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Abstract: One of the traditional issues in space missions is the reliability of the electronic components
on board spacecraft. There are numerous techniques to deal with this, from shielding and rad-hard
fabrication to ad-hoc fault-tolerant designs. Although many of these solutions have been extensively
studied, the recent utilization of FPGAs as the target architecture for many electronic components
has opened new possibilities, partly due to the distinct nature of these devices. In this study,
we performed fault injection experiments to determine if a RISC-V soft processor implemented in an
FPGA could be used as an onboard computer for space applications, and how the specific nature of
FPGAs needs to be tackled differently from how ASICs have been traditionally handled. In particular,
in this paper, the classic definition of the cross-section is revisited, putting into perspective the
importance of the so-called “critical bits” in an FPGA design.
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1. Introduction

Reliability has always been a concern for space missions, especially for on-board electronics.
Since the beginning of the space exploration era, different phenomena affecting the behavior of the
electronic components have been reported. This problem is inherent to the harsh nature of space
where radiation sources are abundant and heterogeneous [1]. The sources of this radiation may be
classified into three categories [2]. First, a range of protons and heavy ions that compose the so-called
cosmic rays, whose source is located outside the solar system. These usually present a high energy
profile, but with a continuous low intensity. Second, the radiation trapped in the Earth’s magnetic
field, with high presence areas as the ones formed by the Van Allen’s belts. This type of radiation is
primarily composed of high energy particles as protons and electrons. Third, the most variable source
of radiation, which is the one produced by the sun. Solar radiation is a mix of protons, ions, neutrons,
gamma rays, etc., and is usually event-driven. This sometimes produces the accumulation of high flux
peaks within short periods, having an important effect on the electronics on board spacecraft.

The effects of radiation on these devices are diverse. It may produce damage in the device
structure that leads to permanent errors, thus shortening the service life of the system. Conversely, it
can produce temporary errors that induce failures until the system is reset [3], or even corruption of
the data stored in the memories. Radiation effects have been traditionally mitigated by implementing
some kind of protection technique. These techniques cover a wide range of strategies. For example,
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physically shielding the devices to deflect radiation or fabricate them with so-called rad-hard processes
are some alternatives. This type of approach usually implies hefty overheads in terms of cost, area,
performance, and power consumption. Another approach consists in protecting the circuits utilizing
design techniques, usually adding redundancy [4]. In this case, techniques range from classic schemes
such as dual modular redundancy (DMR) or triple modular redundancy (TMR) to ad-hoc techniques
that use behavioral or structural properties of the circuits to protect.

In any case, the effects of radiation and the most appropriate technique to deal with them
strongly depend on the architecture of the circuit. Traditionally, manufacturing an application-specific
integrated circuit (ASIC) has been the most usual way of implementing electronic circuits, since they
used to provide the best possible performance and power consumption. Errors produced by radiation
on ASICs usually come in the shape of bit flips induced in the storage elements or by transients
that propagate through the circuit, which can eventually be registered by a storage element. In both
cases, errors can be modeled as propagation of logic values through combinational and/or sequential
nets [5]. However, in recent times, field-programmable gate arrays (FPGAs) are steadily becoming the
predominant architecture to implement digital circuits in space applications, especially those related
to low-cost missions, such as small satellites. The advantage of FPGAs is that they offer a reduced
cost, together with high flexibility in terms of reconfiguration capability. Besides, the performance
of FPGAs has improved enormously, being appropriate for most kinds of applications. However,
SRAM-based FPGA architectures (hereinafter referred to as FPGAs) are quite different from the ASIC
ones. In these FPGAs, although the user logic is still vulnerable to radiation, the configuration memory
is also vulnerable, and may sometimes be the predominant source of errors, mainly due to its size [6].
If this happens, the effects usually translate into an actual modification of the circuit structure (e.g., a
change on the routing or the logic function). This greatly differs from the ASIC case since in FPGAs
the error situations are more a structural modification (that requires reconfiguration to be solved),
and not a pure error propagation issue. This difference in the error model is the reason there is an
increasing trend to study the reliability issues of utilizing an FPGA to host not only payload and
instrument-related electronics, but also mission-critical systems such as the onboard computer of
the satellite. In this context, the present paper summarizes the work developed in the European
Space Agency (ESA) project “Introduction of fault-tolerant concepts for RISC-V in space applications”,
conducted by Cobham Gaisler AB and the ARIES Research Center at Universidad Nebrija. The main
scope of the project has been to study the reliability of a soft processor implemented in an FPGA,
and whether it could replace a traditional ASIC-based processor in space applications. The processor
selected for the experiments has been the Rocket RISC-V processor designed at UC Berkeley [7], while
the target FPGA has been a last generation Xilinx Kintex UltraScale. The Rocket RISC-V processor was
chosen because it is freely available to academia and industry, it was already successfully integrated
into other platforms, and there is a hardware/software collaborative ecosystem created around it.

This paper is structured as follows. Section 2 introduces some concepts about the FPGA error
model for a better understanding of the rest of the paper. In Section 3, the justification of the analysis
performed in this paper is explained in detail. The experimental set-up and the reliability results are
presented in Sections 4 and 5, respectively. Finally, Section 6 concludes the paper.

2. Configuration Memory Errors in SRAM-Based FPGAs

In this section, a brief introduction to the FPGA error model is first presented in Section 2.1 to
understand the effects of single-event upsets (SEUs) in the configuration memory of an SRAM-based
FPGA. Then, the constraints that have to be faced in the fault tolerance characterization of a design
implemented in an SRAM-based FPGA are presented in Section 2.2.

2.1. FPGA Error Model

As stated above, one of the main differences (from the reliability point of view) between a physical
ASIC processor and a soft processor implemented in an FPGA is the error model. The former usually
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suffers bit flips caused by radiation, and the problem resides in tracing their propagation and whether
they are masked by the logic or registered by a storage element. This has been studied numerous times
in the literature (e.g., [8,9]). However, studying the effects of bit upsets is much more challenging for
the FPGA case. While the user logic still suffers from errors, additional problems come from bit flips in
the configuration memory, which can produce changes in the structure and the routing of the circuit.

Any design implemented in an FPGA is mainly created by interconnecting some of the
configurable logic blocks (CLBs) available in the device and by configuring the CLBs themselves.
These CLBs, as well as the routing interconnections, are related to a certain amount of configuration
memory bits. In the case of the CLBs, the configuration bits describe their internal components in use,
the content of the look-up tables (LUTs), or the operating mode of the mentioned LUTs (e.g., a LUT
can be configured as distributed RAM). In this context, SEUs can alter the logic functions defined in
the LUTs or the behavior of the LUT itself by affecting these configuration memory bits. On the other
hand, the configuration bits associated with the routing define the status of the paths that connect the
different resources of the FPGA. Thus, in this case, the following effects classified in [10] may occur:

• Open fault: The affected bit interrupts a path creating an unconnected signal.
• Conflict fault: Two signals are connected together creating a short-circuit and, therefore, an undefined

output value.
• Antenna fault: The input path is connected to a floating line segment, thus delivering an unknown

value to the output.
• Bridge fault: The selection bit of a multiplexer is affected by the SEU connecting a wrong input

with the output.

These different effects make difficult to predict a specific behavior, which is even more complex
in the case of a soft processor. These phenomena are the reason defining a correct methodology to
characterize designs in terms of fault tolerance is important when using FPGAs in space applications.

2.2. Characterization of Designs and Fault Tolerance Verification

When trying to assess the fault tolerance of a design implemented in an SRAM-based FPGA,
there is usually no public information on what resources are affected by which particular bits of the
configuration memory. There are indeed projects devoted to overcoming this issue by documenting
the bitstream composition (e.g., Project X-Ray [11]), but this valuable information does not cover
every possible FPGA architecture. Moreover, manufacturers such as Xilinx do not usually publish
it, thus creating confusion when studying reliability at the register-transfer level. Then, when trying
to characterize a circuit and verify its fault tolerance capacity, two alternatives are usually followed.
The first one is to actually irradiate it (which usually implies a high cost), and the second one is to
induce bit flips in the configuration memory through emulation using one of the many fault injection
tools that perform this task (e.g., [12,13]). The simplest approach, in this case, would be to inject errors
in all the bits of the configuration memory and check how the circuit behaves. Unfortunately, this is
unfeasible most of the time, since the number of such bits is enormous. Another option is to perform a
statistical injection process, instead of an exhaustive one, but even with this, a large amount of time is
wasted injecting in bits that are not actually used to implement the circuit, thus creating extremely long
test campaigns. To solve this problem, most reliability tests are oriented to inject only on what Xilinx
calls “essential bits” [14], which are those bits that are actually used to implement the design under
test (DUT). Those bits are usually known by the designers, also having several tools to deal with them
and restrict them in such a way that a specific part of the circuit can be selected to pinpoint injections,
e.g., to inject only in the ALU of a processor, and not in the rest of it. Our group has designed one of
such tools, called ACME [15], which is the one used in the present project to study the reliability of
the RISC-V processor. With this, it may seem that all the problems are solved: the area of the circuit
where the injections are going to be performed is selected, the fault injection campaign is done, and,
finally, some statistic of the behavior of the circuit is obtained. In such a scenario, it could be expected
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that, testing an unprotected circuit, nearly 100% of the affected essential bits would produce an actual
structural modification of the circuit, thus leading to wrong behavior. If not 100% (some errors could
affect parts of the circuit not being exercised in the test), at least a large percentage, if the test coverage
of the design has been done correctly. However, after conducting the experiments of this project, it was
observed that the majority of the bit flips (around 90%, see Section 5 for detailed results) were not
producing any error at the output of an unprotected RISC-V.

With this in mind, we should think about what this means from the point of view of the
“cross-section”, which is one of the basic concepts when studying reliability. The cross-section basically
determines the percentage of the particle impacts induced by radiation (formally referred to as “events”)
that actually produce a bit flip. This, of course, depends on the typology and intensity of the radiation,
the characteristics of the technology (geometries, voltage levels, fabrication process, etc.), and the
area of the circuit. It is intuitive to understand that circuits with larger areas will be more exposed to
radiation, and therefore will likely suffer a larger number of events. In ASICs, this concept is quite
straightforward, being related to the actual area that the circuit occupies. However, the equivalent
of the ASIC area in an FPGA is more complex to determine. The simplest approach should be to
consider the configuration memory area, but, again, only the area of the bits that are actually being
used when implementing the DUT. Perhaps the number of essential bits should be the figure of merit
for the cross-section but, as stated above, the results obtained are not coherent with this approach.
Although these bits are called “essential”, the name does not necessarily imply that any bit flip in these
bits will produce actual structural modifications in the circuit. For example, there may be LUTs in the
design that are not 100% used but, since these LUTs are still part of the design, their configuration
bits are classified as essential. Therefore, a bit flip in one of those unused bits would produce no
modification in the design. In essence, only a fraction of the essential bits can actually jeopardize the
reliability of the system, and those are called the “critical” bits. These bits could effectively represent
the figure of merit for the cross-section.

3. Proposed Analysis

As explained in the previous section, there is no easy way to obtain the list of the critical bits of a
design that could be used, for example, to adjust the protection technique (e.g., scrubbing period) for
the configuration memory of the FPGA. The Xilinx Vivado tool does not provide them, just the list of
the essential bits. Therefore, from the point of view of reliability, it would be important to have a way
to determine them and use this information to properly assess the reliability of the DUT. To achieve
this, we have put in place the following procedure:

1. The unprotected design is characterized. We implement the unprotected design (RISC-V in this
case), and, using the ACME tool [15], together with the Xilinx SEM IP Controller [16], we perform
an injection campaign in the essential bits of the configuration memory while running some
benchmarks (see Section 4 for more details). After each injection, the behavior of the design is
observed and compared with the golden outcome (the result that should be produced in the
absence of error). With this, we obtain how many bit flips have actually produced a failure and
how many have not. The purpose of this is to use the unprotected design to “calibrate” the critical
vs. essential bit ratio, assuming that, for an unprotected design, nearly 100% of the critical bits
should produce an issue.

2. Then, the protected design needs to be characterized. In this work, we have protected a Rocket
RISC-V processor with distributed triple modular redundancy (DTMR) for the sake of simplicity,
but any other technique can be used. Using the ACME tool, together with the SEM IP, an error
injection campaign is performed in all the essential bits, and, again, the number of errors and no
errors at the output are logged. The number of errors divided by the total number of injections
would give the probability of error of the technique. However, as mentioned above, many of the
injections are performed on non-critical bits that would not produce any error whatsoever. That
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is why the probability of error needs to be normalized, using the critical vs. essential bit ratio
calculated in the previous step.

3. Now, the number of critical bits of the DTMR-protected design (Cbprotected) is normalized as
the number of essential bits that are provided by the design tool (Ebprotected), multiplied by the
fraction obtained in the first step (percentage of critical bits (Cbunprotected) within the total number
of essential bits (Ebunprotected)). That number of critical bits is what we consider a figure of merit
of the cross-section of the protected circuit and is presented in Equation (1).

Cbprotected = Ebprotected ·
Cbunprotected

Ebunprotected
(1)

In this same way, the probability of error (P) can be also normalized (P) by dividing this value
(calculated in Step 2) by the critical vs. essential bit ratio calculated in Step 1 (the lower the result,
the more reliability the protected design offers) as shown in Equation (2).

P =
P

Cbunprotected
· Ebunprotected (2)

Notice the importance of the last step. If we measure the behavior of a protected circuit and we
determine that, e.g., 99% of error injections do not produce an error at the output, this may mean that
the circuit provides a reliability of 99%. However, this may also mean that part of those injections are
not producing any error, as proved with the case of the unprotected design. Therefore, it is important
to isolate the effect of the non-critical essential bits, so that the results are not biased towards higher
reliability than the protected design actually provides.

With this procedure, a proper cross-section measure of an FPGA design can be obtained,
and therefore a precise value of its reliability. In the following sections, the actual experiments
performed on the RISC-V processor are explained, together with the obtained results and the
conclusions.

4. Experimental Set-Up

The fault injection experiments presented in this paper were performed on a Xilinx KCU105
evaluation board that consists of a Kintex UltraScale FPGA [17]. In particular, configuration memory
errors were injected by using the Xilinx SEM IP Controller. The SEM IP can write in the configuration
memory of an FPGA through the ICAP to correct errors. This feature can also be used to perform bit
flips in the configuration memory. This approach requires a Digilent USB-UART peripheral module
(PMOD) [18] and a serial port communication script running on a computer to control the injection
procedure. In addition to the Digilent USB-UART PMOD and the communication script, the SEM IP
requires a list containing the injection addresses in which the bit flips will be performed. To generate
such addresses, the ACME tool developed by the ARIES Research Center at Universidad Nebrija was
used. ACME is a tool that translates the configuration memory essential bits of an SRAM-based FPGA
region into injection addresses for the Xilinx SEM IP Controller. It uses the Xilinx EBD file created
by Vivado together with the coordinates of the FPGA region in which the DUT is placed to generate
the mentioned list with the injection addresses [15]. To avoid injection side-effects, Vivado placement
constraints were used to exclude the SEM IP resources from the DUT area.

To evaluate the correct behavior of the Rocket RISC-V processor implemented in the mentioned
FPGA, the following four synthetic benchmarks were used for the tests:

• Dhrystone: A widely used integer benchmark that does not contain any floating point operation
• Systest: An integer benchmark that checks the status of the processor with different tests
• Whetstone: The floating point counterpart of the Dhrystone benchmark that is used to measure

the floating point arithmetic performance of a processor
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• Linpack: A floating point benchmark that performs several linear algebra operations

The selected benchmark is loaded and executed in the microprocessor through the JTAG port of
the KCU105 board by using GRMON, a general debug monitor for the LEON processor developed by
Cobham Gaisler [19]. The outcome of the executed benchmark (i.e., the output messages generated by
the benchmark during its execution) is received through the UART port of the KCU105 board.

A scheme is depicted in Figure 1 for a better understanding of the experimental set-up used.

Figure 1. Experimental set-up.

The fault injection campaign procedure is run by using a MATLAB script that executes the
following steps:

1. The DUT is programmed in the FPGA of the KCU105 board together with the SEM IP tool.
2. A golden simulation is performed where one of the four selected benchmarks is executed in the

DUT in the absence of errors to obtain the correct outcome of the benchmark. The golden outcome
of the benchmark is stored for later comparisons.

3. A command is sent to the SEM IP to inject a bit-flip at a random configuration memory frame.
4. A reset signal is sent to the DUT to initialize its internal state.
5. The selected benchmark is loaded in the DUT and then executed by using GRMON.
6. The outcome of the DUT is received and logged in a text file.
7. A command is sent to the SEM IP to correct the injected error.
8. Steps 3–7 are repeated until all the configuration memory errors have been injected.

Once the campaign ends, the text file with the benchmark outcomes for each injection is processed
and compared to the golden outcome of the DUT to perform the classification described below:

• No error: The outcome of the benchmark matches the golden outcome.
• Error: The outcome of the benchmark does not match the golden outcome.
• Hang: There is no outcome of the benchmark or the execution of the benchmark never ends,

receiving continuous garbage information for a long period of time. This case is detected during
Step 6 and it is logged in the text file as “hang”. To classify an error as “hang”, the execution
time of each benchmark is previously measured in the absence of errors and a proper timeout is
implemented in the MATLAB code depending on the current executed benchmark.

Finally, it should be mentioned that we performed 27,000 configuration memory injections for
each benchmark to reduce the fault injection campaign runtime. This value implies a confidence
interval of 95% with an error margin of approximately 0.6% according to Cochran’s sample size
formula [20].
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5. Experimental Results

As explained in Section 3, a procedure was followed to analyze the critical bits of the Rocket
RISC-V processor and their relationship with the cross-section. In this section, the experimental results
obtained after following this procedure are presented, as well as an application example of these
results to calculate the error rate.

5.1. Characterization of the Unprotected Design

First, the unprotected Rocket RISC-V processor design was characterized by performing one
fault injection campaign for each of the four selected benchmarks. The results for the unprotected
design are summarized in Table 1. In this table, an additional column is included with a combined
experiment (“Combined” column), in which the four benchmarks were executed one after the other.
This column is used to illustrate a more general behavior of the processor. It should be noticed that this
column is not the accumulated sum of the results obtained for the other benchmarks because, in this
context, an injection is classified as “error” or “hang” when it affects the behavior of (at least) one of
the four benchmarks.

Table 1. Reliability results for the unprotected version of the Rocket RISC-V processor.

Dhrystone Systest Whetstone Linpack Combined

No errors 26,162 (96.90%) 26,297 (97.40%) 26,025 (96.39%) 24,921 (92.30%) 24,385 (90.31%)
Errors 329 (1.22%) 220 (0.81%) 494 (1.83%) 1,213 (4.49%) 1,630 (6.03%)
Hangs 509 (1.88%) 483 (1.79%) 481 (1.78%) 866 (3.21%) 985 (3.65%)

Total injections 27,000 (100%) 27,000 (100%) 27,000 (100%) 27,000 (100%) 27,000 (100%)

Analyzing the percentage of errors for each benchmark, it can be observed that the floating
point benchmarks (Whetstone and Linpack) have more errors, which is reasonable since the
floating-point unit (FPU) of the microprocessor uses a significant amount of resources of the FPGA.
Therefore, the probability of affecting a resource that is used by the benchmark increases. In general,
the probability of an error affecting the output increases with the variety of instructions executed,
as more elements of the microprocessor are used. Anyway, notice that (as explained in Section 2.2),
the majority of the bit flips induced in the configuration memory are not producing an error in the
execution of the benchmarks. As explained above, this proves that the majority of the bits flagged as
essential by the design tool are not actually critical. To estimate the actual number of critical bits, let
us consider that 100% of these critical bits would produce an effect in the unprotected system that
would be observable at the output. This is not strictly true, since logic and temporal masking could
prevent some of the induced errors from propagating to the output. However, just to work with the
worst case, let us assume that there is no masking and therefore 100% of the induced errors would
be observable at the output. In this way, the percentage of critical bits of the RISC-V executing the
Dhrystone benchmark would be 3.10% (errors plus hangs), 2.60% for Systest, 3.61% for Whetstone,
7.70% for Linpack, and 9.68% for the combined experiment (see Table 2).

Table 2. Critical vs. essential bits ratio obtained from the unprotected design characterization.

Dhrystone Systest Whetstone Linpack Combined

3.10% 2.60% 3.61% 7.70% 9.68%
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The percentages in the previous table mean that just a small fraction of the injected bits are critical,
and therefore only these have to be considered when assessing the quality of the protection technique.
Apart from that, additional information can be inferred by analyzing the results from the combined
experiment. Since the same 27,000 locations of the bit flips were kept among the different benchmarks,
the combined experiment illustrates the superset of all the individual critical bits obtained from each
test. Therefore, the 9.68% of critical vs. essential bits ratio obtained for this experiment represents a
more generic behavior of the processor.

Finally, to show the complexity of the fault injection process, Table 3 presents the execution time
per injection for each benchmark. It should be mentioned that this execution time also includes the
time that the GRMON needs to be initialized but, since this time is a constant for each benchmark, it
does not affect the result for comparative purposes.

Table 3. Execution time per injection for each benchmark (in seconds).

Dhrystone Systest Whetstone Linpack Combined

Execution time 7.5 7.2 12 15.4 42

5.2. Characterization of the Protected Design

As mentioned above, the Rocket RISC-V processor was protected with a DTMR scheme. DTMR
was applied to the instantiation of the Rocket subsystem by using the Mentor Precision Hi-Rel tool.
This means that the DTMR was applied to the Verilog netlist produced by the Rocket chip generator.
The triplication was done on FPGA element granularity, thus the synthesis tool triplicates all elements
in the FPGA (FFs, LUTs, etc.). This DTMR-protected version of the Rocket RISC-V processor was tested
by performing again different fault injection campaigns for each benchmark. The results are shown in
Table 4.

Table 4. Reliability results for the DTMR-protected version of the Rocket RISC-V processor.

Dhrystone Systest Whetstone Linpack Combined

No errors 26,986 (99.95%) 26,984 (99.94%) 26,968 (99.88%) 26,960 (99.85%) 26,960 (99.75%)
Errors 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Hangs 14 (0.05%) 16 (0.06%) 32 (0.12%) 40 (0.15%) 67 (0.25%)

Total injections 27,000 (100%) 27,000 (100%) 27,000 (100%) 27,000 (100%) 27,000 (100%)

First, it can be observed in the previous table that the protected version correctly executes the
Dhrystone benchmark 99.95% of the time, 99.94% for Systest, 99.88% for Whetstone, 99.85% for Linpack,
and 99.75% for the combined experiment. These percentages are close to the expected 100% for DTMR
protection, but none of the experiments reach that ideal value. This is because the DUT input/output
routing in SRAM-based FPGAs can also be affected by the injected configuration memory error.
These errors can create malfunctions such as “hangs” in the microprocessor that cannot be corrected
by a DTMR approach. However, the quantification of the effect of these errors in the system is not
straightforward. It may seem that this effect is quite small, in the 0.05–0.25% range, but, again, we
need to consider that many of the injected bit-flips are not producing an error in the system, not due to
the quality of the protection, but because these bits are not critical (as proved in the characterization of
the unprotected version). To calibrate this effect, let us assume that the percentage of critical bits in the
protected (DTMR) version of the system is approximately the same as the percentage of the unprotected
version (see Table 2). An important comment is that, depending on the selected protection technique,
this assumption will be more or less precise. For a protection technique based on redundancy, in which
the protection is achieved by replicating the base design n times (e.g., DTMR), the assumption will be
more precise. It is true that there will be more components, for example the voter, but the number of
critical bits would grow in the same proportion. This is why we chose DTMR to perform the study
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since it is a regular structure based on modular redundancy. On the other hand, protection techniques
that are not based on modularity will have a number of critical bits not so extrapolated with respect
to the unprotected version. In any case, the assumption will be the worst case of the number of
critical bits.

5.3. Critical Bits Calculation

Based on the previous results obtained after testing both unprotected and DTMR-protected
designs through fault injection, the percentage of undetected errors (P) in each design can be
summarized, as shown in Table 5. These values are not normalized, i.e., all essential bits are taken
as critical.

Table 5. Not-normalized percentage of undetected errors for both unprotected and DTMR-protected
versions of the Rocket RISC-V processor.

Dhrystone Systest Whetstone Linpack Combined

Punprotected 3.10% 2.60% 3.61% 7.70% 9.68%
Pprotected 0.05% 0.06% 0.12% 0.15% 0.25%

However, as previously mentioned, these values have to be normalized to make a fair comparison,
or, in other words, to consider just the number of critical bits. To achieve this, the values in Table 5 are
divided by the ratio obtained for the unprotected design (see Table 2). The results are shown in Table 6.

Table 6. Normalized percentage of undetected errors for both unprotected and DTMR-protected
versions of the Rocket RISC-V processor.

Dhrystone Systest Whetstone Linpack Combined

Punprotected 100% 100% 100% 100% 100%
Pprotected 1.61% 2.31% 3.32% 1.95% 2.58%

First, we can see that the top row (probability of error of the unprotected design) is now 100%.
This gives more realistic information, meaning that 100% of the injections on critical bits produce an
error (therefore ignoring the effect of the non-critical essential bits). Second, the values of the bottom
row (probability of error of the protected design) have been normalized. For example, in the case of
Dhrystone, this value has increased from 0.05% to 1.61% (i.e., 0.05% × 100/3.10), since 3.10% is the
percentage of critical bits for that benchmark). This means that, although the effect of the errors in the
protected version is still small, it is larger than the initial 0.05%. Again, this is because we are ignoring
the non-critical essential bits and considering the number of observed errors vs. the actual number of
critical bits. With this normalization, the probability of error of the techniques, as a figure of merit of
the achieved reliability, is more meaningful.

Finally, let us calculate the number of critical bits (N) for each scenario that, as stated above, can
be used as a measure of the critical section of the circuit. We start with the number of essential bits
of the unprotected and protected designs, which is given by the design tool. In this particular case,
the number of essential bits of the unprotected design is 6,665,452 and the number of essential bits
of the protected design is 23,045,386. Then, we obtain the number of critical bits for each benchmark
by multiplying the number of essential bits and the critical vs. essential bits ratio obtained for the
unprotected design (Table 2). The results of the obtained critical bits per benchmark, for the unprotected
and protected designs, can be seen in Table 7.
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Table 7. Number of critical bits for both unprotected and DTMR-protected versions of the Rocket
RISC-V processor.

Dhrystone Systest Whetstone Linpack Combined

Nunprotected 206,629 173,302 240,623 513,240 645,216
Nprotected 714,407 599,180 831,938 1,774,495 2,230,793

In the next subsection, a practical use for the normalized percentage of errors and the number of
critical bits is described.

5.4. Application Example: Error Rate Calculation

Let us suppose that we want to calculate the error rate for the two RISC-V designs analyzed above
(the unprotected and the protected versions). For this example, we implemented the RISC-V versions
on the FPGA board used in the experiments (Xilinx UltraScale), and we considered that the system
is going to operate in LEO orbit, in the proximity of the South Atlantic Anomaly. To determine the
absolute number of errors (U) that the system is going to receive, the following expression must be
used:

U = Φ · σ · N · P (3)

where Φ is the flux that the system is receiving, σ is the physical cross-section of the FPGA, N is the
number of critical bits, and P is the normalized probability that an induced bit flip will produce an
error at the output. It should be noticed that both Φ and σ are a function of the linear energy transfer
(LET), thus the integral of these parameters over the whole LET spectrum should be performed but,
for the sake of simplicity, the formula presented in Equation (3) was used for the application example.

In this example, the values for Φ and σ were obtained from the literature. According to [21],
the radiation flux of a LEO satellite in the South Atlantic Anomaly is almost 1.00 × 107 cm−2·s−1.
The physical cross-section (i.e., the cross-section of the whole device) was obtained from [22] that the
configuration memory cross-section of the Kintex UltraScale FPGA is estimated in 1.87 × 10−15 cm2/bit.
Notice that this value is per bit, and represents the physical sensitivity of the device to the radiation. To
obtain the cross-section of the design, we need to multiply σ by the total number of bits associated with
that specific design. Based on the arguments in previous sections, this needs to be the number of critical
bits of the design and not the number of all the essential bits (as the design tool provides). This is the
reason the number of critical bits is relevant. The product σ · N can be used as a figure of merit of the
cross-section of the design implemented in that specific FPGA. Therefore, Φ · σ · N represents the total
number of bit flips that have been induced in the configuration memory. To obtain how many of those
errors will propagate to the output, this value must be multiplied by the normalized probability of
error, P.

After performing these calculations, the absolute number of errors per unit of time that can be
expected for the described scenario is depicted in Table 8 and Figure 2 for a better comparison.

Table 8. Errors per second of the unprotected and DTMR-protected designs.

Dhrystone Systest Whetstone Linpack Combined

Uunprotected 3.86 × 10−3 3.24 × 10−3 4.50 × 10−3 9.60 × 10−3 1.21 × 10−2

Uprotected 2.15 × 10−4 2.59 × 10−4 5.17 × 10−4 6.47 × 10−4 1.08 × 10−3
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Figure 2. Comparison between unprotected and protected designs in terms of errors per second.

6. Conclusions

In this study, the reliability of a Rocket RISC-V processor implemented in a last generation
Xilinx FPGA was assessed by conducting fault injection experiments on both an unprotected and a
DTMR-protected design of the mentioned RISC-V. The experiments were performed while running
several benchmarks. Specifically, it was found that, for the DTMR protected RISC-V, 99.9% of
injected errors did not produce any error at the output. On the other side, it was obtained that,
for the unprotected RISC-V, around 96% of injected errors did not create any wrong outcome.
After investigating the reason of this phenomenon, it was found that many of the bits that Xilinx
classifies as essential do not actually induce any error in the behavior, and therefore they cannot
be considered critical. Based on this, a procedure to calculate the empirical percentage of critical
bits is proposed in this paper to get a more realistic vision of the fault tolerance capability of the
circuit. In addition, a new figure of merit of the cross-section offered by a design implemented in an
FPGA is proposed. Finally, these concepts were applied to an example in which the error rate of an
application was calculated. As future work, we will perform two different analyses. On the one hand,
the individual modules of the RISC-V processor will be tested to determine what parts of the processor
are more prone to errors. On the other hand, the fault injection campaign will be extended to study the
effect of the critical bit accumulation, and how two bits that are not individually critical can become
critical when both are affected at the same time.

Author Contributions: Conceptualization, J.A., R.W. and J.A.M.; Formal analysis, L.A.A., N.-J.W., L.S., A.S.-M.,
J.A., R.W. and J.A.M.; Investigation, L.A.A., N.-J.W., J.A. and J.A.M.; Project administration, J.A.; Supervision, L.S.,
A.S.-M., J.A., R.W. and J.A.M.; Validation, L.A.A., L.S., A.S.-M., J.A., R.W. and J.A.M.; Writing—original draft,
L.A.A., A.S.-M. and J.A.M.; Writing—review & editing, L.A.A., L.S., A.S.-M., R.W. and J.A.M. All authors have
read and agreed to the published version of the manuscript.

Funding: The work presented in this paper is part of an Innovation Triangle Initiative project
4000123876/18/NL/CRS funded by the European Space Agency (ESA).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Howard, J.W.; Hardage, D.M. Spacecraft Environments Interactions: Space Radiation and Its Effects on Electronic
Systems; Tech. Report. TP-1999-209373; NASA: Washington, DC, USA, 1999.



Electronics 2020, 9, 175 12 of 12

2. Oldham, T.R; McLean, F.B. Total ionizing dose effects in MOS oxides and devices. IEEE Trans. Nucl. Sci. 2003,
50, 483–499. [CrossRef]

3. Karnik, T.; Hazucha, P.; Patel, J. Characterization of soft errors caused by single event upsets in CMOS
processes. IEEE Trans. Dependable Secur. Comput. 2004, 1, 128–143. [CrossRef]

4. Lacoe, R.C.; Osborn, J.V.; Roga, R.; Brown, S.; Mayer, D.C. Application of hardness-by-design methodology to
radiation-tolerant ASIC technologies. IEEE Trans. Nucl. Sci. 2000, 47, 2334–2341. [CrossRef]

5. Asadi, H.; Tahoori, M.B. Soft error modeling and remediation techniques in ASIC designs. Microelectron. J.
2010, 41, 506–522. [CrossRef]

6. Herrera-Alzu, I.; Lopez-Vallejo, M. Design techniques for Xilinx Virtex FPGA configuration memory scrubbers.
IEEE Trans. Nucl. Sci. 2013, 60, 376–385. [CrossRef]
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