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Abstract: Path delay variation becomes a serious concern in advanced technology, especially for
multi-corner conditions. Plenty of timing analysis methods have been proposed to solve the
issue of path delay variation, but they mainly focus on every single corner and are based on
a characterized timing library, which neglects the correlation among multiple corners, resulting
in a high characterization effort for all required corners. Here, a novel prediction framework is
proposed for path delay variation by employing a learning-based method using back propagation (BP)
regression. It can be used to solve the issue of path delay variation prediction under a single corner.
Moreover, for multi-corner conditions, the proposed framework can be further expanded to predict
corners that are not included in the training set. Experimental results show that the proposed model
outperforms the traditional Advanced On-Chip Variation (AOCV) method with 1.4X improvement
for the prediction of path delay variation for single corners. Additionally, while predicting new
corners, the maximum error is 4.59%, which is less than current state-of-the-art works.
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1. Introduction

Variation is a significant and expensive problem. Accompanying the development of integrated
circuits, the feature size of technology is getting smaller and smaller and will continue shrinking in
the future. However, the size of atoms does not change. Regarding advanced technology, the oxide
layer of the gate is just a few atoms thick, so even a single atom out of place can change device
and cell performance considerably [1]. As the voltage decreases, the dependence of the transistor
current on threshold (Vth), supply voltage (Vdd) and temperature gradually changes from linear
to exponential [2–6]. The gate delay variation increases by five times in near-threshold voltage [7]
and two times across the entire temperature [8]. Moreover, considering modern technology, due to
the complexity and variability of semiconductor processes, delay variation is no longer a simple
relationship of the process, voltage, and temperature (PVT), so sensitivity of delay variation varies
differently [9,10]. Therefore, the worst corner of different designs may be different and cannot be
easily identified. Every corner needs to be analyzed, and corner numbers have increased by 1000 at
32 nm [11–13]. Besides, the characterizations and simulations of each corner are very long, so much
time and effort are needed to verify circuit functionality in all kinds of corners. Also, low voltage has
a dramatic influence on path delay variation because, at low voltage, delay variation does not obey
Gaussian distribution but non-Gaussian distribution [14–20], which makes the path delay variation
more difficult to predict.

Considering variation, various techniques are proposed, such as post-silicon tuning techniques [21,22],
but they are the tuning techniques that cannot be used as the analysis in advance. SPICE Monte
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Carlo (MC) is considered an accurate method for variation analysis, however, it needs extremely
large computational effort and is impractical for large designs. Statistical Static Timing Analysis
(SSTA) [23–25] was developed about ten years ago and was based on Gaussian gate delay distribution.
However, it requires too much run time and memory and has not been widely used in the industry.
Then, the On-Chip Variation (OCV) and the Advanced OCV (AOCV) [26] were introduced in the
current timing analysis flow and provide sufficient accuracy and risk reduction for Integrated Circuits
(IC) designs, but they compare similarly to traditional best-case and worst-case methods, which means
they are all corner-based methodology. They can only obtain the path delay variation on the given
characterized corners. However, in reality, many un-characterized corners need to be analysed to
improve the accuracy of the designs. During such situations, it must take time to characterize the
timing library, but the number of signoff corners increases to hundreds or thousands which makes
the characterization effort increase too dramatically to withstand. Therefore, it is difficult to trade-off
between precision and overhead of the characterizing library. To save characteristic effort and predict
path delay variation at multi-corner conditions, many researchers have studied it [16,27]. Alioto et al. [27]
regard the delay independent of temperature and voltage at the reference of Fonout of Four (FO4) and it
provides a relatively high accuracy and avoids heavy characterization effort. Rithe’s et al. [16] method
needs less effort to characterize a cell at one corner but cannot predict the timing at a new corner.

Recently, the learning-based method has been widely used in all kinds of fields [28–30], such
as optical, image processing and also the Electronics Design Automation (EDA) field, especially
timing analysis, and has shown great potential [31–33]. Das et al. [31] build a model that still focuses
the cell delay model by a learning-based method that comprehensively captures process, voltage,
and temperature, along with input slew and output load, but it is not suited for path delay variation
prediction directly. Kahng et al. [32] use a machine learning method to solve the signal integrity (SI)
timing problems, which is based on the timing reports from the non-SI mode. It is robust across designs
and signoff constraints. Han et al. [33] apply a learning-based method to solve the correlation problem
of different timing signoff tools. They develop a learning-based tool to correct the divergence of all
kinds of delays at different tools. The applications mentioned all use a learning-based method to solve
the timing related issue, which demonstrates the learning method is a promising method to solve the
timing prediction problem.

Here, we introduce a novel prediction framework for path delay considering local variation.
The framework uses a learning-based method, first to obtain the relationship of the delay variation
with circuit features at some corners and, second, to predict new path delay variation at a single corner
and unknown corner delay variations at multi-corners. The contributions of the paper are as follows:

• Regarding the single corner, it not only eliminates the characterization effort for the timing library
of each cell, but also performs better than AOCV.

• Concerning the multi-corner, the single model setting can be easily expanded to multi-corner,
which is not possible in traditional AOCV and MC methods and have less error compared to
existing works.

The structure of the paper is as follows: Section 2 introduces the proposed prediction framework
for path delay variation based on Machine Learning (ML) from single corner and multi-corner condition
perspectives. The experimental setting and results discussion are presented in Section 3. Section 4
concludes this work.

2. Proposed Prediction Framework for Path Delay Variation-Based Learning Method

Concerning practical designs, the severe timing constraint is required to satisfy the desired
performance. To meet the clock constraint, the prediction of path delay variation is a crucial issue.

A learning-based framework is proposed for the delay variation prediction of a circuit path,
without the requirement of corner-based timing libraries, which is illustrated in Figure 1. The first
step is data preparation, which mainly contains the generation of train paths. Then, path delay/delay
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variation can be obtained by fast SPICE nominal/MC simulation. The basic path features are extracted
based on the prepared paths, which are divided into single corner and multi-corner and will be
presented in Section 2.2. The last step is the network configuration. The Back Propagation (BP)
network [34,35] is selected to build the model due to the problem of regression. The weights and
thresholds of every layer and the junction points of the network are acquired through iterations for the
train set. The network layers and junction points are adjusted, and the effective features are reselected
until the result meets its convergence. The main core steps are training set preparation, features
selection and network configuration in the learning-based method.
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2.1. Data Preparation

The first issue faced by the learning-based method is how to construct the training set. Based on
the above analysis, the problem we focus on is the path delay variation. To improve the coverage of the
training set samples for different circuit parameters and limit the number of MC simulations required
for the training set, a group of artificial paths with multiple random gates, sizes, load capacitances,
and stages is generated. Meanwhile, the following assumptions are needed during the generation of
artificial paths.

(1) All path branches are removed by being replaced with given values for load capacitance.
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(2) All values of float input ports of multi-input gates are assumed to be 1 or 0 to ensure it does
not influence the signal propagation. Taking the NAND2 gate as an example, one input connects the
previous output, and the other input is set to 1.

Under the assumptions mentioned above, all path delay without/with any local variations is
measured by SPICE/fast MC simulation based on the generated paths.

2.2. Feature Selection

Effective feature selection is another critical step for the learning-based method. The selected
features are introduced in the following.

Since the problem of this paper is the regression problem of supervised learning, the input and
output features are necessary. The features contain cell topology features, a path delay feature and
corner conditions, whose detailed definitions are listed in Table 1. The tdxσ is the output feature,
and the others are input features.

Table 1. Feature selection and notation.

Category Feature Notation Single Corner Multi-Corner

cell
size the drive strength of each gate

√ √

Nstack the stack transistor number of each gate
√ √

path

polar rise of fall of each gate
√ √

load the load capacitance of each stage
√ √

td the nominal delay of each path
√ √

tdxσ the variation delay of each path at xσ
√ √

corner T the temperature of the operation condition -
√

V the voltage of the operation condition -
√

Size and Nstack constitute cell topology. Size refers to the width of the transistor, that is, the driving
strength of the gate, such as X1, X2 and so on. Nstack indicates the stack transistors number of the gate.
Random variations across different stacked transistors tend to average out and reduce the variability,
compared to a single transistor by the square of Nstack. Therefore, the Nstack is an effective feature of
the BP network. A gate has a different Nstack, however, based on the charging and discharging. Taking
NAND2 as an example, the Nstack is 2 when discharging, and 1 while charging.

Thus, in a real path, another feature that needs to be introduced is called polar. Polar means
representing the transition direction of a gate which is charging or discharging, and it can be obtained
according to the propagation characteristics of each gate in the path. The load of each stage and path
delay (td) can be easily obtained in the data preparation phase.

Temperature (T) and voltage (V) are the two features that are different from the single-corner and
multi-corner conditions. Seen in the single corner prediction the two features are not included, but,
in the multi-corner prediction they need to be added.

2.3. Network and Configuration

The variation delay of a path can be expressed as follows:

tdxσ = F(size, Nstack, polar, load, td, T, V)

Concerning a single corner, the feature of T and V can be ignored, but for multi-corners, the T and
V are necessary. F is a complex and continuous function. Due to the path delay variation prediction
belong to the regression problem, the BP neural network is adopted. The architecture of BP, with three
hidden layers, is illustrated in Figure 2, which contains input, hidden and output layers. The input
layer concludes the features mentioned in Section 2.2, and the output layer is the path delay variation
value. We assume the input layer has d neurons (x1, . . . , xi, . . . , xd), the hidden layers has n (h11, h12,
. . . , h1j, . . . , h1n), p (h21, . . . , h2k, . . . , h2p), q (h31, . . . , h3t, . . . , h2q) neurons respectively, and the output
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layers has l neurons (y). and every active function are all sigmoid, the weights and biases are expressed
by w and b. Additionally, every neuron input and output function is listed in Table 2, where the net
and out denote the input and output function of the neuron. It computes the result of every neuron by
a forward propagation network and adjusts weights, biases, the number of layers and junction points
by back propagation to minimize the total errors of all neurons during the network building.
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3. Experimental Results and Discussions 

Experiments were carried out under the process of Semiconductor Manufactory International 
Corporation (SMIC) 40 nm. Considering training and testing, plenty of paths were generated with 
randomly chosen cells and connecting structure, as described in Section 2. The path delay variation 
was characterized by 1% and 99% quantile with MC simulation for 1000 times. Regarding the training 
set, we chose a wide range of temperatures (0–25 °C) and voltages (0.6–1.1 V) to provide a reliable 
reference boundary which met the need of practical use for the model. The results of the predicting 
ability of the model are described through the mean relative error of the testing set, which is defined 
as follows: 
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Table 2. Input and Output function of every layer.

Function

Input Output

Hidden 1 layer neth1 j =
d∑

i=1
wi1, jxi + b0 outh1 j =

1

1+e
−neth1 j

Hidden 2 layer neth2k
=

n∑
j=1

w j2,kouth1 j + b1 outh2k
= 1

1+e
−neth2k

Hidden 3 layer neth3t =
p∑

k=1
wk3,touth2k

+ b2 outh3 t =
1

1+e−neth3t

Output layer nety =
q∑

t=1
wt3outh3t + b3 outy = 1

1+e−nety

3. Experimental Results and Discussions

Experiments were carried out under the process of Semiconductor Manufactory International
Corporation (SMIC) 40 nm. Considering training and testing, plenty of paths were generated with
randomly chosen cells and connecting structure, as described in Section 2. The path delay variation
was characterized by 1% and 99% quantile with MC simulation for 1000 times. Regarding the training
set, we chose a wide range of temperatures (0–25 ◦C) and voltages (0.6–1.1 V) to provide a reliable
reference boundary which met the need of practical use for the model. The results of the predicting
ability of the model are described through the mean relative error of the testing set, which is defined
as follows:

error =
1
n

∑n

1

∣∣∣∣∣∣∣ yi −
_
y i

yi

∣∣∣∣∣∣∣
where yi is the actual path delay variation value, and

_
y i is the predicted value.

3.1. Path Delay Variation Prediction at a Single Corner

Path delay variation prediction at a single corner means that different models are built at each
corresponding corner. Taking 5 stage path as an example, a detailed analysis of the training sample
number and path delay accuracy are described in the following.
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3.1.1. The Selection of Sample Number

It is commonly known that the more training data the network has, the higher the accuracy it
will get. Enormous training data will have a more prominent cost, however. Looking at the training
set, td−xσ and td+xσ, every path is acquired by executing 1000 times MC simulations, on the one hand„
while, on the other hand, a larger training set will need more iterations to reach convergence for
the network, which means more training time. Therefore, the trade-off between training sampling
numbers and accuracy should be considered.

To attain the appropriate sample numbers for training, the analysis of the testing error curve with
the number of training samples was adopted. To ensure the training sample number for our network,
a large scope of training sample numbers was chosen, from 10 to 2500 with a step of 10. Figure 3
shows the x-axis indicates the training number, and the average error of the testing set (black line) and
training set (red line) at this training sample is shown in the y-axis. Moreover, the curves are portrayed
in several corners. We observed that for different corners, after 800 training samples, the testing error
would decrease very slowly and this value was very close within different corners. Thus, we chose
700 as the number of training samples and 100 as the validation samples for saving SPICE simulation
time and network training time in the context of guaranteed precision.
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3.1.2. Path Delay Variation Prediction at Single Corner

The errors of the path variation delay across the two methods are illustrated in Figures 4 and 5.
One is the traditional method (AOCV), which predicts the worst case of the path delay variation by
summarizing the nominal delays of all cells in the path with a derating coefficient for each stage.
The other is the proposed method (BP-based), which predicts the delay of a new path by a network
established by the training set. The x-axis represents the different operation conditions combined with
all kinds of voltage and temperature, and the y-axis represents the mean error of the different methods.
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Figure 5. Path variation delay predicted error at td+xσ at a single corner. (a) train error; (b)test error. 
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by 1.10X–1.49X for the test set. Therefore, it decreases by 1.4X on average. Besides, as the voltage 
decreases, the mean errors of the two methods are increasing, which is due to the non-gaussian 
distribution at low voltage. However, compared with AOCV, the error of the BP model increases 
more slowly, due to the network build of the BP model containing a complex non-linear operation 
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Viewing the Figures, we can see that no matter if the probability is td−xσ or td+xσ, and no matter
if the error is the train set or test set, the BP model performs better than AOCV. Regarding td−xσ,
the error in BP decreases by 1.20X–1.36X less than AOCV for the train set, and by 1.47X–1.58X for
the test set. Concerning td+xσ, the error in BP decreases by 1.43X–1.67X less than AOCV for the train
set, and by 1.10X–1.49X for the test set. Therefore, it decreases by 1.4X on average. Besides, as the
voltage decreases, the mean errors of the two methods are increasing, which is due to the non-gaussian
distribution at low voltage. However, compared with AOCV, the error of the BP model increases more
slowly, due to the network build of the BP model containing a complex non-linear operation base on
the non-linear active function, which further demonstrates that BP is a more suitable method for the
path delay variation prediction at low voltage.

3.2. Path Delay Variation Prediction at Multi-Corner

A single corner demonstrates that the learning-based method performs better than the AOCV
method. It should be noted that the AOCV cannot be used in multi-corners to predict unknown corners,
so only the result of the BP method is illustrated here. Furthermore, the framework is extended to
the multi-corner condition and to predict the corner which is not included in the training set. Table 3
lists the training corners and predicted corners, where N indicates training corners andF expresses
predicted corners. Also, the training corners contain train paths and test paths that are characterized in
advance, and the predicted corners include new corners and new paths that are different from those in
the training set to show the advantage of generalization in the proposed work.
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Table 3. Training and predicted corners.

T (◦C)
V

0.6 0.7 0.8 0.9 1.0 1.1

0 N N F N
20 F
25 N N N
50 F F F
75 N N N

100 F F
125 N N N

N: training cornerF: predicted corner.

The two kinds of stages (5 and 10) are evaluated, and the mean error of the training corners and
the predicted corners are shown in Figure 6. The errors of td−xσ and td+xσ increase with decreasing
voltage and temperature at the two kinds of stages. Regarding td−xσ, the error increases from 1.21% to
2.82% for stage 5 and from 0.63% to 1.32% for stage 10. Concerning td+xσ, the error increases from
1.35% to 4.59% for stage 5 and from 0.6% to 1.82% for stage 10. Besides, the errors in stage 10 are less
than stage 5 because, as the number of stages increases, the non-Gaussian phenomenon gradually
becomes smaller and the interaction between each stage plays a complementary role, so the error itself
will be reduced.
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Additionally, the errors are less than those found in previous works, and the detailed comparison
is introduced in the following. The proposed prediction method is compared with some different
ways proposed in other papers. Table 4 shows the comparison of our work with that by Alioto et
al. [27] and Rithe’s et al. [16]. All three works have good accuracy for the prediction of a given path at
a given temperature (T) and voltage (V), especially in near-threshold voltage, of which the distribution
is non-Gaussian, and their average prediction errors are all below 6%. The common contributions of
the three works are that they all provide a way to predict path delay variation and avoid great timing
cost of the MC method.
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Table 4. Comparison with previous works.

[16] [25] This Work

Technology 28 nm 28, 40, 65 nm 40 nm

V 0.5 V 0.3–1.2 V 0.6–1.1 V

T N/A 70 ◦C 0–125 ◦C

Error 5.68% (6.21%) 5.3% (11.4%) 2% (4.59%)

Characterize effort 100SPICE/cell 2000SPICE/cell 1000SPICE/path

Application range Single T,V Multiple T,V Multiple T,V

Compared to the work by Rithe’s et al. [16], the main improvement of our method is that it can
handle any temperatures and voltages, as long as the model is established, while in the work by Rithe’s
et al. [16], the method is based on the gate timing library and rebuilding all the gate characteristic of a
path at a new temperature or voltage. Therefore, the other method is not applicable for multi-corners.
Compared to the study by Alioto et al. [27], which regards the delay independent from temperature
and voltage at the reference of Fanout of 4 (FO4), it has a good result at multiple temperatures and
voltages. Regarding our work, which employed ML, it models the relationships between temperature,
voltage and path delay, so it gains a higher accuracy of 2%, on average.

When considering the timing cost for path delay variation prediction, the study by Rithe’s et al. [16]
characterizes the statistical delay for every cell in one corner, which will spend about 100 times of
SPICE simulations, it can predict any new path delay variation at this corner with the average(max)
error of 5.68% (6.21%). When the path delay variation of other corners is needed, the number of SPICE
simulations will multiply the number of corners. The FO4 method proposed by Alioto et al. [27] needs
2000 SPICE simulations for each gate characteristic and is appropriate for multiple temperatures and
voltages, that is to say, after characterizing every cell, the method can predict any new path at multiple
corners within the average(max) error of 5.3% (11.4%). The timing cost of our method mainly stays in
the training set build, which needs 1000 SPICE simulations for each path in the training set. Subsequent
to the training, the model can provide a new path delay in a new corner with an average(max) of 2%
(4.59%), which is the lowest/minimum average error of these methods. Thus, our work provides a
promising method for solving the path delay variation problem for single- and multi-corner conditions.

4. Conclusions

Here, the learning-based method was adopted to solve the path delay variation problem under
single and multiple corners. First, the characterization effort for the timing library of each cell was
eliminated in our work, as well as the computing effort of the non-grid timing by interpolation. Second,
the proposed framework predicted the path delay variation at single- and multi-corners. Regarding
the single corner, the train/test error was much lower than AOCV, while for multi-corner, the error in
stage 10 was much less than that in stage 5, but the predicted errors were within the acceptable range
compared with previous works.
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variation-aware modeling, verification, and testing of analog ICs. In Proceedings of the Conference
on Design, Automation and Test in Europe, Dresden, Germany, 12–16 March 2012; pp. 1615–1620.

14. Alioto, M. Ultra-low power VLSI circuit design demystified and explained: A tutorial. IEEE Trans. Circuits
Syst. I Regul. Pap. 2012, 59, 3–29. [CrossRef]

15. Keller, S.; Harris, D.M.; Martin, A.J. A compact transregional model for digital CMOS circuits operating near
threshold. IEEE Trans. Very Large Scale Integr. Syst. 2014, 22, 2041–2053. [CrossRef]

16. Rithe, R.; Gu, J.; Wang, A.; Datla, S.; Gammie, G.; Buss, D.; Chandrakasan, A. Non-linear operating point
statistical analysis for local variations in logic timing at low voltage. In Proceedings of the Conference on
Design, Automation and Test in Europe, Dresden, Germany, 8–12 March 2010; pp. 965–968.

17. Zhang, Y.; Calhoun, B.H. Fast, accurate variation-aware path timing computation for sub-threshold circuits.
In Proceedings of the Fifteenth International Symposium on Quality Electronic Design, Santa Clara, CA,
USA, 3–5 March 2014; pp. 243–248.

18. Shiomi, J.; Ishihara, T.; Onodera, H. Statistical Timing Modeling Based on a Lognormal Distribution Model
for Near-Threshold Circuit Optimization. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2015, 98,
1455–1466. [CrossRef]

19. Guo, J.; Zhu, J.; Wang, M.; Nie, J.; Liu, X.; Ge, W.; Yang, J. Analytical inverter chain’s delay and its variation
model for sub-threshold circuits. IEICE Electron. Express 2017, 14, 20170390. [CrossRef]

20. Frustaci, F.; Corsonello, P.; Perri, S. Analytical delay model considering variability effects in subthreshold
domain. IEEE Trans. Circuits Syst. II Express Briefs 2012, 59, 168–172. [CrossRef]

21. Zhang, G.; Li, B.; Liu, J.; Shi, Y.; Schlichtmann, U. Design-phase buffer allocation for post-silicon clock binning
by iterative learning. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2017, 37, 392–405. [CrossRef]

http://dx.doi.org/10.1109/TCAD.2008.2006096
http://dx.doi.org/10.1109/TCSI.2013.2285691
http://dx.doi.org/10.1109/TCSII.2012.2231038
http://dx.doi.org/10.1109/JPROC.2009.2034764
http://dx.doi.org/10.1109/JPROC.2009.2035453
http://dx.doi.org/10.1109/TED.2011.2121913
http://dx.doi.org/10.1109/TCAD.2017.2748027
http://dx.doi.org/10.1109/TCSI.2011.2177004
http://dx.doi.org/10.1109/TVLSI.2013.2282316
http://dx.doi.org/10.1587/transfun.E98.A.1455
http://dx.doi.org/10.1587/elex.14.20170390
http://dx.doi.org/10.1109/TCSII.2012.2184377
http://dx.doi.org/10.1109/TCAD.2017.2702632


Electronics 2020, 9, 157 11 of 11

22. Zhang, G.; Li, B.; Liu, J.; Schlichtmann, U. Sampling-based buffer insertion for post-silicon yield improvement
under process variability. In Proceedings of the Design Automation & Test in Europe Conference & Exhibition
(DATE), Dresden, Germany, 14–18 March 2016; pp. 1457–1460.

23. Orshansky, M.; Nassif, S.; Boning, D. Design for Manufacturability and Statistical Design: A Constructive
Approach; Springer Science & Business Media: New York, NY, USA, 2007.

24. Khandelwal, V.; Srivastava, A. A quadratic modeling-based framework for accurate statistical timing analysis
considering correlations. IEEE Trans. Very Large Scale Integr. Syst. 2007, 15, 206–215. [CrossRef]

25. Li, B.; Chen, N.; Xu, Y.; Schlichtmann, U. On timing model extraction and hierarchical statistical timing
analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2013, 32, 367–380. [CrossRef]

26. Hong, J.; Huang, K.; Pong, P.; Pan, J.D.; Kang, J.; Wu, K.C. An LLC-OCV methodology for statistic timing
analysis. In Proceedings of the IEEE International Symposium on VLSI Design, Automation and Test
(VLSI-DAT), Hsinchu, Taiwan, 25–27 April 2007; pp. 1–4.

27. Alioto, M.; Scotti, G.; Trifiletti, A. A novel framework to estimate the path delay variability on the back of an
envelope via the fan-out-of-4 metric. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 2073–2085. [CrossRef]

28. Cohen, E.; Malka, D.; Shemer, A.; Shahmoon, A.; Zalevsky, Z.; London, M. Neural networks within multi-core
optic fibers. Sci. Rep. 2016, 6, 29080. [CrossRef]

29. Malka, D.; Vegerhof, A.; Cohen, E.; Rayhshtat, M.; Libenson, A.; Aviv Shalev, M.; Zalevsky, Z. Improved
Diagnostic Process of Multiple Sclerosis Using Automated Detection and Selection Process in Magnetic
Resonance Imaging. Appl. Sci. 2017, 7, 831. [CrossRef]

30. Malka, D.; Berke, B.A.; Tischler, Y.; Zalevsky, Z. Improving Raman spectra of pure silicon using super-resolved
method. J. Opt. 2019, 21, 075801. [CrossRef]

31. Das, B.P.; Amrutur, B.; Jamadagni, H.S.; Arvind, N.V.; Visvanathan, V. Voltage and temperature-aware SSTA
using neural network delay model. IEEE Trans. Semicond. Manuf. 2011, 24, 533–544. [CrossRef]

32. Kahng, A.B.; Luo, M.; Nath, S. SI for free: Machine learning of interconnect coupling delay and transition
effects. In Proceedings of the ACM/IEEE International Workshop on System Level Interconnect Prediction
(SLIP), San Francisco, CA, USA, 6 June 2015; pp. 1–8.

33. Han, S.S.; Kahng, A.B.; Nath, S.; Vydyanathan, A.S. A deep learning methodology to proliferate golden
signoff timing. In Proceedings of the conference on Design, Automation & Test in Europe, Dresden, Germany,
24–28 March 2014; p. 260.

34. Yi, J.; Wang, Q.; Zhao, D.; Wen, J.T. BP neural network prediction-based variable-period sampling approach
for networked control systems. Appl. Math. Comput. 2007, 185, 976–988. [CrossRef]

35. Li, Y.; Fu, Y.; Li, H.; Zhang, S.W. The improved training algorithm of back propagation neural network with
self-adaptive learning rate. IEEE Int. Conf. Comput. Intell. Nat. Comput. 2009, 1, 73–76.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TVLSI.2007.893585
http://dx.doi.org/10.1109/TCAD.2012.2228305
http://dx.doi.org/10.1109/TCSI.2017.2687059
http://dx.doi.org/10.1038/srep29080
http://dx.doi.org/10.3390/app7080831
http://dx.doi.org/10.1088/2040-8986/ab2625
http://dx.doi.org/10.1109/TSM.2011.2163532
http://dx.doi.org/10.1016/j.amc.2006.07.020
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Proposed Prediction Framework for Path Delay Variation-Based Learning Method 
	Data Preparation 
	Feature Selection 
	Network and Configuration 

	Experimental Results and Discussions 
	Path Delay Variation Prediction at a Single Corner 
	The Selection of Sample Number 
	Path Delay Variation Prediction at Single Corner 

	Path Delay Variation Prediction at Multi-Corner 

	Conclusions 
	References

