
electronics

Article

A Low-Complex Frame Rate Up-Conversion with
Edge-Preserved Filtering

Ran Li * , Wendan Ma, Yanling Li and Lei You

School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China;
dandy0112@163.com (W.M.); liyanling@xynu.edu.cn (Y.L.); leiyou@xynu.edu.cn (L.Y.)
* Correspondence: liran@xynu.edu.cn

Received: 10 December 2019; Accepted: 13 January 2020; Published: 15 January 2020
����������
�������

Abstract: The improvement of resolution of digital video requires a continuous increase of computation
invested into Frame Rate Up-Conversion (FRUC). In this paper, we combine the advantages of
Edge-Preserved Filtering (EPF) and Bidirectional Motion Estimation (BME) in an attempt to reduce
the computational complexity. The inaccuracy of BME results from the existing similar structures in
the texture regions, which can be avoided by using EPF to remove the texture details of video frames.
EPF filters out by the high-frequency components, so each video frame can be subsampled before BME,
at the same time, with the least accuracy degradation. EPF also preserves the edges, which prevents
the deformation of object in the process of subsampling. Besides, we use predictive search to reduce
the redundant search points according to the local smoothness of Motion Vector Field (MVF) to speed
up BME. The experimental results show that the proposed FRUC algorithm brings good objective
and subjective qualities of the interpolated frames with a low computational complexity.

Keywords: Frame Rate Up-Conversion; Edge-Preserved Filtering; Bidirectional Motion Estimation;
subsampling; predictive search

1. Introduction

1.1. Motivation and Objective

Frame Rate Up-Conversion (FRUC) is used to improve the frame rate of video sequence by
periodically interpolating some frames between original frames [1]. As a fundamental technique for
improving the visual quality of video sequence, it is often used to prevent the degradation of quality that
results from hardware or software limitations in some applications, e.g., low bit-rate video coding [2],
Liquid Crystal Display (LCD) [3]. Recently, with the breakthrough of 5G, the network bandwidth is
greatly increased, and there is a tendency that the spatial-temporal resolution of digital video is higher
and higher. It requires more computation to process the high-definition video with a high resolution,
so a challenge for FRUC is generating new high-resolution frames with less computation.

Motion Estimation (ME) and Motion Compensated Interpolation (MCI) are the two important
parts of FRUC. ME is used to predict the Motion Vector Filed (MVF) between two adjacent frames,
and MCI is used to interpolate the absent frame according to MVF output by ME. The visual quality of
an interpolated frame depends heavily on the accuracy of ME algorithm used, so lots of works [4–6]
have spared no effort to develop different ME algorithms. It is found that a high investment of
computation promotes a high ME accuracy, so some approaches are needed to keep a good balance
between ME accuracy and computational complexity. A classic way is to subsample each frame
before ME, but the subsampling destroys some key details in a video frame, especially edge details,
which results in some degradation of ME accuracy while reducing computation. In view of this defect,
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the objective of this paper is to design an edge-preserved subsampling and, by associating it with a
rapid ME strategy, to construct a low-complex FRUC.

1.2. Related Works

In ME, the Block Matching Algorithm (BMA) [7] is used to find the Motion Vectors (MVs) of
non-overlapped blocks in a frame. The performance of BMA relies on the search strategy used.
Full Search (FS) is usually used in BMA, and it computes the Sum of Absolute Differences (SADs)
between the absent block and all of its possible candidates within the search area. The Motion Vector
(MV) of the absent block can be regarded as the relative displacement between the absent block and
the block with the minimum SAD. For FRUC, the objective of ME is to track the true motion trajectory,
but the minimum SAD represents a low temporal redundancy that does not always reflect the true
motion, so FS can reduce the ME accuracy. Besides, FS introduces lots of computation, because each
MV is computed by traversing all of the possible candidates in search area. The predictive search is an
effective approach for overcoming the defects of both accuracy and computation in FS. According to
the local smoothness of MVF, these predictive strategies [8–11] speed up the ME search with a low
complexity, so predictive search is suitable for the interpolation of high-resolution frame.

The objective of ME is to produce the MVF of the intermediate frame between two adjacent
frames. BMA cannot be directly implemented on the intermediate frame due to the lack of the
intermediate frame, but it is firstly used to compute MVF between two adjacent frames and then
map MVF between adjacent frames into the MVF of the intermediate frame. ME can be divided
into two categories, according to the direction of MV mapping: Unidirectional ME (UME) [12] and
Bidirectional ME (BME) [13–15]. UME halves each MV in MVF between two adjacent frames, and then
maps these halved MVs along their directions to blocks where they belong. Multiple MVs or no MV
can pass a block in the intermediate frame and, thus, UME brings overlaps and holes. After UME,
it is necessary to handle overlaps and holes, thus increasing more computation and degrading the
visual quality. BME avoids overlaps and holes by using the assumption of temporal symmetry to
implement BMA on the intermediate frame. BME usually fails to estimate the true MVs in texture
regions although it saves the computation invested into post-processing. There are many similar
structures in texture regions, which misleads BMA into producing an incorrect MV. BME and MCI
have been widely used for classical video processing systems, e.g., they are applied into one of two
key video compression techniques [16,17] used in the video coding standards H.265 and MPEG,
along with DCT or wavelets [18]. BME and MCI can also be seamlessly adapted to several video
enhancement tasks, e.g., super-resolution [19], denoising [20,21], and deblocking [22]. In a recent
work [23], the superiority of neural network model is demonstrated for improving the video frame
interpolation and enhancement algorithms on a wide range of datasets.

By a recent trend [24], the Edge-Preserved Filtering (EPF) [25,26] is used for improving the
top-performing optical flow estimation scheme. By EPF, this scheme provides a piecewise-smooth
MVF that respects moving object boundaries. Some works [27–29] added subsampling before ME to
further reduce computation. It is also necessary to implement the low-pass filter before subsampling
to suppress the aliasing, e.g., the frequently used average and Gaussian filters. However, the low-pass
filter destroys both the edge and texture details in a video frame. The elimination of textures can assist
BME to reduce the MV outliers that result from similar structures, but the loss of edges can result in
the mismatching of blocks due to the deformation of object. Inspired by the utilization of EPF in the
work [24], we can use EPF before subsampling to prevent the MV outliers from BME by removing
texture details, and reduce block mismatches by preserving edge details.

1.3. Main Contribution

In this paper, we present a low-complex FRUC, of which the core is to use both EPF-based
subsampling and predictive search to speed up the BME. We use the transform domain to realize a
real-time EPF, and then implement this EPF before subsampling to preserve the edge details while
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reducing the similar structures in texture regions, which assists BME in reducing the block mismatches.
We delete many redundant search points in BME and predict the MV in several spatially and temporally
neighboring candidates, according to the local smoothness of MVF. The contributions of our work are
presented as follows:

• EPF-based Subsampling. EPF is first used to filter out the textures and preserve edges. The loss
of textures can assist BME to avoid the bad effects resulting from similar structures, and the
protection of edges suppresses the number of mismatched blocks in BME.

• BME with predictive search. We abandon FS to speed up BME, and construct a candidate MV
set by selecting several spatial-temporal neighbors according to the local smoothness of MVF.
Combined with the subsampled frame by EPF, the predictive search reduces the computation of
BME while also guaranteeing a good predictive accuracy.

The experimental results show that by using EPF and predictive search, the proposed
FRUC algorithm reduces the computational complexity, and brings good objective and subjective
interpolation qualities.

2. Background

2.1. Bidirectional Motion Estimation (BME)

As shown in Figure 1, in the BME scheme, BMA is implemented on the intermediate frame f t to
locate the matching blocks in the previous frame f t−1 and the next frame f t+1. Suppose that the size of
f t is M × N, and setting the block size is B × B, f t is divided into (M/B × N/B) non-overlapping blocks.
Consider the i-th row and j-th column non-overlapping block Bi,j in f t, due to the use of translational
motion model, the MVs from Bi,j to its motion-aligned blocks in f t−1 and f t+1 is temporally symmetric,
i.e., let v denote the candidate MV of Bi,j and s denote a pixel in Bi,j, the pixel s is forwardly mapped to
a pixel sf in f t−1 by

sf = s + v, (1)

and the pixel s is mapped backwardly to a pixel sb of f t+1 by

sb = s− v. (2)
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can be seen that, by using RFDT, the textures on the petals are efficiently suppressed, and the edges 
of petals are preserved, which indicated that RFDT is an efficient EPF, and it is helpful in improving 
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Figure 1. Illustration on Bidirectional Motion Estimation (BME).

When using FS, the search range D in f t−1 and f t+1 is confined to a displacement ±d around the
aligned pixel to the center of Bi, and the candidate MV set V is constructed by scanning all of the search
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points in D. The Sum of Bidirectional Absolute Differences (SBAD) is used as block matching criterion
to evaluate the reliability of each MV candidate, i.e.,

SBAD
[
Bi, j, v

]
=

∑
s∈Bi, j

∣∣∣ ft−1(s + v) − ft+1(s− v)
∣∣∣, (3)

where ft−1(s) and ft+1(s) represent the luminance values of the pixel s in f t−1 and f t+1. The SBADs of
all candidate MVs are computed, and then the best MV vi,j for Bi,j by minimizing SBAD, i.e.,

vi, j = argmin
v∈V

{
SBAD

[
Bi, j, v

]}
. (4)

BME requires (2d + 1)2 SBAD operations to locate the matching block for each absent block,
and there are many redundant SBAD operations due to the local smoothness of MVF. Besides,
BME shows its inefficiency in the texture regions, because the temporal symmetry is disturbed
by the repeated similar structures. We can speed up BME by subsampling and predictive search.
The texture details are removed when filtering video frames by low-pass filter before subsampling,
which suppresses the bad effects that result from repeated similar structures. However, it is important
for BME to have the edge details in order to ensure high accuracy, so we should use EPF to preserve
edges while removing textures. The following part briefly introduces EPF.

2.2. Edge-Preserved Filtering (EPF)

EPF is an important image filtering technology that smoothes away textures while also retaining
sharp edges, and it has been widely applied to detail manipulation, tone mapping, pencil drawing,
and so on. EPF has gained a lot of attention over the last two decades, in which the most popular filters
in EPF are bilateral filter [25], guided filter [26], and anisotropic diffusion [30]. Anisotropic diffusion is
implemented with lots of iterations, and bilateral and guided filters compute a space-varying weight
at a space of higher dimensionality than that of the signal being filtered. Therefore, these popular
filters have high computational complexity. Many techniques have been proposed to speed up EPF,
among which the best known is Recursive Filter based on Domain Transform (RFDT) [31]. RFDT is
sufficiently fast for real-time performance, e.g., one-megapixel color images can be filtered in 0.007 s on
a GPU. Therefore, we use RFDT to filter each video frame in our FRUC algorithm.

The idea of RFDT is to reduce the dimensionality of image before filtering. In a five-dimensional
space, EPF can be defined as a space-invariant kernel whose response decreases with distance.
If this kernel preserves the original distances at a five-dimensional space, it would also maintain the
edge-preserving property in a lower dimensional space. RFDT transforms the input image I into the
transformed domainΩw by

ct(u) =
∫ u

0
1 +
δs

δr

∣∣∣I′(x)∣∣∣dx, u ∈ Ωw. (5)

in which ct(·) represents the domain transform operator, δs and δr is the spatial and range standard
deviation, respectively. Suppose that L is the transformed signal of I by the operator ct(·), and it is
processed, as follows:

J[m] =
(
1− ad

)
L[m] + ad J[m− 1], (6)

a = exp
(
−
√

2
δs

)
. (7)

where a∈[0, 1] is a feedback coefficient, L[m] represents the m-th value in L, L[m] = ct(xm), xm is the
m-th value in I, J[m] is the m-th value of filtered result J, and d = ct(xm) − ct(xm−1) is the distance in
Ωw between the neighboring samples xm and xm−1. As d increases, ad approaches to zero, converging
Equation (6), which results in similar values of the pixels at the same side of edge, and the pixels on
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different sides of edge have largely different values, thus preserving edges. As shown in Figure 2,
it can be seen that, by using RFDT, the textures on the petals are efficiently suppressed, and the edges
of petals are preserved, which indicated that RFDT is an efficient EPF, and it is helpful in improving
the accuracy of BME.Electronics 2019, 8, x FOR PEER REVIEW 5 of 14 
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3. Proposed FRUC Algorithm

3.1. Framework Overview

Figure 3 presents the framework of the proposed FRUC algorithm. Each frame is first filtered
by EPF to preserve edges while also suppressing the textures, and then subsampled to reduce the
computational complexity. BME is performed on the subsampled frames and the predictive search
is used to reduce the redundant search points according to the local smoothness of MVF. For BME,
the forward ME is used to compute the MVF from the previous frame to the next frame, and the
bidirectional refinement is used to refine the MVF of the interpolated frame based on the MVF output
by forward ME. Finally, according to the refined MVF, the Overlapped Block Motion Compensation
(OBMC) [32] is used to produce the interpolated frame. The following describes the EPF-based
subsampling and BME with predictive search in detail.
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3.2. EPF-Based Subsampling

Before subsampling, we use EPF to filter out textures on object surface in a video frame.
The implementation of EPF includes four steps to prevent the over-smoothing of object edges, in which



Electronics 2020, 9, 156 6 of 15

the visual result after each step is illustrated in Figure 4. Suppose that f denotes the to-be-filtered
frame, RFTD is first used to filter each frame, as follows:

fRF = RFTD(f, δs, δr), (8)

in which δs and δr are used to control the amount of smoothing. We need to over-smooth the image
to extract the edges and textures as many as possible. By testing several (δs, δr) pairs on the nature
images, we find that the over-smoothing effects are appropriate when setting δs and δr to be 30 and
100. As shown in Figure 4a, we can see that, although the most of textures on surfaces are suppressed,
the edges of objects are blurred. We extract the high-pass components by the following difference
operator to enhance the edges:

fHP = fRF − f + 128. (9)
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As shown in Figure 4b, the high-pass components include edges and textures, so we further
suppress textures in high-pass components by the Gaussian blur, as follows:

fGS = GausBlur
(
fHP, w, σ

)
, (10)

in which GausBlur(·) represents the function of Gaussian blurring, w is the window size, and σ is
the standard deviation. We should set a small w value and a big σ value due to the locally and
rapidly varying statistics of textures. By several experiments, we find that the texture can be effectively
suppressed when w and σ are, respectively, set to be 3 and 100. As shown in Figure 4c, the textures on
object surfaces are mostly filtered out and the edges are retained. Finally, we linearly mix f GS into f ,
as follows:

fEPF = 0.3×
(
f + 2× fGS − 256

)
+ 0.7× f. (11)

As shown in Figure 4d, after linear mixing, the edges are enhanced and textures are efficiently
suppressed. Figure 5 presents the visual results of EPF, average filtering, Gaussian filtering, and original
frame for the second frame of Foreman sequence. It can be seen that severe blurs occur on the filtered
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frames by average filtering and Gaussian filtering, but EPF produces a clear result. When compared
with the original frame, we can see that many textures are smoothed and edges have not been destroyed
in the filtered frame by EPF. For computational complexity, the designed EPF can be implemented in
O(MN) for a video frame, with the size of M×N, guaranteeing filtering in real time.Electronics 2019, 8, x FOR PEER REVIEW 7 of 14 
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Figure 5. Comparisons of the visual results of EPF, average filtering, Gaussian filtering, and original
frame for the second frame of Foreman sequence.

3.3. BME with Predictive Search

Forward ME is first performed to provide the MVF V t+1,t−1, from f t+1 to f t−1. The redundant
search points are removed based on the local smoothness of MVF. For the i-th row and j-th column
block B(t+1)

i, j in f t+1, as shown in Figure 6a, its candidate MV set C(t+1)
i, j is constructed by

C(t+1)
i, j =



Vt+1,t−1

[
B(t+1)

i−1, j

]
, Vt+1,t−1

[
B(t+1)

i, j−1

]
,

Vt−1,t−3

[
B(t−1)

i+1, j

]
, Vt−1,t−3

[
B(t−1)

i, j+1

]
,

Vt+1,t−1

[
B(t+1)

i−1, j−1

]
+ R1,

Vt+1,t−1

[
B(t+1)

i−1, j+1

]
+ R2


, (12)

R1, R2 ∈ U =

{(
0
0

)
,
(

0
1

)
,
(

0
−1

)
,
(

0
2

)
,
(

0
−2

)
,
(

1
0

)
,
(
−1
0

)
,
(

3
0

)
,
(
−3
0

)}
, (13)

in which V t+1,t−1 and V t−1,t−3 denote, respectively, the MVF from f t+1 to f t−1 and the MVF from f t−1

to f t−3, B(t+1)
i, j and B(t−1)

i, j denote, respectively, the i-th row and j-th column block in f t+1 and f t−1,

V t+1,t−1[B(t+1)
i, j ] denotes the MV of B(t+1)

i, j in the MVF V t+1,t−1, V t−1,t−3[B(t−1)
i, j ] denotes the MV of B(t−1)

i, j
in the MVF V t−1,t−3, and R1, R2 are two MV biases that are randomly selected from the set U. The best

forward MV v(t+1)
i, j for B(t+1)

i, j is computed based on the Sum of Absolute Difference (SAD), as follows:

v(t+1)
i, j = arg min

v∈C(t+1)
i, j

{
SAD

[
B(t+1)

i, j , v
]}

, (14)
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SAD
[
B(t+1)

i, j , v
]
=

∑
s∈B(t+1)

i, j

∣∣∣ ft+1(s) − ft−1(s + v)
∣∣∣. (15)

in which s denotes the pixel position in the block B(t+1)
i, j , ft+1(s) and ft−1(s), respectively, denote the pixel

values at the position s in f t+1 and f t−1. According to the MVF output by forward ME, the bidirectional
refinement is performed to assign a unique MV for each block in f t. First, we obtain the MVFs V t+1,t
and V t−1,t−2,by

Vt+1,t =
Vt+1,t−1

2
, (16)

Vt−1,t−2 =
Vt−1,t−3

2
. (17)
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The local smoothness of MVF ensures that there is MV consistency in a spatio-temporal
neighborhood, so we construct the candidate MV set C(t)

i, j for the i-th row and j-th column block

B(t)
i, j in f t, as shown in Figure 6b, i.e.,

C(t)
i, j =
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in which V t,t−1, V t−1,t−2, and V t,t−1 denote, respectively, the MVF from f t to f t−1, the MVF from f t−1 to

f t−2 and the MVF from f t to f t−1, V t,t−1[B(t)
i, j ] denotes the MV of B(t)

i, j in the MVF V t,t−1, and R1, R2 are
still randomly generated according to Equation (13). Afterwards, we compute the SBAD value for each
candidate MV in C(t)

i, j and obtain the final MV v(t)
i, j for the absent block B(t)

i, j by

v(t)
i, j = arg min

v∈C(t)
i, j

{
SBAD

[
B(t)

i, j , v
]}

. (19)
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Several SAD and SBAD operators can be implemented when computing the MV for each block.
BME has a low computation complexity due to the limited number of candidate MV set. Suppose that
the size of a video frame is M × N, the implementation of BME in O(MN) time is straightforward.

4. Experimental Results

In this section, the performance of the proposed FRUC algorithm is evaluated by testing it on
test sequences with CIF, 720P, and 1080P formats. The CIF sequences include foreman and football,
the 720P sequences include ducks_take_off, in_to_tree, and old_town_cross, and the 1080P sequences
include station2, speed_bag and pedestrian_area. These test sequences are downloaded on the website:
https://media.xiph.org/video/derf/. The interpolated results by the proposed algorithm are compared
with those that are generated by the traditional FRUC algorithms, including BME [13], EBME [14],
and DS-ME [15]. We also compare the proposed algorithm with two recent FRUC algorithms [1,4] on
some CIF sequences. We remove the first 50 even frames of each test sequence to evaluate the qualities
of the interpolated frames from subjective and objective perspectives, and then use different FRUC
algorithms to generate these even frames from the first 51 odd frames. In all of the algorithms, the block
size B is, respectively, set to be 16, 32, and 64 for CIF, 720P, and 1080P formats, and the comparing
algorithms keep their original parameter settings, except the block size. Peak Signal-to-Noise Ratio
(PSNR) and Structural SIMilarity (SSIM) [33] between the interpolated frame and the original frame
are used t undertake the objective evaluation. SSIM is a perceptual metric that is based on visible
structure, and it is closer to human perception than PSNR. The computational complexity is evaluated
by the execution time. All of the experiments are conducted on a Windows machine with an Intel Core
i7 3.40 GHz CPU and a memory of 8 GB. All of the algorithms are implemented in MATLAB.

4.1. Effects of Subsampling

In this subsection, we discuss the effects of various subsampling schemes on the qualities of
interpolated frames. Table 1 shows the average PSNR values of all the test sequences recovered by the
proposed FRUC algorithm when using different subsampling schemes, including non-subsampling,
average filtering, Gaussian filtering, and EPF. For non-subsampling, each frame is directly input into ME
without being subsampled. The non-subsampling has obvious PSNR gains when compared with other
schemes because none of the details are discarded, but it costs more computation. Before subsampling,
the average filter and Gaussian filter are performed on each frame, and they have similar PSNR losses
as compared with the non-subsampling when the subsampling factor is respectively set to be 2, 4,
and 8. The PSNR losses result from the destruction of high-frequency components. When performing
EPF, the PSNR losses are alleviated, especially when setting a big subsampling factor, e.g., when the
subsampling factor is 8, the PSNR loss of EPF is obviously less than those of average and Gaussian
filtering. Therefore, it can be observed that the suppression of texture details helps to improve the
ME accuracy.

Table 1. Average PSNRs (dB) of test sequences recovered by the proposed FRUC algorithm with
different subsampling schemes.

Subsampling Factor
Non-Subsampling Average Filtering Gaussian Filtering EPF

PSNR (dB) ∆ (dB) 1

2
33.14

−1.91 −1.93 −1.79
4 −3.20 −3.24 −3.02
8 −4.67 −4.72 −4.03

1 ∆ (dB) is the PSNR difference between any filtering method and non-subsampling.

https://media.xiph.org/video/derf/
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4.2. Objective Evaluation

Table 2 presents the average PSNR values, SSIM values, and execution time of test sequences
recovered by various FRUC algorithms. For the proposed algorithm, the subsampling factor is set
to be 2. First, we analyze the average PSNR values of various FRUC algorithms. For the sequences
with stable and low-speed motions, the PSNR values of the proposed algorithm are comparable with
those of the traditional methods, e.g., for the ducks_take_off sequence, the PSNR loss is about 0.25 dB
when compared with the traditional algorithms. For the sequences with complex and high-speed
motions, the PSNR losses of the proposed algorithm moderately increase, e.g., for old_town_cross
sequence, when compared with DS-ME, the PSNR loss is 1.65 dB. All of the sequences considered,
the average PSNR value of the proposed algorithm is 31.35 dB, and the largest PSNR loss is 1.43
dB when compared with all traditional algorithms. Second, we analyze the average SSIM values
of different FRUC algorithms. Similar to PSNR results, the proposed algorithm has comparable
SSIM values with traditional algorithms for the sequences with stable and low-speed motions, and it
has moderate losses for the sequences with complex and high-speed motions. All of the sequences
considered, the average SSIM value of the proposed algorithm is 0.9005, and the largest SSIM loss is
0.0209 when compared with all traditional algorithms. By PSNR and SSIM comparisons, we can see
that our algorithm has an advantage in quality degradation over the traditional algorithms. Finally, we
analyze the average execution time of various FRUC algorithms. For CIF sequences, it takes BME,
EBME, and DS-ME about 1–2 s to interpolate a frame, but the proposed algorithm only about 0.2
s. For 720P sequences, the proposed algorithm spends approximately 0.7 s in interpolating a frame,
and the comparing algorithms about 9–35 s. For 1080P sequences, the comparing algorithms use about
222 s at most and 23 s at least, while the proposed algorithm only about 1.6 s to interpolate a frame. All
of the sequences considered, the proposed algorithm only needs an average of 0.95 s per frame, and its
execution time is far less than that of the comparing algorithms. With PSNR, SSIM, and execution time
all taken into consideration, it can be seen that the proposed algorithm does not have a large PSNR loss
while maintaining its time advantage. Therefore, we come to the conclusion that it can provide a good
objective quality with a low computation complexity.

Table 2. Average Peak Signal-to-Noise Ratios (PSNRs) (dB), Structural SIMilarities (SSIMs),
and execution time (second per frame) of test sequences recovered by various FRUC algorithms.

Test Sequence
BME [13] EBME [14] DS-ME [15] Proposed

PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time

CIF
foreman 33.41 0.9319 1.06 34.01 0.9435 1.71 34.36 0.9428 2.12 32.58 0.9170 0.19
football 21.09 0.5272 1.06 22.19 0.6255 1.80 21.86 0.5860 2.13 21.77 0.5586 0.21

720P
ducks_take_off 31.75 0.9775 9.62 31.77 0.9771 32.31 31.73 0.9772 24.04 31.97 0.9788 0.79

in_to_tree 36.28 0.9843 9.56 36.38 0.9843 37.64 36.58 0.9847 22.70 34.54 0.9814 0.77
old_town_cross 35.47 0.9872 9.57 35.35 0.9858 37.62 35.95 0.9885 23.48 34.30 0.9866 0.77

1080P
station2 38.89 0.9941 28.67 38.71 0.9965 222.34 38.98 0.9960 137.65 34.79 0.9573 1.66

speed_bag 33.23 0.9543 28.44 33.85 0.9573 222.37 33.71 0.9566 108.31 32.65 0.9534 1.62
pedestrian_area 28.22 0.8723 23.48 28.95 0.9013 165.65 29.11 0.8971 110.65 28.18 0.8714 1.59

Avg. 32.29 0.9036 13.93 32.65 0.9214 90.18 32.78 0.9161 53.88 31.35 0.9005 0.95
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Table 3 presents the PSNR results of the proposed algorithm and two recent FRUC algorithms [1,4].
The results of [1,4] are directly taken from their originals. When compared with [1], our algorithm
has 1.25 dB PSNR gain only for container sequence, and it has some PSNR losses for other sequences.
Ref. [1] uses more advanced tools to construct the interpolation model, and it improves the objective
qualities of interpolated frames at any computational cost. However, our algorithm aims to simplify
the interpolation model, so its improvement of interpolation quality is limited. It has similar PSNR
values to those of [4], whose core is Support Vector Machine (SVM), which is trained with lots of data
and computation. In a word, our algorithm consumes less computation to obtain comparable results
to [4].

Table 3. Average PSNRs (dB) comparison of the proposed algorithm and two recent FRUC
algorithms [1,4].

Test Sequence [1] [4] Proposed

container 43.68 43.64 44.93
football 24.36 21.98 21.77
mobile 30.22 26.25 26.12
tennis – 28.57 28.25

foreman 34.72 – 32.58
soccer 28.86 – 25.92

coastguard 35.45 – 33.44
paris 35.65 32.83 32.27

4.3. Subjective Evaluation

Figure 7 presents the visual results on the 78th interpolated frame of foreman sequence while
using different FRUC algorithms. The displacement of nose and eyes occurs on the 78th frame of
foreman sequence due to the moving head, as shown in the red rectangle of Figure 7a. BME in Figure 7b
cannot effectively track the moving head, and thus results in severe ghost effects. EBME in Figure 7c
produces a misplaced nose, and DS-ME in Figure 7d generates severe blocking artifacts. As shown
in Figure 7d, the proposed algorithm produces a better visual result than other algorithms, and it
effectively suppresses the blocking artifacts. Figure 8 presents the visual results on the 78th interpolated
frame of in_to_tree sequence while using different FRUC algorithms. As shown in Figure 8a, there are
some repeated windows in the red rectangle, and the occlusion occurs due to the transition of cameras.
BME in Figure 8b and EBME in Figure 8c produce several incomplete windows. Severe ghost effects
occur around windows for DS-ME in Figure 8d. The proposed algorithm in Figure 8e produces
a comparable visual result to the truth ground. Figure 9 presents the visual results on the fourth
interpolated frame of speed_bag sequence while using different FRUC algorithms. As shown in
Figure 9b,c, BME and our algorithm generate ghost effects around the head of sportsman. EBME in
Figure 9c and DS-ME in Figure 9d produce severe blocking artifacts. Especially in the red rectangle
of Figure 9a, the proposed algorithm can clearly recover these letters while other algorithms would
generate some blurring and blocking artifacts. From the above results, it can be concluded that the
proposed algorithm can bring good subjective quality.
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computational complexity.
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