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Abstract: The future adoption of electric vehicles (EV) as the main means of commuting will put an 
additional stress on the distribution grid; the level where EVs are mainly expected to be charged. 
Estimation of the EV charging influence on the distribution grid is a critical task for distribution 
system operators (DSO) in order to plan for grid reinforcement and to avoid service failure. Due to 
the unpredictable nature of daily human activities, stochastic modeling for daily EVs’ owner 
behavior and residential power consumption is needed. In our study a new estimation model for 
the EV power demand during the charging process is developed to accurately estimate the 
charging demand, which is combined with daily household power consumption loads based on 
real life measurements to estimate the total demand in the system. This demand can be applied to 
the standard IEEE 69 distribution system and can quantify the influence of different penetration 
levels under an uncontrolled (dumb) charging case, also under a proposed controlled charging 
algorithm for both summer and winter seasons.  

Keywords: battery electric vehicles; controlled charging; distribution systems; uncontrolled 
charging; grid impact; Monte Carlo simulation; plug-in hybrid electric vehicle (PHEV) 

 

1. Introduction 

Global warming is one of the biggest issues of the twenty-first century. The Paris Agreement 
was the first universal agreement on climate change [1]. It highlighted the need to limit the increase 
in the global average temperature to well below 2 °C above pre-industrial levels by 2100 [2]. To meet 
this objective, considerable reductions in greenhouse gas emissions from different sectors of human 
activity need to take place. Currently, and according to Reference [3], up to 16% of man-made carbon 
dioxide (CO2) emissions come from motor vehicles (cars, trucks and buses).  

The electrification of road transport will significantly reduce this share by deploying more 
efficient and eco-friendly car technologies such as all-battery electrical vehicles (BEV), plug-in 
hybrid electric vehicles (PHEV) and fuel cell electric vehicles (FCEV) [4] and, as reported by the 
International Energy Agency (IEA), electric drive cars need to represent 35 percent of global sales in 
2030 [3]. PHEV is a new emerging electric car technology. It is an advanced combination of a hybrid 
electric vehicle (HEV) and an battery electric vehicle (BEV). Currently, a PHEV is defined according 
to IEEE as a car, truck or other vehicle that can be driven solely by an electric motor for at least ten 
miles without consuming any gasoline (called a “PHEV-10”), and with batteries that can be 
recharged by plugging it into a wall outlet [5]. PHEV uses both an internal combustion engine and 
an electric motor to deliver motive power. In the charge-depleting mode, it draws energy primarily 
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from the battery pack; once the battery state-of-charge is depleted, it switches to charge sustaining 
mode, in which the primary energy is sourced from gasoline. These vehicles can provide high fuel 
economy due to the large battery pack that can accept more regenerative braking energy and 
provides more flexibility for engine optimization during an extended driving range. Compared to 
HEV, PHEVs are proven to produce fewer emissions, run more economically and have better fuel 
flexibility [6]. 

Despite the benefits that the EVs can provide to the power grid, the multiple EVs charging can 
impose serious stress on the distribution grid if it coincides with daily peak hours [7–11]. Charging 
algorithms were introduced to lessen this charging impact through scheduling and/or achieving 
maximum profit at the charging stations [12–15]. This impact is related to highly random parameters 
such as the non-charging load patterns of the feeders’ nodes, charging location, charging level, start 
charging time, the initial state of charge of the battery and the battery capacity. 

In the last decade, numerous research has been conducted to assess the impact of PHEV 
charging on the distribution grid, and they took different assumptions, the author of Reference [16] 
proposed a stochastic approach to evaluate the impact of the uncontrolled charging of PHEVs on the 
distribution grid; however, the model mentioned only three possible charging periods (21h00–
06h00, 18h00–21h00 and 10h00–16h00) which is less accurate as vehicle owners may leave the 
workplace at different times in the day. References [17,18] discussed the impacts of PHEV charging 
assuming an empty state of charge for the vehicle at the time arriving at its destination, while SoC is 
a function of the range, the initial SoC and the energy depletion mode energy use of the vehicle. In 
References [19–22] the authors studied the impact of plug-in electric vehicles without any specific 
estimation of battery charging power demand, however studies in References [23–25] show that the 
Li-Ion battery requests a variable charging power depending on the battery’s SoC and the charger 
rating power. 

In Reference [24], the author proposed a statistical approach to estimate the power demand 
based on the SoC evolution during the charging and to compute the energy gained during a certain 
interval then with a simple division to get the average power demand during the same time interval. 
The method results exceed the rated power of the charger, which can be unrealistic. While the author 
of Reference [23] discussed the estimation of this demand; by assuming an almost linear relation 
between the SoC and the charging time ratio; where the latter is the proportion of the charging time 
to the time needed for the full SoC battery to be achieved under a certain charging level, the function 
of the charging power demand versus the ratio of charging time was also depicted and served as a 
chart to deduce the power demand in p.u. of rated charging power. 

Our paper provides a detailed model of a stochastic evaluation framework of the PHEV 
charging influence on the distribution grid based on real-life measurement and standard 
distribution grid, taking into consideration the stochastic nature of the mobility and charging 
models of the PHEV’s owners: 

(1) A precise estimation of PHEV power demand during the charging process was overlooked 
in most previous works and if mentioned it was vaguely explained, in this paper the power demand 
is expressed in the function of battery SoC and the rated power of the charger. 

(2) The study in this paper focuses on the technical impacts (voltage deviation and power 
losses in the distribution grid). 

(3) The developed framework investigates the seasonal effect by taking two sets of daily 
residential power consumption for summer and winter as well, while ignoring the seasonal effect 
that can cause an underestimation or an overestimation of the effects. 

The rest of the paper is outlined as follows. First the different assumptions and parameters of 
the framework are presented in Section 2. In Section 3, the uncertainties in the mobility and charging 
behaviors are properly developed. Section 4 presents the generation process of residential loads. In 
Section 5, case studies and numerical results are discussed. The conclusions of the work are drawn in 
Section 6.  

2. Framework Assumptions and Parameters  
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Monte Carlo simulation is the most compelling method used when a model includes stochastic 
parameters or when a dynamic complex system needs to be evaluated. To predict the influence of 
EVs on the distribution grid, the first step in this endeavor is to establish the proper models for the 
different parameters that can correctly reflect the uncertainty of the human behavior. 

Since daily electricity load consumption is known to have a lower peak and average value 
during the weekends, our study involves a one working day scenario with a one-hour resolution, 
and it is carried out for a predefined number of households randomly distributed across the 
distribution grid feeders; it is also assumed that each household owns one PHEV. 

PHEV owners can have multiple choices of places and modes to recharge their vehicle batteries 
package, from” home charging” using a standard outlet, and because of the long night stay a 
relatively low charging rate is sufficient to achieve a fully charged state, to “parking lot/home 
charging” where the PHEV can be plugged in at a working place parking lot equipped with EV 
chargers. This charging behavior affects the day charging patterns and influences the charging 
characteristics required for developing the different models. Based on the PHEV’s location, it can be 
recharged using two possible charging levels, ‘level1’ or known as the slow charging which is 
performed at home, using a standard outlet so no extra installation is needed, it is a 1.4 kW (120 V) 
charging power and takes around five and half hours to fully charge the PHEV. The fast charging or 
‘level 2’ is available at parking lots and delivers 3.3 kW (240 V) charging power and it can charge the 
battery fully in two and a half hours. 

Several plug-in hybrid EV models are available in the market and they come with different 
battery capacity sizes. Li-Ion battery technology is widely used due to its desirable characteristics 
such as the high energy density, wide operating temperature range, low self-discharge rate, no 
memory effect and high efficiency [26] and become an essential part of new electric vehicle 
generation. 

PHEVs are mainly categorized based on their all-electric range (AER): PHEV-10, PHEV-30 and 
PHEV-60, where the numerical subscript stands for the vehicle AER in miles. This study considers a 
PHEV [27], the parameters of which are summarized in Table 1, with an AER of 25 miles that almost 
covers the average American daily trip according to the National Household Travel Survey [28]. 

Table 1. Plug-in hybrid electric vehicle (PHEV) Fleet Characteristics. 

Parameters Value Unit 
Average battery capacity 8.8 kWh  

All-electric range  25 Mile 
Full Charging Time (Level 1) 5.5 Hour 
Full Charging Time (Level 2) 2.5 Hour 

Depletion Mode Energy Use (η) 0.37 kWh/mile 

3. Stochastic Modeling for the PHEV’s Mobility and Charging Behaviors  

In this study, a one-day PHEV behavior resolution is taken into consideration; important 
parameters such as the departure time, time of arrival at home and the traveled distance are needed 
to build our scenario. Surveys have been carried out to track the daily driving behavior of 
individuals; the American National Household Travel Survey (NHTS) conducted in 2009 is the most 
comprehensive report [29]. 

The 2009 NHTS was conducted over a period from March 2008 through May 2009, and it 
collected data associated with 150,147 households resulting in a set containing about 1.048.575 single 
trip data including time, the purpose, the length of trip and around 150 other attributes. Since our 
study was carried out on working days, filtering algorithms were implemented in the MATLAB 
environment to extract a reliable dataset we can later build our model on. Using the MATLAB 
distribution-fitting tool we can obtain the best fitting probability density function for the departure 
time, the arrival at home time and the daily driven distance. 

3.1. PHEV Departure Time 
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It is the time at which the PHEV leaves the house, known as the first trip start time, so that the 
first trip is selected; only trips with the following attributes are kept. TDTRPNUM = 1, a weekday by 
checking the attribute TDWKND (TDWKND = 2 in a weekday) and it is a home-based work trip 
using the attribute TRIPPURP = “HBW”. 

Processing the data shows that the departure time follows a Gaussian PDF that can be 
expressed in the following equation: 

2
2

1 1( ) exp ( )
22dep dep dep

depdep

f t t µ
σσ π

  = − − 
   , 

where tdep is the departure time, µdep = 7.37 and σdep = 1.93. 

3.2. PHEV Arrival Home Time 

The final trip end time is the time at which the driver comes back home. Data of NTHS were 
analyzed to fit a Gaussian distribution and can be expressed as follows:  

µ
σσ π

 
= −  

 
arr arr arr

arrarr

f t t   2
2
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where tarr is the arrival time, µarr = 16.36 and σarr = 3.3. 

3.3. PHEV Daily Trip Length  

The daily driving distance is an important parameter, which can vary from weekdays to 
weekend days. The data was analyzed to fit a probability density function.  

A lognormal PDF can be used to describe the PHEV daily mileage, and it can be described as 
the following expression  

  =  
  

2
2

1 1( ) exp - (ln( )- )
22

d
dd

f d d m
sds p , 

where d is the travelled distance, µd = 2.2 is the mean of ln(x) and σd = 1.1 is the standard 
deviation of the lognormal PDF. 

3.4. PHEV Battery Charge Model  

When the PHEV is plugged into a charger, the two locations considered in this study determine 
the charging level (1.4 kW or 3.3 kW). It is assumed that charging the battery from empty to full 
would require 5.5 hours and 2.5 hours by using level 1 and level 2 charging modes, respectively. If a 
constant current charging mode is used, the evolution of SoC during charging follows the equation 
[30]: 

1( 1) ( )SoC t SoC t
N

+ = +   
, 

where N is the number of hours required to fully charge the battery from an empty state. 

3.5. PHEV Battery Discharge Model  

All the PHEVs are assumed to be fully charged in the morning (SoC initial = 1). To benefit fully 
from the PHEV electrical characteristics, the daily distance is mainly driven in all-electric mode, until 
the batteries reach a minimum SoC set to be 0.2 to mitigate the impact of the duty cycle on PHEV’s 
battery state of health (SoH) [31]. PHEV runs with an efficiency of η = 0.37 kWh/mile [32], therefore 
the whole or partial daily trip will be purely electric then switches to a gasoline engine to reach its 
final destination and allows us to calculate the final battery SoC.  

max{0.2,1- 0.37* },
,reg

D
SoC

SoC
= 
                         

  , 

D AER
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where D is travelled distance and SoCreg is a random value between 0.2 and 0.3 as the battery 
can be charged from the regenerative braking. 

3.6. PHEV Battery Power Demand  

During the plug-in time of the PHEV to grid through the charger, the electric vehicle can be 
considered as a typical load, though its power demand value needs a careful modelling due to the 
nonlinearity of the battery charging process. 

The plot of the two graphs describing the change in the PHEV battery SoC and power demand 
during the charging time shown in Figure 1 is based on the findings of a direct linear relation 
between the SoC and battery power demand being established as described in Equation (6), which 
will later be used in the direct estimation of the PHEV power demand and thus reducing the 
simulation running time 

1 . . 0.2 0.9
( ) 10(1- ) . . 0.9 1

0 . . 1
PHEV

p u for SoC
P SoC SoC p u for SoC

p u for SoC

< <
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Figure 1. PHEV SoC and power demand during the charging. 

4. Daily Residential Load Profiles 

The daily residential power demands are classified into two major categories—the controllable 
and the fixed ones—controllable demand is defined as the load that can be controlled without a 
noticeable influence on the customer’s daily activity [33], in our study only PHEV charging demand 
is considered controlled demand.  

We also assume base load demand will not cause any disturbance in the distribution grid. The 
fixed daily residential accounts for the total energy consumption in the absence of electric vehicle 
charging, and it differs from one day to another day. 

4.1. Measured Data for Fixed Daily Residential Load 

Daily household average power profile demands data can be obtained from the National Grid 
US website for a period of one year from July 2012 until July 2013 [34], the load shapes available on 
the website are estimates of the amount of electricity the average customer in a particular rate class 
uses each hour of the year. The estimates are based on data collected from statistically valid samples. 
The data file provides average load shapes for residential, large commercial and industrial rate 
classes. 

Only residential power demand profiles data with the attribute ‘R1 = RESIDENTIAL 
GENERAL USE’ are taken into consideration, as it falls in the scope of our study, the figure below 
shows it to be normalized to the peak value of the daily load's profiles of summer and winter 
seasons.  

4.2. Scenario Reduction Algorithm 
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A crucial step in the application of stochastic programming is to obtain a set of scenarios that 
realistically represent the distribution of the random parameters but is not too large. To establish a 
bus power demand profile, two main approaches are considered—a deterministic and a stochastic 
approach. The first one consists of simply choosing one daily profile and associating it with a specific 
feeder, while the latter approach takes a random profile from a reduced set of scenarios based on its 
probability of occurrence. 

A scenario reduction algorithm is conducted to deduce the most representative profiles and 
their occurrence probability while maintaining the statistical properties of the original set. 

In the literature, the commonly used distance between two scenarios is the difference between 
two corresponding scenario vectors [29], an alternative scenario technique was proposed in 
Reference [30] based on values of the objective functions of the single-scenario optimization problem 
for risk neutral and risk-averse electricity trading problems.  

The Kantorovich distance between two scenarios Si and Sj can be calculated according to a norm 
in the space of the parameter vectors as shown in Table 2 by:  

( )24 2

1
( , ) -

t
d S S S Si j it jtk

=

= ∑
 

 
with an initial probability 

1( )iP S
K

=  
, 

where K is the number of scenarios in the original set. 
The deletion process is performed iteratively, removing one scenario in each iteration, while 

updating the probability of the remaining scenarios; until a desired number of scenarios is 
maintained, the process can be summarized in the following steps:  

1) Determine the scenario ‘k’ to be eliminated from the original set, mathematically this 
scenario is determined as follows:  

{ }{ }¹ 1,... , ¹
( ) min ( , ) min ( ) min ( , )

n k
k k n k m n mS S mÎ k N m n

P S d S S P m d S S=   
 

2) Update the remaining load profile set and calculate the distance between each pair of 
scenarios.  

3) Update the probability of the nearest load profile Sn to the removed one Sk  
( ) ( ) ( )n n kP S P S P S= +   

Table 2. Distance matrices between all the scenarios. 

 1 2 3 … N 
1 0 0.48877 0.61957 … 0.2168 
2 0.48877 0 0.35714 … 0.6437 
3 0.61957 0.34375 0 … 0.77604 
. . . .  . 

N 0.2168 0.6437 0.77604 … 0 
The two original sets for summer and winter seasons are processed using the scenario reduction 

algorithm to extract the ten representative profiles shown in Figure 2. as well as their probabilities of 
occurrence for each scenario are plotted in Figure 3. 

(8) 

(7) 

(9) 

(10) 
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(a) Summer season (b) Winter season 

Figure 2. Scenarios representative subset for summer (a) and winter (b). 

  
(a) Summer season (b) Winter season 

Figure 3. Probability of occurrence of summer (a) and winter (b) reduced profiles. 

4.3. Genetic Algorithm for Scenario Generation  

Genetic algorithms are general-purpose search techniques based on principles inspired by the 
genetic and evolution mechanism observed in natural systems and population of living beings [35]. 
Different selection techniques have different strategies of computing the probability for a specific 
scenario to be selected, but all of them are based on the fact that the individual with the highest 
fitting values are more likely to be chosen. Proportional Roulette Wheel Selection (PRWS) is a 
genetic algorithm where scenarios are chosen in such a way the probability of selection is 
proportional to the fitness of the scenario. 

The fitness evaluation is performed by a function that assigns a fitness level to each member in 
the set. This fitness level is used to associate a probability of selection with each individual scenario. 

∑
k

k
i =1

F = P(i) 
 

where P(i) is the probability of ith representative load profile. 
After an optimal set is obtained, a daily profile can be generated using the PRWS. In each Monte 

Carlo simulation, we start by generating a random variable between 0 and 1 that plays the role of the 
pointer, in such a way that if the generated number is enclosed between the two fitness levels Fi-1 
and Fi the ith profile is chosen, to determine the load profile with the fitness value to be used. 

5. Methodology and Numerical Results 

The IEEE 69-bus test system has been considered in this study as a case study for the 
distribution grid; the one-line diagram of the radial network is shown in Figure 4. It is a 12.66 kV 
distribution system with 69 buses and 7 laterals and it has a total peak load of 3800 kW and 2690 
kVAr [36]. The complete load data of this system are provided in Reference [36].  

The Monte Carlo method is the general description for stochastic simulation using a random 
numbers sequence generator; it can be used to solve stochastic problems as well as deterministic 
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ones. The Monte Carlo simulation creates a fluctuating convergence process and there is no 
guarantee that a few more samples will definitely lead to a smaller error. 

However, the error bound or the confidence range decreases as the number of samples 
increases [37]. The coefficient of variance is often used as a convergence measure and stopping rule, 
the alternative is to use a specific number of iterations as a stopping rule. 

To assess the influence of the different integration levels of PHEVs, the Average and Maximum 
Voltage drop (AVD and MVD) indices are considered along with Maximum Daily Real Power 
Losses (MDRPL) during a one-day scenario. 

∑∑
T N

ref t,i

t =1 i =1 ref

b

V -V
VAVD =  

T * N  
 
  
 

ref t,i

ref

V -V
MVD = Max  

V
  

 
for t = 1, 2…, T and i = 1, 2…. Nb  

∑
bN

i
i =1

MDRPL = Max( Ploss )  
 

for t = 1, 2…..., T 
where Vref is the rated bus voltage, Vt, i is the node voltage at time t. Nb and Nl are the numbers of 

nodes and branches and T is the number of time intervals.  

 

Figure 4. One-line diagram of the IEEE 69 radial distribution test system. 

5.1. Case 1: “Uncontrolled Charging” 

In our first case study, we consider the dumb or the uncontrolled charging where there is no 
constraint on the charging time and the vehicle is allowed to charge instantly upon the plug-in or 
after a predefined time set by the owner and the charging stops only if the battery is full or the 
vehicle is used.  

At the beginning of the one-day scenario cycle, a daily load profile is randomly selected from 
the ten-representative belonging to a specific season (summer or winter) and assigned to a random 
node in the distribution grid. Next, the different parameters of the daily PHEV’s behavioral 
parameters are generated in the departure time, arrival time and SoC to daily commuted distance 
using the PDFs in Equations (1)–(3), which allow us to establish the daily PHEV owner schedule in 
advance and determine the location of PHEV at each time frame.  

PDF-based methods are inaccurate due to the correlation of different driving parameters. Since 
the correlation of driving parameters is ignored in this work, to maintain accuracy, we first use the 
PDF to generate the departure time and the daily traveled distance, then the arrival time is generated 
and compared with the departure time, if the generated arrival time falls after the departure time, 
we keep it otherwise we regenerate another one. In our simulation we assume the travelled distance 
from work to home is the same as from home to work in the morning. 

In case (1), there is no constraint and the PHEV owner can charge whenever it arrives at the 
destination (home/workplace). Thus, the power demand used to charge the PHEV can be estimated 

(12) 

(13) 

(14) 
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then added to the fixed residential load demand, the total residential power is distributed randomly 
on the grid feeders; the power flow analysis is performed to calculate the grid steady-state 
parameters and to assess the impact. 

Four levels of PHEV penetration starting from 0 vehicles, 100, 500 and 1000 PHEVs are 
integrated into the distribution system. It can be adjusted for any desired number of vehicles. 
Deterministic and Stochastic approaches are both verified which leads us to four distinctive cases: 

1- The Uncontrolled Deterministic Summer (UDS). 
2- The Uncontrolled Deterministic Winter (UDW). 
3- The Uncontrolled Stochastic Summer (USS). 
4- The Uncontrolled Stochastic Winter (USW). 

The steps followed in the simulation for the uncontrolled charging (deterministic and 
stochastic) case are showed in Figure 5. The results of the simulation depicted in Figure 6 show an 
increase in the average and maximum voltage drop as the number of integrated PHEVs increases 
with a higher impact in the summer season compared to the winter as the residential power demand 
are much higher during the first season. 

 
Figure 5. Uncontrolled charging scheme flowchart. 

Furthermore, the stochastic approach results in less troubling results and that can be related to 
the low probability of high-power demand profiles in the representing scenarios so they appear less 
in the simulation. 
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Maximum daily real power losses depicted in Figure 7 show a significant increase in the 
maximum power losses as the number of integrated PHEVs increases from 0 to 1000, while the 
stochastic approach results in fewer losses compared to the deterministic due to the fact that high 
demand scenarios are less probable to be taken in the simulation process.  

 
(a) Average 

 
(b) Maximum voltage drops 

Figure 6. Voltage drop of the distribution grid buses. 

 

Figure 7. Maximum total active power losses in the distribution grid lines. 

5.2. Case 2: ‘Controlled Charging’ 

In this charging technique, a constraint on the minimum voltage across the whole distribution 
grid was set, so before performing any charging the algorithm goes through the following steps: 

• It estimates the total residential power demand (household demand and the power demand 
to charge the EVs) and runs the power flow analysis. 

• Check for the state of charge of the electric vehicles and proceed to charge them following 
the rule “first came-first served”.  

• Before the charging demand is approved, another power flow analysis is performed to 
ensure the voltage profile is still within the margin of voltage prior to the charging power 
request. Otherwise, the charging is delayed to the next time-frame (i.e. temporal load 
shifting). 
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The proposed charging scheme flowchart is shown in Figure 8, while the simulation results of 
the second case of the presented study presented in Figures 9 and 10. 

Results illustrate that the applied controlling technique succeeded in reducing the maximum 
voltage drop and power losses in the distribution grid, and this reduction is much clear as the 
penetration of EVs is increased in the power system (from 0 to 1000 EVs in our study). 

Voltage levels for both approaches (probabilistic and stochastic) stayed in the tolerable range 
(0.95 to 1.05 as cited by the EN50160 standard) while meeting the PHEV owners charging 
requirements. Also, a noticeable decrease in the maximum total power losses in the distribution grid 
is achieved through this charging technique. 

One drawback of the proposed technique that we can mention is the long computational time, 
as the Monte Carlo simulation was performed for 1000 cycles to ensure the convergence of the 
system results and the need to check using the power flow analysis in each charging request.  

 
Figure 8. Controlled charging for the PHEV fleet. 

  
(a) Maximum voltage drops (b) Maximum power losses 

Figure 9. (a) Maximum voltage and (b) Maximum total power losses for controlled and uncontrolled 
charging using stochastic approach. 

Number of PHEVs

0 100 500 1000

M
ax

im
um

 V
ol

ta
ge

 D
ro

p

0.09

0.095

0.1

0.105 Summer Uncontrolled 
Summer Controlled 
Winter Uncontrolled 
Winter Controlled

Number of PHEVs

0 100 500 1000

M
ax

im
um

  T
ot

al
 P

ow
er

 L
os

se
s 

(k
W

)

220

260

300

330

Summer Uncontrolled 
Summer Controlled 
Winter Uncontrolled
Winter Controlled 



Electronics 2020, 9, 139 12 of 15 

 

  
(a) Maximum voltage drops (b) Maximum power losses 

Figure 10. (a) Maximum voltage and (b) Maximum total power losses for controlled and 
uncontrolled charging using deterministic approach. 

6. Conclusions 

Stochastic models for the daily travel and charging behavior of PHEV owners were established 
based on a real-life survey. Recordings for average daily power consumption were selected to 
generate random residential loads. The new model was used to more accurately estimate the power 
demand of each vehicle during the charging process. Voltage drop and line losses were monitored 
and used as assessment criteria. Numerical results show the challenging task of operating 
distribution systems under the high-expected penetration of electric vehicles in the near future. A 
controlling scheme to regulate the charging of EVs will mitigate this influence and may delay the 
need for a grid reinforcement, which will have a financial benefit for both EV owners and DSO. 
Exploring the new electric car technologies, including the BEVs and FCEV on the one hand and the 
bi-directional flow of energy between the grid and EV on the other hand, is the next step in this 
research. 
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Abbreviations  

The following abbreviations are used in this manuscript: 

BEV: battery electrical vehicles 
PHEV: Plug-in hybrid electric vehicles 
FCEV: Fuel Cell Electric Vehicles  
NHTS: National Household Travel Survey 
AER: All-electric range.  
AVD: Average Voltage Drop. 
MVD: Maximum Voltage Drop. 
MDRPL: Maximum Daily Real Power Losses. 
UDS: The Uncontrolled Deterministic Summer case. 
UDW: The Uncontrolled Deterministic Winter case. 
USS: The Uncontrolled Stochastic Summer case. 
USW: The Uncontrolled Stochastic Winter case. 
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Nomenclature 

tdep: Departure time  
µdep: The mean value of the departure time PDF  
σdep: The standard deviation of the departure time PDF 
tarr: Arrival time 
µarr: The mean value of the arrival time PDF  
σarr: The standard deviation of the arrival time PDF 
d: The daily travelled distance 
µd: The mean value of daily travelled distance PDF 
σd: The standard deviation of the daily travelled distance PDF 
SoC: State of Charge. 
N: The number of hours required to fully charge the battery from an empty state. 
D: Traveled distance. 
SoCreg: SoC recharged from the regenerative braking. 
Dk: The Kantorovich distance between two scenarios. 
Si: The Ith Scenario.  
K: the number of scenarios in the original set. 
Fk: fitness level to each member in the set. 
P(i): the probability of ith representative load profile. 
Vref: The rated bus voltage. 
Vt,i: The node voltage at time t. 
Nb: The numbers of nodes in the power system. 
Nl: The numbers of branches in the power system. 
T: The number of time intervals. 
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