∈ V,

(21)

where I and Q are the sequence of hidden system states and the sequence of observations, respectively.
it is the hidden system state at time t, os is the observation at time s.

Two assumptions are embodied in the HMM classifier. One is the Markov assumption on the
probabilities of the sequence of system states. It is assumed that the probability of a system state
depends only on the previous state.

The state transition probability is defined as

aij = P (st+1 = j | st = i) , i, j ∈ Q, (22)

where aij represents the probability of moving from state i to state j.
The transition probability matrix is composed of all the aij. It has

A =
[
aij
]

, A ⊆ RN×N . (23)

Another assumption is the probability of an observation depends only on the hidden system state
that produced the observation. The observation probability is defined as

bj(k) = P (ot = k | st = j) , j ∈ Q, k ∈ V. (24)

Then the observation probability matrix is

B = [bj(k)], B ⊆ RN×M. (25)

Besides A and B, an initial probability distribution of the system state is defines as

Π = [P (s1 = qi)], qi ∈ Q, Π ⊆ R1×N . (26)

The HMM classifier is specified by A, B, and Π, which is expressed as

λ = (A, B, Π). (27)

The classification scheme of the proposed IDS is shown in Figure 7. In the offline phase,
the historical data, a sequence of observations, is used to learn the parameters of the HMM
classifier. The Baum–Welch (BW) algorithm, which is also known as a special case of the
expectation-maximization algorithm [45], is adopted to train the A and B matrices.

HMM Traininghistorical data

Calculate
( )

k
p t

, ,A Bπ

( )o t ( )s t Report

 

Figure 7. A hidden Markov model (HMM)-based anomaly classification model.
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The forward probability which represents the probability of a state given the sequence of
pre-observations is expressed as

αt(i) = P (o1, o2, ..., ot, st = i | λ) , i ∈ Q, (28)

where αt(i) is the forward probability of state i at time t.
The forward probability is calculated as

αt(i) =
N

∑
j=1

αt−1(j)ajibi(ot), i ∈ Q. (29)

The backward probability which indicates the probability of a state given the sequence of
post-observations is represented as

βt(i) = P (ot+1, ot+2, ..., oT | st = i, λ) , i ∈ Q, (30)

where βt(i) is the backward probability of state i at time t.
The backward probability is computed as

βt(i) =
qN

∑
j=q1

βt+1(j)aijbj(ot+1), i ∈ Q. (31)

The probability of a system state can be rewritten as

γt(i) =
αt(i)βt(i)

qN

∑
j=qi

αt(j)βt(j)
, (32)

where γt(t) is the probability of system state i at time t.
Given the observation sequence and the HMM, the probability of being in state i at time t and

state j at time t + 1 is defined as ξt(i, j). It has

ξt(i, j) =
αt(i)aijbj (ot+1) βt+1(j)

qN

∑
k=q1

qN

∑
l=q1

αt(k)aklbl (ot+1) βt+1(l)
, (33)

The state transition probability can be estimated as

âij =

T−1
∑

t=1
ξt(i, j)

T−1
∑

t=1

qN

∑
k=q1

ξt(i, k)
, (34)

where âij is the estimation of aij.
The observation probability can be estimated as

b̂j(vk) =

T
∑

t=1,ot=vk

γt(j)

T
∑

t=1
γt(j)

(35)

To train the HMM classifier of the proposed IDS, a sequence of historical observations and the
set of possible hidden system states are input to the BW algorithm. It is assumed that the initial
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hidden system state is “normal,” P (q1 = 0) = 1. The A and B matrices are initialized randomly at the
beginning of the iterations. The convergence conditions of the algorithm are set as follows:

log10 P (O | λ) ≤ 10−6,

‖An‖ − ‖An−1‖ ≤ 10−6,

‖Bn‖ − ‖Bn−1‖ ≤ 10−6,

where ‖A‖ and ‖B‖ are the 1-norm of the matrices A and B, respectively.
The algorithm converges after 152 iterations. The trained parameters of the HMM classifier are

as follows:

A =

 0.7365 0.0848 0.1787
0.9130 0.0290 0.0580
0.9342 0.0066 0.0592



B =

 1 0 · · · 0
0.0290 0.1449 · · · 0.2754
0.0987 0.0066 · · · 0


Given the assumed Π, the trained matrices A and B, the HMM classifier is determined and used

to classify the detection results of different models in the online phase. Through using (29), (31), and
(32), the probability of the most possible hidden system state, given a sequence of observations, can be
calculated as

i∗t = arg max
i∈Q

[γt(i)] , t = 1, 2, · · · , T. (36)

Finally, the proposed IDS outputs i∗t as the detection result.

5. Experimental Data Collection

In this section, an experimental environment is constructed to evaluate the proposed IDS.
Therefore, the platform of Beijing Subway Line No. 7 is introduced, where attack scenarios are
designed to collect experimental data.

5.1. Semi-Physical Simulation Platform of CBTC

The proposed method is verified on the hardware-in-the-loop simulation platform of CBTC
systems. As shown in Figure 8, there are two networks, automatic train supervision (ATS), and
automatic train control (ATC), which are connected by the gateway. In the platform, ZC and VOBC are
real devices, while the other devices such as CI, DSU, and the gateway are simulated by software on
different computers. Additionally, CBTC systems support degraded modes to ensure high availability.
We can simulate different operation modes and collect all kinds of data on the platform.

Communication
computer

Other
workstations

Gateway ZC CI DSU

VOBC1 VOBC2

Other networks

ATS

ATC

Attacker

Processor

Firewall

Detector

Figure 8. A typical attack path and major fault injection scenarios.
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The operational modes can be classified as CBTC mode and intermittent ATP mode. In CBTC
mode, information is transmitted continuously to realize automatic train protection. While in
intermittent ATP mode, MA is only updated at discrete locations along the track. CBTC mode
provides accurate closed-loop control of trains through continuous, bidirectional, and high-capacity
communication between trains and wayside equipment. As the LMA is calculated based on the front
train position, CBTC mode is a moving block signaling system. However, if continuous communication
is interrupted, the system will convert to intermittent ATP mode, where the LMA will be transformed
through beacons.

The proposed IDS is also implemented on this platform. As shown in Figure 8, the processor
collects all packets and information from the CBTC platform. The detector is responsible for anomaly
detection. As IDSs should not introduce new threats to CBTC, a firewall is set between the processor
and the detector. Attacks can not be carried out through intrusion detection devices.

5.2. Experimental Scenarios

As shown in Figure 8, a typical attack path is highlighted in red and the major injection locations
are highlighted in yellow. CBTC is connected with other systems, such as passenger information
system (PIS), through the communication computer in the ATS network. As the security protection of
other systems may be weak, attackers may first capture the communication computer through other
networks, and then launch an attack on the ATS. To connect to the ATC network, they need to attack
the gateway next. Finally, they will directly attack equipment such as ZC and seriously affect the
train operation.

There is a wide variety of attacks in IT systems. However, most of the common attacks can not
be achieved in CBTC because CBTC systems are not connected to the Internet directly. In this paper,
we only select attack scenarios that may occur in CBTC systems, including DoS and DIA. Among them,
DoS includes vulnerability triggering and resource exhaustion. As COTS products are widely used
in CBTC systems, various buffer overflow vulnerabilities also exist. The exhaustion of resources is
mainly caused by flood attacks, such as Smurf, synchronize sequence numbers (SYN) flood and so on.
Additionally, LMAs directly determine where the trains can travel to. Therefore, DIA scenarios in the
experiments are launched against the LMAs.

As our IDS can distinguish between faults and attacks, fault injection scenarios are also designed.
Equipment faults and communication failure are selected as they mostly occur in CBTC systems.

When implementing experiments, the difference between faults and attacks is also considered.
The goal of an attacker is usually to affect the operation of the train. As a result, the target choice and
duration of attacks are purposeful while the faults are random.

The way of attack emulation and fault injection are introduced in detail next.

• Buffer overflow

A buffer overflow occurs during program execution when a fixed-size buffer has had too much
data copied into it [46]. Buffer overflow attacks can take place in the process of using a stack during
program execution. It can overwrite data into adjacent memory locations and affect the behavior of the
software. Since most applications in CBTC are developed in C, a publicly-available suite is applied in
this paper to identify buffer overflows and help launch attacks.

• Smurf

Smurf is a type of DoS attack which floods a victim network via spoofed broadcast ping
messages [47]. Currently, Windows operating systems have adopted strategies to avoid this attack.
However, this vulnerability may still exist in other operating systems, such as VxWorks in ZC.
We simulate attackers sending ICMP echo request packets to the broadcast address and forging
the source address to be the IP address of ZC. Then significant traffic will be generated on the ZC
subsystem, which will cause ZC to be down.
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• SYN flood

When the SYN flood attack occurs, all open ports may be saturated with requests and none are
available for legitimate users to connect to. In this paper, the targets of SYN flood are communication
computer, gateway, ZC, CI, and DSU respectively.

• Tamper attack

The tamper attack mainly affects the location information or the LMA transformed between the
trains and ZC. We design attack nodes that can modify the train position or LMA before the packets
are sent to the final nodes in the experiments. Therefore, the targets of tamper attacks are ZC or VOBC.

• Replay attack

The replay attack is also most likely to occur in the communication between ZC and VOBC,
where the impact of the attack is greatest. In this paper, the attacker is simulated to eavesdrop and
repeatedly send LMAs to disturb the normal operation of the trains.

• Equipment faults

In this paper, the target of equipment fault injection is chosen randomly. As shown in Figure 8,
we take CI as an example to show how faults are injected. In the first case, an application error is
simulated by shutting down related tasks running on CI. In the second case, unexpected device faults
are considered and simulated by shutting down the CI host.

• Communication faults

Wire communications are used between wayside devices, while VOBC communicates with
wayside devices wirelessly. Therefore, the probability of faults between VOBC and the ATC network
is much greater. As shown in Figure 8, communication faults are injected between VOBC and the
wayside equipment, including simulating packet loss and increasing transmission delay.

5.3. Experimental Data

The collected data includes traffic flow, packets, process lists and resource utilization of each
process. The normal operation of CBTC systems is simulated on the platform, and the data is marked
as “normal”. The data collected during the attack is labeled as “attack”. Similarly, the data is marked
as “fault” if it is obtained during the fault injection.

True positives rate (TPR) and false positives rate (FPR) are selected to measure the performance of
the IDS. TPR is the proportion of anomalous instances classified as correct ones over the total number
of anomalous instances, while FPR is the proportion of normal instances classified as anomalous ones
over the total number of normal instances. In this paper, we define the number of non-attack records
which are detected true as non-attack→ non-attack (TN). Similarly, we get non-attack→ attack (FP),
attack→ attack (TP), and attack→ non-attack (FN).

TPR =
TP

TP + FN
(37)

FPR =
FP

FP + TN
(38)

To get the appropriate data size, we verify the impact of dataset size on detection performance.
Figure 9 shows the performance of the IDS with 20, 40, 60, 80, 100, 120, 140, and 160 experiment
times, respectively. From 0 to 80 times, detection performance improves as the dataset gets larger.
Compared with 80 times, the performance of 100 times improves less. In addition, TPR and FPR are
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basically stable after 100 times. Therefore, to save computing resources and reduce model training
time, the dataset contains 100 experiments in this paper.

Finally, all of the data is summarized as shown in Table 3, including 560,977 packets and 31,649
state messages. The whole data set will be divided into training set and test set. The former is used for
model training and the latter for performance evaluation. If the training set is too small, the training
model is not accurate enough. On the contrary, if the test set is too small, the performance evaluation is
not comprehensive. In general, 80% of the data is randomly selected as a training set and the remaining
data is a test set.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
0

2 0

4 0

6 0

8 0

1 0 0

%

T i m e s

 T P R
 F P R

Figure 9. Detection performance of different numbers of experiments.

Table 3. Quantity of the experimental data.

Type Category Times Packets State

Normal CBTC mode 30 128,742 13,721
Intermittent ATP mode 5 14,263 2188

Attack (DoS)
Buffer overflow 10 13,527 3418

Smurf 10 71,572 4113
SYN flood 5 154,759 1478

Attack (DIA) Tamper 10 38,531 1726
Replay 10 82,861 1266

Fault Equipment 10 46,447 1981
Communication 10 10,275 1758

6. Results and Discussion

6.1. Parameter Settings

It should be noted that when the results are calculated, both “normal” and “fault” instances are
used as “non-attack” ones. To implement the proposed IDS, the parameters of each model need to
be determined.

Due to the EWMA control chart used in the flow statistics, L, λ, and α may all have impacts on the
detection performance. According to [48], L is assigned a value of 1.96. When λ and α take different
values, the changes of TPR and FPR are shown in Table 4. When λ = 0.01 and α = 0.001, EWMA has
the best performance.
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Table 4. Detection results under different combinations of parameter values.

λ α TPR (%) FPR (%)

0.1
0.01 76.65 8.19

0.001 84.55 14.19
0.0001 81.81 8.12

0.05
0.01 82.41 7.21

0.001 94.49 7.03
0.0001 93.39 5.74

0.01
0.01 90.39 6.27

0.001 94.86 3.21
0.0001 93.91 3.82

In the detection model based on device states, the support s and the confidence c of association rule
mining also have a great impact on the performance. The larger these two parameters are, the fewer
frequent itemsets are mined. Thus, fewer association rules are generated and the FPR may be higher.
However, if s and c are too small, lots of redundant rules may be generated. Mining these rules will
consume a large number of computing resources. Therefore, we set s equal to 0.6 and c equal to 0.8,
just as the experts suggest.

6.2. Experiment Results

In this section, we compare the detection performance of the proposed IDS with other approaches.
As multiple methods are applied from multiple perspectives in the IDS, it is difficult to compare with
other intrusion detection approaches directly. Therefore, we firstly compare the performance of a
single detection model with the entire IDS in Experiment 1. Then the network states anomaly detection
(NAD) model, the device states anomaly detection (DAD) model and the HMM classifier are compared
with other approaches, respectively. As shown in Figure 10, the test dataset is used to generate the
following results.

Data collection

Packets

Device 
information

Data processing

Traffic statistics

Protocol analysis

Device status 
extraction

Detection models

EWMA

Decision tree

Association 
rule mining

NAD

DAD

Result fusion

HMM 
classifier

Experiment 1Experiment 4Experiment 3Experiment 2

Raw data
Training dataset
Testing dataset

Figure 10. Overall flow of the processing steps for the data and results.

• Experiment 1

To prove the proposed IDS has better performance than the NAD model or the DAD model alone,
we calculate their detection results as shown in Table 5. The data in Table 5 is plotted as Figure 11 to
display the results more intuitively. As the NAD or DAD model can only obtain information from
one aspect, the TPR of a single model is lower than the entire IDS. Generally speaking, the HMM
classifier can process different information on NAD and DAD to obtain a lower FPR. However, in the
case of SYN flood attacks, FPR reaches 11.64% in DAD. Due to many false alarms generated in DAD,
the HMM classifier may also generate more false positives. As a result, the FPR of the IDS is 0.05%
higher than NAD. For the entire dataset, the TPR is increased by 3.51% and 7.76% after applying the
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fusion of the detection models. At the meantime, the FPR is reduced by 0.86% and 4.95%. In summary,
the proposed method has better performance than a single detection model.

Table 5. Performance of different models.

Anomaly TPR % FPR %

NAD DAD IDS NAD DAD IDS

Buffer overflow 97.31 96.24 98.37 2.92 3.47 1.87
Smurf 97.25 93.27 98.20 3.24 6.72 3.04

SYN flood 99.16 87.68 99.29 0.38 11.64 0.43
Tamper 90.67 – 90.67 4.58 – 4.58
Replay 94.22 87.35 95.64 3.27 5.65 3.25

All 94.13 89.88 97.64 3.52 7.61 2.66
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(a) True Positives Rate.

B u f f e r  o v e r f l o w S m u r f S Y N  f l o o d T a m p e r R e p l a y A l l
0

5

1 0

1 5

FP
R(%

)

 N A D      D A D      I D S

(b) False Positives Rate.

Figure 11. Detection results of different models.

• Experiment 2

Table 6 gives some different methods, application scenarios, and results of other published IDS.
Yang and Liu adopt a statistical-based method to analyze the network traffic [49,50]. Akbar applies a
supervised classifier to detect attacks in Voice over Internet Protocol (VoIP) networks [51]. Using a
single detection method, their TPR is lower than that of the combined methods. Some works combine
statistical methods with machine learning algorithms to detect attacks in different systems [52–56].
Among them, Verba does not illustrate the detailed detection performance [52]. According to TPR,
Valdes and Amini are effective in detecting DoS attacks [53,54]. However, they do not take the DIA
scenarios into account. Only Goh gives the detection results of DIA, while it does not analyze the more
common DoS attacks [56]. The NAD model adopts both the statistical method and decision tree. It
can detect DoS and DIA at the same time. What’s more, the NAD model is designed according to the
characteristics of CBTC systems. It has good detection performance, where TPR is 98.86% for DoS and
92.95% for DIA.
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Table 6. Comparison of the network states anomaly detection (NAD) model with other methods.

IDS Methods Application Scenarios DoS DIA

TPR (%) FPR (%) TPR (%) FPR (%)

[49] Cumulative sum Wireless network 93.27 4.32 – –

[50] Statistical change-point detection Real-world network 90.61 5.64 – –

[51] Supervised classifiers VoIP network 82.17 0.05 – –

[52] Traffic flow analysis and packet
detection

SCADA – – – –

[53] Flow-based and pattern-based Process Control
System

99.9 – – –

[54] Statistical preprocessing and Neural
Network

Local networks 97.42 1.99 – –

[55] Statistical feature vectors and Neural
Network

KDD99 94 0.2 – –

[56] Recurrent Neural network and
Cumulative Sum

Water treatment plant – – 90 4

NAD The statistical method and Decision
Tree

CBTC 98.86 1.92 92.95 3.84

• Experiment 3

As mentioned before, TPR and FPR are selected to measure the performance of the IDS, where
TPR represents the detection rate. When we compare the performance of the DAD model with other
methods, the receiver operating characteristic (ROC) curve is applied in this paper. An ROC curve
can evaluate the tradeoff between TPR and FPR. By carrying out several tests using different s and
c of the association rule, the ROC curve can be plotted as shown in Figure 12. Since the states of
the CBTC subsystems are generally stable, the association rule mining algorithm has good detection
performance to detect the abnormal device states. As shown in Figure 12, the DAD model has a higher
detection rate under the same FPR compared with the length decreasing support (LDS) Apriori [57]
and the hybrid IDS [58]. When the FPR is higher than 15%, the detection rate of the Fuzzy IDS is
higher than that of the DAD model [59]. However, the FPR of the Fuzzy IDS is too high for CBTC
systems. A large number of false alarms may be generated in the case of a high FPR. Then the trains
may perform emergency braking and the efficiency of CBTC systems will be reduced. When FPR is
7.61%, the detection rate of the DAD model is 89.88%, which is higher than LDS by 13.34%, fuzzy IDS
by 61.88%, and mixed IDS by 38.91%.
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Figure 12. Receiver operating characteristic (ROC) curves of different detection systems.



Electronics 2020, 9, 181 20 of 24

• Experiment 4

Finally, several commonly used classification algorithms in the field of IDS are selected to compare
with the HMM classifier, including naive Bayes, neural networks (NN), and support vector machines
(SVM). They are applied to classify the same data with the HMM classifier. The detection results are
shown in Figure 13. As naive Bayes, NN and SVM may misjudge faults as attacks, they have higher
FPR than that of the proposed IDS. As shown in Figure 13, the FPR of naive Bayes, NN, and SVM are
19.21%, 4.26%, and 9.77%, which significantly dropped to 2.66% using the HMM classifier. It proves
that the HMM classifier can distinguish between faults and attacks effectively.
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Figure 13. Performance comparison of various classifiers with the proposed approach.

The proposed IDS can also improve the packet loss rate and throughput performance of the
system after an attack. Taking the communication between VOBC and the wayside equipment as
an example, we repeat experiments with different attacks, whose results are shown in Figure 14.
DIA attacks only tamper with the information and do not change the number of packets. These attacks
have almost no impact on the packet loss rate or throughput. Therefore, only DoS attacks are simulated.
We attack the system at the 5th second. Among the curves, the blue one indicates the case of joining
the IDS. The IDS can detect attacks and notify administrators to take defensive measures. The results
show that attacks have a great impact on the communication performance of CBTC. The proposed IDS
can not only detect attacks but also promptly give alarms. Thus, the system can recover quickly after
the communication is abnormal. In summary, the proposed IDS can effectively prevent attacks from
causing more serious impacts on CBTC.
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Figure 14. Different impacts on system performance of attacks and IDSs.
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7. Conclusions

In this paper, a novel intrusion detection method for CBTC based on network and device states
is designed. The impact of cyber-attacks on CBTC is analyzed and different detection models are
proposed according to the principles of CBTC systems. An HMM classifier is adopted to differentiate
cyber-attacks from random system faults. Through limited experimentation, we concluded that the
proposed IDS could effectively detect attacks in CBTC systems, where the TPR approached 97.64%
while bounding the FPR to below 2.66%.

Future improvements integrated into the proposed IDS would have the ability to use multiple
data sources such as fault identification and running status of the train. Additionally, we noticed that
the detection rate of data tampering attacks was lower than the other attacks during experiments.
More detection patterns are needed to improve the performance of the IDS in the future.
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