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Abstract: This paper proposes, for the first time, a two-source asymmetric turbo-coded-cooperative
spatial modulation (SM) scheme over the slow Rayleigh fading channel. As in any coded cooperative
communication, the interleaver plays a vital role in mitigating the harsh effect of the wireless channel.
Therefore, the code matched interleaver (CMI) is effectively used in the proposed design. The
simulated results reveal that the bit error rate (BER) performance of the proposed coded cooperative
communication system outperforms the asymmetric turbo-coded non-cooperative scheme under
identical conditions. This prominent performance improvement has been made possible due to the
joint asymmetric turbo decoding at the destination node. Furthermore, to check the effectiveness of the
proposed scheme, we have also developed a two-source asymmetric turbo-coded cooperative scheme
based on the vertical bell labs layered space-time (VBLAST), incorporating the CMI as the suitable
benchmark. It is observed that the proposed scheme employing SM has a better BER performance
than the VBLAST scheme under identical conditions.

Keywords: spatial modulation (SM); code matched interleaver (CMI); asymmetric turbo code (ATC);
coded cooperation; vertical bell labs layered space-time (VBLAST)

1. Introduction

Recently, there has been a rapid increase in the demand for high data rates in modern wireless
communications [1]. Nevertheless, an inevitable fading phenomenon severely affects the bit error rate
(BER) performance of wireless communication systems [2]. A multiple-input multiple-output (MIMO)
technique has been adopted as a useful solution to combat the effect of the fading channel, since it has
the potential to increase the data rate and to improve the BER performance of the wireless link [3].
However, small handheld wireless devices may not be capable of supporting multiple antennas due to
size, cost, or hardware limitations [4]. The cooperative communication suggested in [5,6] enables one
to address these drawbacks by creating a virtual MIMO. Cooperative techniques can also be merged
with channel codes to achieve coded cooperative diversity. Different channel coding schemes such as
convolution codes [7], turbo codes [8], low density parity check (LDPC) codes [9], and polar codes [10]
have been utilized in coded cooperative communication. Furthermore, cooperative techniques can be
used in cellular communications [11–13].

Spatial modulation (SM) [14] is a recently developed MIMO technique that boosts spectral
efficiency by utilizing antenna indices to convey information. In SM, only one transmit antenna is active
at each time slot. Therefore, drawbacks, such as inter-channel interference (ICI) and inter-antenna
synchronization (IAS), are alleviated. Furthermore, as compared to existing vertical bell labs layered
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space-time (VBLAST) architecture [14–17], SM significantly increases BER performance and decreases
the transceiver complexity [14]. In [18], an optimal hard maximum likelihood detection (MLD) for
SM was discussed. Furthermore, the soft output MLD for SM was proposed in [19]. There are many
achievements related to SM when combined with channel codes. In [20], an LDPC-coded SM scheme
was proposed and investigated. In [21], it was proven that the integration of polar codes and SM can
offer a superior performance. Later, the authors in [22] discussed and studied a polar-coded SM with
multiple antennas at a transceiver in which the multi-level construction of polar codes was employed.

Turbo codes were firstly introduced in 1993 [23]. Since then, they have attracted much attention
from many scholars. The performance of a turbo code is based on its distance spectrum. A good
interleaver plays an important role in shaping the weight distribution that eventually controls the
performance of communication systems [24]. Hence, the interleaver is regarded as a vital part in the
design of turbo codes. To date, many researchers have designed different types of interleavers [25–29]
for the turbo code. In [28], it was well proven that the code matched interleaver (CMI) is the optimum
interleaver of turbo codes. In [30], the authors analyzed and discussed the BER performance of
asymmetric turbo codes with the CMI. To the best of our knowledge, asymmetric turbo coded SM
(ATC-SM) as an integration of asymmetric turbo codes based on the CMI and SM with higher-order
modulation in non-cooperative scenarios, has not been investigated. Therefore, the exploration of
ATC-SM is still an open research problem. In order to make full use of the benefits of coded cooperation
techniques, we further extend ATC-SM to a coded cooperative scenario, i.e., asymmetric turbo-coded
cooperative SM (ATCC-SM). In the ATCC-SM scheme, two sources work in full duplex mode. The
contributions of this manuscript can precisely be written as:

• An asymmetric turbo-coded SM (ATC-SM) technique is proposed. The proposed scheme adopts a
higher order modulation such as 16QAM, 32QAM and 64QAM.

• The proposed scheme is further extended to coded-cooperative scenarios with two sources, such
as the asymmetric turbo-coded cooperative SM (ATCC-SM) technique.

• The asymmetric turbo-coded vertical bell labs layered space-time (ATC-VBLAST) is also devised
as an appropriate benchmark for the proposed ATC-SM scheme. Similarly, the asymmetric
turbo-coded cooperative vertical bell labs layered space-time (ATCC-VBLAST) scheme is utilized
as a suitable benchmark for ATCC-SM under identical conditions.

• A joint iterative ATC decoder for two sources is also implemented at the destination node.

The rest of this manuscript is organized as follows. Section 2 introduces the fundamental
construction of the ATC with the CMI and proposes two non-cooperative schemes, i.e., ATC-SM and
ATC-VBLAST. Section 3 discusses the system model for two coded-cooperative schemes, i.e., ATCC-SM
and ATCC-VBLAST. Section 4 demonstrates the joint iterative ATC decoder. The results and discussion
are presented in Section 5. Finally, Section 6 draws the conclusion of this manuscript.

2. Asymmetric Turbo Code (ATC)

The ATC encoder is composed of an interleaver π, and two different recursive systematic
convolutional (RSC) encoders, B1 and B2, as shown in Figure 1. The ga(F)/gb(F) represents the
generator polynomial of RSC encoder, where ga(F) and gb(F) denote the feed-forward and feedback
encoding polynomials, respectively.

The input information sequence q1 and interleaved sequence qI
1 are encoded by B1 and B2 into

parity sequences p1 and p2, respectively. Then, these sequences are combined with the input sequence
q1 to generate the entire ATC codeword (q1, p1, p2).
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Figure 1. The concatenation of the asymmetric turbo code (ATC).

2.1. Code Matched Interleaver

The quality of a code depends on its distance spectrum properties. Choosing a good interleaver
contributes to the excellent distance characteristics of an ATC. In [28], it was proven that the CMI
fully removes low weight sequences as compared to other types of interleavers to boost the properties
of a distance spectrum. Therefore, the CMI is regarded as an optimal interleaver. Furthermore, the
CMI is, first, an S-random interleaver. The S-random interleaver can either eliminate a short weight-3
input sequence with lengths up to S + 1 or expand it to another sequence with lengths greater than
2(S + 1) [31]. Therefore, we primarily focused on weight-2 and weight-4 sequences in the design of the
CMI. We discuss the construction of the CMI for the ATC in the following section.

The input sequence q1 is encoded by the ATC encoder into codeword (q1, p1, p2). The weights
of information and parity bit sequences are denoted by β, β(p1) and β(p2), respectively. The overall
weight of ATC codeword is expressed as:

w = β+ β(p1)+β(p2), (1)

Assume that weight β = 2 input sequence q1,2 produces a finite weight ATC codeword; then, the
input sequence q1,2 and permuted sequence qI

1,2 can be represented by the following polynomials:

q1,2(F) = (1 + Fε1c1)Fγ1 , qI
1,2(F) = (1 + Fε2c2)Fγ2 , (2)

where c1, c2= 1, 2, . . ., ε1 and ε2 denote the minimum distances between two consecutive “1”s of the
q1,2 and qI

1,2, respectively, and γ1 and γ2 represent time delays, γ1,γ2= 1, 2, . . . The weights of parity
bits given in Equation (2) can be written as:

c1(lmin,1 − 2 ) + 2, c2(lmin,2 − 2)+2, (3)

where lmin,1 and lmin,2 represent the lowest weights of parity check sequences p1 and p2 generated by
the sequences q1,2 and qI

1,2, respectively. By combining Equations (1) and (3), the overall weight of the
ATC codeword produced by the weight-2 input sequence q1,2 can be given as:

wβ=2 = 6 + c1(lmin,1 − 2) + c2(lmin,2 − 2) (4)

Let g1 and g2 represent the positions of “1”s in the input sequence q1,2. The positions of “1”s in
the interleaved sequence qI

1,2 are denoted by π(g1) and π(g2). If the mapping condition satisfies the
following form: ∣∣∣g1 − g2

∣∣∣ mod ε1= 0 and
∣∣∣π(g1) − π(g2)

∣∣∣ mod ε2= 0, (5)

The interleaver maps the input sequence q1,2 to the interleaved sequence qI
1,2 that produces a finite

weight parity check sequence, as shown in Figure 2. Note that this case is detrimental because both q1,2
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and qI
1,2 generate finite weight parity check sequences to cause a degradation in system performance.

To avoid this phenomenon, the mapping condition is required to meet the following expression:∣∣∣g1 − g2

∣∣∣ mod ε1 = 0 and
∣∣∣π(g1) − π(g2)

∣∣∣ mod ε2 , 0, (6)
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Figure 2. A weight-2 input sequence is mapped to another weight-2 input sequence after passing
through the interleaver.

Now, we consider the weight-4 input sequence. The weight-4 input sequence is comprised of two
weight-2 sequences. Thus, a finite weight ATC codeword is generated. The polynomials of weight
β = 4 input sequence q1,4 and permuted sequence qI

1,4 are written as:

q1,4(F) = (1 + Fε1c′1)Fγ
′

1 + (1 + Fε1c′2)Fγ
′

2 qI
1,4(F) =(1 + Fε2c′3)Fγ

′

3 + (1 + Fε2c′4)Fγ
′

4 , (7)

where c′1, c′2, c′3, c′4 = 1, 2, . . ., γ′1, γ′2, γ′3 and γ′4 denote time delays such that γ′2 > γ′1 + ε1c′1 and
γ′4 > γ′3 + ε2c′3. The total weight of the ATC codeword generated by weight-4 input sequence q1,4 is
given as:

wβ=4= 12+(c′1 + c′2)(lmin,1 − 2) + (c′3 + c′4)(lmin,2 − 2) (8)

It is assumed that g1, g2, g3 and g4 denote the positions of “1” in the input sequence q1,4, where
g1 < g2 < g3 < g4. Let π(g1), π(g2), π(g3) and π(g4) be the positions of “1” in the interleaved
sequence qI

1,4. If the mapping conditions meet the following form:{
whenever

∣∣∣g1 − g2

∣∣∣ mod ε1 = 0 and
∣∣∣g3 − g4

∣∣∣ mod ε1 = 0∣∣∣π(g1) − π(g3)
∣∣∣ mod ε2 = 0 and

∣∣∣π(g2) − π(g4)
∣∣∣ mod ε2 = 0

or {
whenever

∣∣∣g1 − g2

∣∣∣ mod ε1 = 0 and
∣∣∣g3 − g4

∣∣∣ mod ε1 = 0∣∣∣π(g1) − π(g4)
∣∣∣ mod ε2 = 0 and

∣∣∣π(g2) − π(g3)
∣∣∣ mod ε2 = 0

(9)

then the interleaver will map the input sequence q1,4 into qI
1,4, which produces finite weight parity

check sequence, as illustrated in Figure 3. Due to the fact that both q1,4 and qI
1,4 generate finite weight

parity check sequences, the overall ATC codeword weight given by Equation (8) is finite. In order to
avoid the generated scenario, the following mapping conditions should be satisfied:{

whenever
∣∣∣g1 − g2

∣∣∣ mod ε1 = 0 and
∣∣∣g3 − g4

∣∣∣ mod ε1 = 0∣∣∣π(g1) − π(g3)
∣∣∣ mod ε2 , 0 and

∣∣∣π(g2) − π(g4)
∣∣∣ mod ε2 , 0

or {
whenever

∣∣∣g1 − g2

∣∣∣ mod ε1 = 0 and
∣∣∣g3 − g4

∣∣∣ mod ε1 = 0∣∣∣π(g1) − π(g4)
∣∣∣ mod ε2 , 0 and

∣∣∣π(g2) − π(g3)
∣∣∣ mod ε2 , 0

(10)
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Figure 3. A weight-4 input sequence is mapped to another weight-4 input sequence after passing
through the interleaver.

It is worth mentioning that not all finite weight sequences are bad. Actually, only those
input sequences whose weights are less than certain value w(β)

max (β = 2, 4) should be eliminated.
The parameter w(β)

max acts like a threshold [30]. By combining Equation (4) with wβ=2
max , and integrating

Equation (8) with wβ=4
max , we obtained the following inequalities:

6 + c1(lmin,1−2) + c2(lmin,2−2) ≤ wβ=2
max , 12 + (c′1 + c′2)(lmin,1−2) + (c′3 + c′4)(lmin,2−2) ≤ wβ=4

max , (11)

If lmin,1 = lmin,2 = lmin, the above inequalities are equivalent to:

c1 + c2 ≤
wβ=2

max − 6
lmin − 2

, c′1+ c′2 + c′3 + c′4 ≤
wβ=4

max − 12
lmin − 2

(12)

The algorithm utilized in [28] for the interleaver design is described as follows:

1. Let us randomly choose an integer from the finite set IS = {1, 2, . . . , N} , where N denotes the
size of the interleaver.

2. Compare the selected integer with S previous selected integers, where S <
√

N/2. If the absolute
value of the difference between the current selected integer and any of the S previous selected
integers is smaller than S [31], then go back to the first step and search for a proper integer.

3. Check whether the weight-2 and 4 mapping conditions are simultaneously satisfied by the current
interleaver output. If they are not satisfied, then go back to the first step.

4. When a specified number of iterations is reached, if we do not find an integer from the set IS to
make it satisfy both the second and third steps simultaneously, then the value S is reduced by 1
and the process is restarted from the first step.

5. The selected integer is saved as the current interleaver output. Repeat the process until we obtain
all N interleaver outputs.

2.2. Asymmetric Turbo-Coded Spatial Modulation (ATC-SM) Scheme with CMI

The schematic of the ATC-SM scheme based on the CMI is illustrated in Figure 4. This scheme
consists of NT transmit antennas and NR receive antennas.
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Figure 4. Non-cooperative asymmetric turbo-coded spatial modulation (ATC-SM) scheme with the
code matched interleaver (CMI).

The information bit sequence a1 of length K is encoded into codewords v of length 3K by an
ATC encoder at the source node. The generated ATC codeword v is divided into v(j) with length
d = log2MNT by the bit grouping block shown in Figure 4, where M denotes the modulation order
and j ∈ {1, 2, . . . , 3K/d}. Then, v(j) is fed into the bit divider block. After the bit divider, the
grouped bit sequence v(j) is further partitioned into two parts, v(j)ante and v(j)modu. The first bit train
v(j)ante with length log2 NT is sent to the antenna mapper to determine the active antenna index I(j),
where I(j) ∈ {1, 2, . . . , NT}. Likewise, the M-PSK/QAM modulator obtains the remaining bit train
v(j)modu of length log2 M and modulates it into the M-PSK/QAM symbol vs(j) with E[|vs(j)|2] = 1, where
s ∈ {1, 2, . . . , M} and || represents the Euclidean norm of a vector or matrix. Subsequently, the modulated
symbol vs(j) is assigned to the chosen active antenna index I(j). Thus, the coded SM mapper outputs
the vector vIs(j) = [0, . . . , 0, vs(j), 0, . . . , 0]T, where vs(j) represents the I(j)th non-zero component
of the vector. Note that the components such as bit grouping, the bit divider, the antenna mapper,
the M-PSK/QAM modulator and the coded SM mapper together constitute the main block called
SM in this paper. Furthermore, the spectral efficiency of SM is evaluated as η = log2MNT [14].
The coded SM mapper outputs the transmission vector vIs(j). Afterwards, the transmission vector
vIs(j) is propagated over the slow Rayleigh fading MIMO channel H = [h 1, h2, . . . , hNT

]
, where

hi = [h 1,i, h2,i, . . . , hNR,i

]T
(1 ≤ i ≤ NT). The entries of channel matrix H are defined as independent

and identically distributed (i.i.d.) complex Gaussian random variables with a mean of zero and a
variance of 0.5 per dimension. At the destination, the received vector is modeled as:

z(j) = HvIs(j) + n(j) = hI(j)vs(j) + n(j), (13)

where hI(j) represents the I(j)th column of H, and n(j) = [n 1(j), n2(j), . . . , nNR
(j)]T is an i.i.d. complex

additive Gaussian noise vector with each component nk(j)~CN(0, N0) (1 ≤ k ≤ NR), where N0 is
the noise power spectral density. We have assumed that the perfect knowledge of H is always known
at the receiver throughout this paper.

At the destination end, the SM demapper first performs soft detection on the received signals. The
“soft” signifies the log-likelihood ratio (LLR). In this paper, we employed the soft output maximum
likelihood detector (SOMLD) that was used in [19]. The SM demapper produces LLRs γ(I(j)) and
γ(vs(j)) for active antenna index I(j) and modulated symbol vs(j), respectively. After passing through
bit combiner, the demodulated LLRs γ(I(j)) and γ(vs(j)) are combined into γ(v(j)), which is further
fed into bit ungrouping block that outputs the coded bit sequence γ(v). Finally, the ATC decoder takes
γ(v) to generate the estimated information sequence â1.
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2.3. Asymmetric Turbo-Coded VBLAST (ATC-VBLAST) Scheme Based on CMI

In this subsection, we describe the proposed ATC-VBLAST scheme. The block diagram of the
ATC-VBLAST scheme is shown in Figure 5.
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At the source node, the input information bit stream q2 of length K is first split into parallel
sequences q1

2, q2
2, . . . , and qNT

2 of the same length K/NT via a serial to parallel (S/P) converter. Each
of the sub-information bit streams is encoded by the ATC encoders C1, C2, . . . , and CNT based on
the CMI to generate the codewords v1, v2, . . . , and vNT , respectively. Afterwards, the M-PSK/QAM
modulator modulates the encoded sequences v1, v2, . . . , and vNT into M-PSK/QAM sequences such
as v1,m, v2,m, . . . , and vNT,m, where the dimension of each sequence is equal to L. The L is taken as
3K/(MNT). Afterwards, the following matrix:

Vm = [v T
1,m, vT

2,m, . . . , vT
NT,m

]T
(14)

as the arrangement of the corresponding modulated vector sequences is sent over the NR × NT slow
Rayleigh fading channel H

′

, where [ ]T denotes the transpose of a vector or matrix. The received matrix
Z at the destination node is modeled as

Z = H′Vm + N (15)

where H′ denotes the fading channel matrix defined similarly to H in Equation (13), and

N = [n 1, n2, . . . , nNR

]T
is the AWGN noise matrix whose every component nk1 (1 ≤ k1 ≤ NR)

represents the L × 1 vector defined like n(j) in Equation (13). The channel output matrix

Z = [z 1, z2, . . . , zNR

]T
is fed into the VBLAST detector that utilizes the soft maximum likelihood

detection algorithm [32]. Every element in Z denotes L × 1 vector. The generated LLRs γ(v1), γ(v2),
. . . , and γ(vNT

) corresponding to the coded sequences v1, v2, . . . , and vNT are considered as the soft
LLRs of the ATC decoders D1, D2, . . . , and DNT , respectively, that produce the estimated q̂1

2, q̂2
2, . . .,

and q̂NT
2 . Finally, the parallel to serial (P/S) converter accepts the estimated sequences and converts

them into q̂2.

3. Two-Source Asymmetric Turbo-Coded Cooperative (ATCC) Scheme Based on CMI

In this section, we develop the ATCC-SM and ATCC-VBLAST architectures as extensions of
ATC-SM and ATC-VBLAST, respectively. Moreover, the scenario with the CMI and two sources is
considered in the design of the ATCC-SM and ATCC-VBLAST schemes. Both of the schemes are
detailed in the section.
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3.1. Two-Source Asymmetric Turbo-Coded Cooperative Spatial Modulation (ATCC-SM) Scheme Based on CMI

This subsection describes the two-source ATCC-SM scheme with the CMI. The block diagram of
the two-source ATCC-SM scheme is illustrated in Figure 6, where two sources employ a full duplex
mode and can simultaneously transmit and receive data.
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The two-source ATCC-SM scheme needs to take two time slots to accomplish a complete
transmission process. The solid and dashed lines with arrows represent the first and second time slots,
respectively, as illustrated in Figure 6. During the first time slot, the input sequences q′1 and q′2 of
length K at the source 1 (S1) node and the source 2 (S2) node are separately fed into the RSC-1 of the
ATC encoder that generates the codeword vS1 and vS2 of length 2K. After that, the obtained vS1 and
vS2 are given to SM to output the following vectors:

vS1
I1r1

(m1) = [0, . . . , 0, vS1
r1
(m1 ), 0, . . . , 0]T, vS2

I2r2
(m2) = [0, . . . , 0, vS2

r2
(m2), 0, . . . , 0]T (16)

The operation of SM is discussed in Section 2.2 of this manuscript. The output vector vS1
I1r1

(m1)

is broadcasted to the S2 and the destination node over the slow Rayleigh fading MIMO channel.
Similarly, the vector vS2

I2r2
(m2) is propagated to S1 and the destination node over the slow Rayleigh

fading MIMO channel.
During the first time slot, S2 and S1 get the received vectors zS1,S2(m1) and zS2,S1(m1), which can

be mathematically modeled as:

zS1,S2(m1) = HS1,S2vS1
I1r1

(m1) + nS1,S2(m1) = hI1(m1)

S1,S2
vS1

r1
(m1) + nS1,S2(m1), (17)

zS2,S1(m1) = HS2,S1vS2
I2r2

(m1) + nS2,S1(m1) = hI2(m1)
S2,S1

vS2
r2
(m1) + nS2,S1(m1) (18)

where HS1,S2 and HS2,S1 represent the channel matrices of S1–S2, and S2–S1, respectively. HS1,S2 and

HS2,S1 are defined similarly to H in Equation (13). hI1(m1)
S1,S2

and hI2(m1)
S2,S1

represent the I1(m1)th and

I2(m1)th columns of HS1,S2 and HS2,S1 , respectively, and they are defined similarly to hI(j) in Equation
(13). The vectors nS1,S2(m1) and nS2,S1(m1) denote the complex additive Gaussian noise from S1 to
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S2, and from S2 to S1, respectively. Both of them are defined like n(j) in Equation (13). Afterwards,
the vectors zS1,S2(m1) and zS2,S1(m1) enter the SM demodulator of S2 and S1, respectively. As a result,
the LLRs γS1,S2

(vS1) and γS2,S1
(vS2) are obtained and are further given to the RSC-1 decoder to get

the estimations q̂′1 and q̂′2 during the second time slot. It is worth mentioning that SM demodulator
is made up of an SM demapper, a bit combiner and bit ungrouping blocks. Through the CMI, the
generated estimations q̂′1 and q̂′2 are interleaved as q̂

′I
1 and q̂

′I
2 , respectively, which are re-encoded into

codewords
=
v

S2 and
=
v

S1 by the RSC-2 encoder. Here, only the length K parity sequences vS2 and vS1

of
=
v

S2 and
=
v

S1 are employed by SM to produce vectors: vS2

I2r2
(m′1) = [0, . . . , 0, vS2

r2
(m′1), 0, . . . , 0]

T

and vS1

I1r1
(m′2) = [0, . . . , 0, vS1

r1
(m′2), 0, . . . , 0]

T
, respectively, sent to the corresponding destination

node over the slow Rayleigh fading MIMO channel, where vS2
r2
(m′1) and vS1

r1
(m′1) with normalized

transmission powers are in the I2(m′2)th and I2(m′2)th positions, with r2, r2 ∈ {1, 2, . . . , M}, I2(m′1),

I1(m′2) ∈ {1, 2, . . . , NT}, m′1 ∈
{
1, 2, 3, . . . , K/d′1

}
and m′2 ∈

{
1, 2, 3, . . . , K/d′2

}
for d′1 = d′2 and

m′1 = m′2.
During the first time slot, the destination accepts the vectors zS1,D(m1) and zS2,D(m1). Moreover,

the destination also gets zS1,D(m′1) and zS2,D(m′1) during the second time slot. The received vectors at
the destination can be mathematically modeled as

zS1,D(m1) = HS1,DvS1
I1r1

(m1) + nS1,D(m1) = hI1(m1)
S1,D vS1

r1
(m1) + nS1,D(m1) (19)

zS2,D(m1) = HS2,DvS2
I2r2

(m1) + nS2,D(m1) = hI2(m1)
S2,D vS2

r2
(m1) + nS2,D(m1) (20)

zS1,D(m′1) = HS1,DvS1

I1r1
(m′1) + nS1,D(m′1) = h

I1(m′1)
S1,D vS1

r1
(m′1) + nS1,D(m′1) (21)

zS2,D(m′1) = HS2,DvS2

I2r2
(m′1) + nS2,D(m′1) = h

I2(m′1)
S2,D vS2

r2
(m′1) + nS2,D(m′1) (22)

where HS1,D represents the channel matrix of S1 to the destination node, and HS2,D denotes the channel
matrix of S2 to the destination in the first time slot. However, HS1,D represents the channel matrix of S1

to the destination node, and HS2,D denotes the channel matrix of S2 to a destination in the second time

slot. All the channel matrices are defined similarly to H in (13). In Equations (19) and (20), hI1(m1)
S1,D and

hI2(m1)
S2,D denote the I1(m1)th and I2(m1)th columns of HS1,D and HS2,D, respectively. Similarly, h

I1(m′1)
S1,D

and h
I2(m′1)
S2,D from Equations (21) and (22) represent the I1(m′1)th and I2(m′1)th columns of HS1,D and

HS2,D, respectively. The definitions of hI1(m1)
S1,D , hI2(m1)

S2,D , h
I1(m′1)
S1,D and h

I2(m′1)
S2,D are similar to that of hI(j) in

Equation (13). In addition, nS1,D(m1), nS2,D(m1), nS1,D(m′1) and nS1,D(m′1) denote complex addictive
Gaussian noise, and they are defined similarly to n(j) in Equation (13).

At the destination node, the SM demodulator performs soft demodulation for zS1,D(m1),
zS2,D(m′1), zS2,D(m1) and zS1,D(m′1) to obtain the LLRs γS1,D(vS1), γS2,D(v

S2), γS2,D(vS2) and γS1,D(v
S1),

respectively. Eventually, the LLRs γS1,D(vS1) and γS2,D(v
S2) are fed to the joint ATC decoder that

produces the estimate of q̂′1. Similarly, γS2,D(vS2) and γS1,D(v
S1) feed into the joint ATC decoder to

generate q̂′2. The specific decoding process for the joint ATC decoder is presented in Section 4 of
this paper.

3.2. Two-Source Asymmetric Turbo-Coded Cooperative VBLAST (ATCC-VBLAST) Scheme Based on CMI

The two-source ATCC-VBLAST scheme based on the CMI is described in this section. Figure 7
shows the schematic diagram of the two-source ATCC-VBLAST scheme with the CMI in which two
sources employ full duplex mode and simultaneously transmit and receive data. This scheme also
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requires two time slots to complete transmission. The solid and dashed lines with arrows indicate the
first and the second time slots, respectively.Electronics 2020, 9, x FOR PEER REVIEW 10 of 20 
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Figure 7. Two-source ATCC-VBLAST scheme with the CMI. 

At the S1 node, the input sequence a1
’  of length K is firstly converted by S/P conversion into 

length K NT⁄  parallel sequences a1
’1, a1

’2, …, and a1
’NT in the first time slot. The resulting sequence is 
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At the S1 node, the input sequence a′1 of length K is firstly converted by S/P conversion into length
K/NT parallel sequences a

′1
1 , a

′2
1 , . . . , and a′NT

1 in the first time slot. The resulting sequence is passed to

RSC-1 encoder and the M-PSK/QAM modulator that produces the modulated sequences vS1
1,m, vS1

2,m, . . .,

and vS1
NT,m with dimension 1 × L1. The following transmission matrix

VS1
m =

[
(vS1

1,m)
T

, (vS1
2,m)

T
, . . . , (vS1

NT,m)
T
]T

, (23)

which consists of the modulated sequences, is broadcasted to S2 and the destination node through the
slow Rayleigh fading MIMO channel. Likewise, the transmission matrix at S2 is:

VS2
m =

[
(vS2

1,m)
T

, (vS2
2,m)

T
, . . . , (vS2

NT,m)
T
]T

, (24)

which is similar to VS1
m given in Equation (23). Next, the matrix VS2

m is transmitted towards S1 and the
destination node over the slow Rayleigh fading MIMO channel. During the first time slot, the received
matrices ZS1,S2 , ZS2,S1 , ZS1,D and ZS2,D are mathematically modelled as:

ZS1,S2= H′S1,S2
VS1

m + NS1,S2 , ZS2,S1= H′S2,S1
VS2

m + NS2,S1 (25)

ZS1,D = H′S1,DVS1
m + NS1,D, ZS2,D = H′S2,DVS2

m + NS2,D, (26)

where H′S1,S2
, H′S2,S1

, H′S1,D, and H′S2,D represent the channel matrices of S1–S2, S2–S1, S1 to destination,
and S2 to destination, respectively, and are defined similarly to H in Equation (13). NS1,S2 , NS2,S1 , NS1,D,
and NS2,D denote the complex additive Gaussian noise of S1–S2, S2–S1, S1 to destination, and S2 to
destination, respectively, and are defined similarly to N in Equation (15).

The matrices ZS1,S2 and ZS2,S1 are fed into the VBLAST detector and the RSC-1 decoder to produce
the estimated sequences â′11 , â′21 , . . . , â′NT

1 , and â′12 , â′22 , . . . , â′NT
2 , respectively. These sequences are

delivered to the CMI, the RSC-2 encoder and the M-PSK/QAM modulator to get 1 × (L1/2) dimensional
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modulated parity sequences V
S2
1,m, V

S2
2,m, . . . V

S2
NT,m and V

S1
1,m, V

S1
2,m, . . . V

S1
NT,m, respectively. After that,

the newly re-arranged matrices

V
S2

m =
[
(vS2

1,m)
T

, (vS2
2,m, )

T
, . . . , (vS2

NT,m)
T
]T

, V
S1

m =
[
(vS1

1,m)
T

, (vS1
2,m, )

T
, . . . , (vS2

NT,m)
T
]T

(27)

from S2 and S1 are transmitted towards the common destination node. During the second time slot,
the received matrices ZS2,D and ZS1,D at the receiving end are written as:

ZS2,D = H
′

S2,DV
S2

m + NS2,D, ZS1,D = H
′

S1,DV
S1

m + NS1,D (28)

where H
′

S2,D and H
′

S1,D represent the channel matrices of S2 to destination and S1 to destination,

respectively. H
′

S2,D and H
′

S1,D are defined similarly to H in Equation (13). NS2,D and NS1,D denote the
complex additive Gaussian noise of S2 to destination and S1 to destination, respectively. They are
defined like N in Equation (15).

The destination node gets the matrices ZS1,D and ZS2,D in the first time slot. During the second
time slot, the destination accepts ZS2,D and ZS1,D. ZS1,D and ZS2,D are given to the VBLAST detector
and the joint ATC decoder to produce the estimated sequences â

′

11, â
′2
1 , . . . , and â

′NT
1 . These sequences

are combined into sequence â′1 through the P/S converter. Similarly, the remaining ZS2,D and ZS1,D are
fed to the VBLAST detector and the joint ATC decoder to generate the estimations â

′1
2 , â

′2
2 , . . . , and

â
′NT
2 , which are merged into â′2 by the P/S converter. The description of the joint ATC decoder is given

in the next section.

4. Joint Iterative ATC Decoder

Another elegant feature for the ATC-coded cooperative architecture is the joint iterative ATC
decoding employed at the destination. The joint ATC decoder consists of two different soft input soft
output (SISO) decoders, as given in the literature [33]. For simplicity, the diagram of the joint iterative
log maximum a posterior (log-MAP) [34,35] ATC decoder of two-source ATCC-SM in Section 3.1 is
shown in Figure 8.
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In Figure 8, the LLRs γS1,D(vS1) and γS2,D(vS2) are de-multiplexed into pairs of γ(q′1) and γ(p′1),
and pairs of γ(q′2) and γ(p′2) by the de-multiplexer, where γ(q′1) and γ(q′2) denote the LLRs of
systematic bits q′1 and q′2, whereas γ(p′1) and γ(p′2) represent the LLRs of the parity bits p′1 and
p′2, respectively.

During the first time slot, the LLRs γ(q′1) and γ(p′1) are fed into SISO decoder-1 to generate
extrinsic information γEXT1,2(q

′

1). Similarly, γ(q′2), together with γ(p′2), is given as an input to SISO
decoder-1 that produces extrinsic information γEXT1,2(q

′

2). These LLRs γ(q′1), γ(q
′

2), γEXT1,2(q
′

1) and
γEXT1,2(q

′

2) are interleaved into γI(q′1), γ
I(q′2), γ

I
EXT1,2(q

′

1) and γI
EXT1,2(q

′

2), respectively, by passing

through the CMI. Next, γI(q′1) and γI
EXT1,2(q

′

1), together with parity LLRs γS2,D(v
S2), are delivered

to SISO decoder-2. During the second time slot, the extrinsic information γI
EXT2,1(q

′

1) is generated.

Similarly, SISO decoder-2 accepts γI(q′2), γ
I
EXT1,2(q

′

2) and γS1,D(v
S1) to produce extrinsic information

γI
EXT2,1(q

′

2). Afterwards, γI
EXT2,1(q

′

1) and γI
EXT2,1(q

′

2) are passed through the CMI−1 to generate the
de-interleaved sequences γEXT2,1(q

′

1) and γEXT2,1(q
′

2), which are given back to SISO decoder-1 for
the next iteration, as shown in Figure 8. After reaching a specific number of iterations, the extrinsic
information γI

EXT1,2(q
′

1) and γI
EXT2,1(q

′

1) are summed up and delivered to the de-interleaver and slicer

that finally estimates sequence q̂′1. Similarly, the estimation q̂′2 is generated when the sum of γI
EXT1,2(q

′

2)

and γI
EXT2,1(q

′

2) is considered as the input of the de-interleaver and the slicer.

5. Results and Discussion

The simulation results of ATC-SM, ATC-VBLAST, ATCC-SM and ATCC-VBLAST are discussed in
this section. The slow Rayleigh fading channel was assumed for all the schemes. Two source nodes
and a destination node were equipped with multiple antennas, and the two sources had an identical
number of antennas. Monte Carlo simulations were executed in a MATLAB environment. Different
numbers of receive antennas, modulation schemes, and various information lengths were chosen in
different scenarios. During the simulation, all the schemes were required to achieve a very low BER.
such as 10−6. Therefore, the running of all the simulations of the proposed schemes under different
conditions needed to take some time. Furthermore, the execution times may have varied when using
different computers to run the simulations. For a fair comparison, the log-MAP decoding algorithm
was employed in all simulations. All the schemes adopted RSC encoders with the same generator
polynomial (11/13; 15/13). The number of decoding iterations was four. The overall code rate at the
destination node was the same, i.e., R = 1/3 between the non-cooperative and cooperative schemes.
In the coded cooperative scheme, we supposed that S2 was placed near to the destination than S1 such
that a 1 dB gain in SNR was given to S2, i.e., χS2−D = χS1−D + 1. Moreover, a non-ideal inter-user
channel was assumed for all coded-cooperative simulations.

Figure 9 demonstrates the BER performance of the two-source ATCC-SM scheme under the
non-ideal inter-user channel scenario and the ATC-SM scheme based on the CMI over the slow Rayleigh
fading channel. 16QAM was chosen as the modulation scheme. The number of antennas at the
sources was Nt = 8, and the number of receive antennas at the destination was taken as Nr = 5, 6,
7 and 8. Furthermore, the information length was taken as K = 1024 in the simulation. Through
the simulated results, it can be evidently observed that the cooperative scheme outperformed its
counterpart non-cooperative scheme under identical conditions. We assumed that the inter-user
channel had a 5 dB gain, i.e., χS1−S2

= χS2−S1
= 5 dB. For the case of Nr= 6, the proposed two-source

ATCC-SM achieved a performance gain of about 0.5 dB at BER of 10−6 over ATC-SM. The prominent
performance improvement was made possible due to the deployment of the joint ATC decoder at the
destination. In addition, the system performance improved as the number of the receive antennas
increased. For the case of the eight receive antennas, both the ATC-SM and two-source ATCC-SM
configurations were superior to that of the seven receive antennas in the whole SNR range, as depicted
in Figure 9. The phenomenon can be explained by the fact that deploying more receive antennas
yielded the additional spatial diversity gain in the MIMO system.
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Figure 9. Bit error rate (BER) performance of the two-source ATCC-SM scheme under a non-ideal
inter-user channel scenario and ATC-SM based on the CMI over the slow Rayleigh fading channel,
K = 1024, 16QAM, Nt = 8 and different numbers of receive antennas.

To confirm the effectiveness of the cooperative system, we further investigated the BER performance
of the proposed two-source ATCC-SM scheme under a non-ideal inter-user channel scenario and
ATC-SM based on the CMI in 32QAM and 64QAM over the slow Rayleigh fading channel, as shown
in Figures 10 and 11, respectively. The parameters K = 1024, Nt= 8 and different numbers of receive
antennas, i.e., Nr = 5, 6, 7 and 8, were employed in the simulations. It was assumed that the link
between two sources had an SNR of χS1–S2

= χS2–S1
= 6 dB and χS1–S2

= χS2–S1
= 8 dB for 32QAM

and 64QAM, respectively. The simulated results demonstrate the superiority of the cooperative
system as compared to the non-cooperative system. Furthermore, the BER performance obtained an
obvious improvement with the increase of the number of receive antennas under identical conditions,
as expected.

Figure 12 exhibits the BER performance comparison for ATC-SM based on the CMI with different
modulation schemes over the slow Rayleigh fading channel. The antenna configuration of Nr = Nt = 8
was adopted. Moreover, the information length was taken as K = 1024. The simulated results illustrate
that the scheme in 16QAM outperformed its counterpart in 32QAM in terms of BER performance
under identical conditions. Similarly, the configuration with 32QAM was better than that of 64QAM.
This was due to the fact that high-order modulation was more sensitive against bit errors, thus causing
system degradation, as compared with a lower order modulation.
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Figure 10. BER performance of the two-source ATCC-SM scheme under a non-ideal inter-user channel
scenario and ATC-SM based on the CMI over the slow Rayleigh fading channel, K = 1024, 32QAM,
Nt = 8 and different numbers of receive antennas.

Figure 13 shows the BER performance of the two-source ATCC-SM over 16QAM based on the
CMI and the random interleaver (RI) with K = 50, 100 and 1024 under a non-ideal inter-user channel
scenario, i.e., χS1–S2

= χS2–S1
= 5 dB over the slow Rayleigh fading channel. The antenna configuration

Nr = Nt = 8 was employed. The Monte Carlo simulated results clearly demonstrate that the system
with the CMI offered a superior performance as compared to its counterpart with an RI at a whole
SNR range over the same block length. This was based on the fact that the CMI effectively broke the
short weight sequences by increasing the minimum free distance of the turbo codes. Furthermore,
we can observe from Figure 13 that the gains of 0.5, 0.4, and 0.25 dB were obtained at BER ≈ 10−5 for
K = 50, 100 and 1024 relative to the RI, respectively. This implies that the CMI can be used to effectively
improve short packet communication scenarios, such as K < 200. In Figure 14, the BER performance
of the two-source ATCC-SM over 16QAM based on the CMI for K = 512, 1024, 2048 and 4096
under χS1–S2

= χS2–S1
= 5 dB through the slow Rayleigh fading channel are shown. The antenna

configuration was taken as Nr = Nt = 8. The simulated results reveal that the system performance
improved as the information length increased under identical conditions.
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Figure 11. BER performance of the two-source ATCC-SM scheme under a non-ideal inter-user channel
scenario and ATC-SM based on the CMI over the slow Rayleigh fading channel, K = 1024, 64QAM,
Nt = 8 and different numbers of receive antennas.
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Figure 12. BER performance comparison of the ATC-SM scheme based on the CMI with different
modulation schemes over the slow Rayleigh fading channel, K = 1024 and Nr = Nt = 8.
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Figure 13. BER performance of two-source ATCC-SM based on the CMI and the RI under a non-ideal
inter-user channel scenario over the slow Rayleigh fading channel, 16QAM, Nr = Nt = 8, and
information length such as K = 50, 100 and 1024.
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Figure 14. BER performance of two-source ATCC-SM based on the CMI under a non-ideal inter-user
channel scenario over the slow Rayleigh fading channel, 16QAM, Nr = Nt = 8, and different
information lengths such as K = 512, 1024, 2048 and 4096.
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Figure 15 demonstrated the BER performance comparison of ATC-SM over BPSK, two-source
ATCC-SM over BPSK under χS1–S2

= χS2–S1
= 3 dB, ATC-VBLAST over 8QAM, and two-source

ATCC-VBLAST over 8QAM under χS1–S2
= χS2–S1

= 3 dB through the slow Rayleigh fading channel
for 6b/s/Hz transmission. Furthermore, a BER performance comparison among ATC-SM in 16QAM,
two-source ATCC-SM in 16QAM under χS1–S2

= χS2–S1
= 3 dB, ATC-VBLAST in 8QAM, and

two-source ATCC-VBLAST in 8QAM under χS1–S2
= χS2–S1

= 3 dB over the slow Rayleigh fading
channel for the same case of 6b/s/Hz transmission is presented in Figure 16. Both ATC-SM and
ATCC-SM over BPSK had Nt = 32 and Nr = 8 antenna configurations. However, both ATC-SM and
ATCC-SM over 16QAM had different antenna configurations, i.e., Nt = 4 and Nr = 8. In ATC-VBLAST
and ATCC-VBLAST over 8QAM, Nt = 2 and Nr = 8 were adopted. In addition, the information
length K = 2048 and the CMI were utilized in the simulation. As seen from Figures 15 and 16, two-source
ATCC-SM and two-source ATCC-VBLAST outperformed ATC-SM and ATC-VBLAST, respectively.
Moreover, we can discover from Figure 15 that ATC-SM was better than ATC-VBLAST at an SNR of
greater than −4.5 dB, while two-source ATCC-SM outperformed two-source ATCC-VBLAST at an SNR
of greater than −4.7 dB. Figure 16 reveals that at an SNR of greater than 0 dB, the BER performance of
ATC-SM exceeded ATC-VBLAST, whereas at an SNR of greater than −0.2 dB, the BER performance
of two-source ATCC-SM was superior to the two-source ATCC-VBLAST. This was because both the
ATC-SM and two-source ATCC-SM schemes took advantage of a low modulation order, i.e., BPSK, as
compared to a high order modulation, such as 16QAM.
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Figure 15. BER performance comparison of ATC-SM over BPSK, two-source ATCC-SM over BPSK under
a non-ideal inter-user channel scenario, ATC-VBLAST over 8QAM, and two-source ATCC-VBLAST
over 8QAM under a non-ideal inter-user channel scenario over the slow Rayleigh fading channel for
the case of 6b/s/Hz transmission, K = 2048 and Nr = 8.
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Figure 16. BER performance comparison of ATC-SM over 16QAM, two-source ATCC-SM over
16QAM under a non-ideal inter-user channel scenario, ATC-VBLAST over 8QAM, and two-source
ATCC-VBLAST over 8QAM under a non-ideal inter-user channel scenario over the slow Rayleigh
fading channel for the case of 6b/s/Hz transmission, K = 2048 and Nr = 8.

6. Conclusions

In this paper, a two-source ATCC-SM over the slow Rayleigh fading MIMO channel is proposed.
We analyzed the BER performance of the ATCC-SM scheme through different conditions such as various
numbers of receive antennas, modulation techniques, and information lengths. In order to perform a
fair comparison, an analysis for the BER performance of ATC-SM in the non-cooperative scenario was
also implemented. Through the Monte Carlo simulated results, it can be seen that the cooperative
scheme has a significant performance gain as compared to its non-cooperative counterpart under
identical conditions. This is due to the fact that the joint ATC decoder results in a BER performance
gain. Finally, we carried out a BER performance comparison between the two-source ATCC-SM and
two-source ATCC-VBLAST under identical conditions, and the Monte Carlo simulations evidently
demonstrate the effectiveness and usefulness of the two-source ATCC-SM scheme.
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