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Abstract: Wireless location is a supporting technology in many application scenarios of wireless
communication systems. Recently, an increasing number of studies have been conducted
on range-based elliptical location in a variety of backgrounds. Specifically, the design and
implementation of position estimators are of great significance. The difficulties arising from
implementing a maximum likelihood estimator for elliptical location come from the nonconvexity
of the negative log-likelihood functions. The need for computational efficiency further enhances
the difficulties. Traditional algorithms suffer from the problems of high computational cost and
low initialization justifiability. On the other hand, existing closed-form solutions are sensitive to the
measurement noise levels. We recognize that the root of these drawbacks lies in an oversimplified
linear approximation of the nonconvex model, and accordingly design a maximum likelihood
estimator through semidefinite relaxation for elliptical location. We relax the elliptical location
problems to semidefinite programs, which can be solved efficiently with interior-point methods.
Additionally, we theoretically analyze the complexity of the proposed algorithm. Finally, we design
and carry out a series of simulation experiments, showing that the proposed algorithm outperforms
several widely used closed-form solutions at a wide range of noise levels. Extensive results under
extreme noise conditions verify the deployability of the algorithm.

Keywords: elliptical location; maximum likelihood estimation; weighted least-squares; quadratic
optimization; semidefinite relaxation; interior-point method

1. Introduction

During the deployment of powerful location-based applications such as enhanced 911 services,
asset management, and workflow automation, wireless location is a classical problem and has
attracted intensive research recently [1–6]. Technically, wireless location can be based on a variety
of different kinds of measurements, such as range [7], angle [8], energy [9], visible light [10,11],
or fingerprinting [12–14]. The common range-based measurements include time of arrivals
(TOAs) [15,16] and time difference of arrivals (TDOAs) [17,18]. TDOAs (or TOAs) are combined
to produce intersecting hyperbolic (or circular) lines from which the target location is determined.
In addition to these two measurement schemes, there is a less well-known range-based approach
called elliptical location [19–27]. In particular, in a wireless location system with multiple transmitters
and multiple receivers, the sum of each pair of transmitter-target range and target-receiver range
defines an ellipse, and the target resides on the intersection of all these ellipses.

Depending on whether the transmitters and receivers are synchronized in time, we have
the synchronous elliptical location (SEL) [20,23,24] and the asynchronous elliptical location
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(AEL) [19,21,22,25–27]. For more information on the differences between SEL and AEL, we refer
the reader to [28] and references therein. In particular, AEL has been employed in multistatic
sonar [21,22,26,27] and indoor location [25,29]. The asynchronous elliptical range measurement
between a transmitter and a receiver is the arrival time difference between the indirect signal
reflected/relayed from the target and the direct signal from the transmitter. The range measurements
can be obtained by auto-correlating the signals at a receiver, or by estimating the indirect and direct
arrival times with respect to a local receiver clock and subtracting them. After obtaining the range
measurements, AEL and SEL can be formalized as a parameter estimation problem. However, as we
will see in Section 2, this estimation problem is very challenging.

In designing the target position estimators, there is no essential differences between SEL and
AEL. In view of this fact, we do not distinguish synchronous signal models from asynchronous
ones when reviewing the estimation algorithms in the literature. Reference [23] employed the classic
spherical-interpolation (SI) [30] and spherical-intersection (SX) [31] methods. The localization accuracy
is not optimum in [23]. Reference [26] used Wiener filtering to combine the multiple cross fixes of
the ellipses. Reference [25] reformulated the elliptical location problem as a constrained least squares
problem and solved it with the method of Lagrange multipliers, resulting in an estimator whose
performance is close to the Cramér–Rao bound (CRB). It seems that [23,25,26] only considered the
location systems with one transmitter/receiver. Such an assumption is helpful for simplifying the
solution of the problem, but the algorithms designed under this assumption are not easy to extend to
the scenarios with multiple receivers and multiple transmitters.

More generally, for the elliptical location systems with multiple transmitters and multiple
receivers, many researchers [20,22,32,33] made significant exploration. Reference [33] handled the
problem through linearizing the measurement equations and searching iteratively. The solution
of [33] could be sensitive to the initialization and have the problem of divergence. On the other
hand, Reference [32] borrowed the idea of two-stage weighted least squares (WLS) [34] to attack the
problem of SEL, which can be easily generalized to AEL. Unfortunately, the solution in [32] is sensitive
to the measurement noise levels. More recently, Reference [21] transformed [22]’s four-stage WLS
method to a two-stage WLS (TS-WLS) one, and Reference [20] approximated the maximum likelihood
estimator (MLE) by the solution of a constrained WLS (CWLS) optimization problem. However,
currently proposed methods usually either cannot obtain good performance at high noise levels or
have local convergence problems, which may degrade their performance.

As an emerging technology, with its successful application in the field of signal processing [35–39],
convex optimization is widely used in the design and implementation of wireless location estimators.
Among various convex optimization techniques, semidefinite programming (SDP) can be solved
globally in polynomial time while providing an impressive modeling capability [40,41]. On the
other hand, owing to the nonconvex nature of the maximum likelihood estimation problems in
wireless locations, it is difficult to obtain their globally optimal solution efficiently without a good
initial estimate [42]. Instead of linearizing the likelihood functions simply, the introduction of
semidefinite constraints makes SDP a better choice for dealing with the nonconvex problems in wireless
locations. Researchers devised several kinds of SDP approaches to approximating the location problems
using energy/received signal strength (RSS) [43–45], angle of arrivals (AOAs) [46], TOAs [47–49],
or TDOAs/frequency difference of arrivals (FDOAs) [46,50–60]. In most cases, post-processing is
required to refine the SDP solutions. Specifically, typical tricks for post-processing are various methods
for further local search with an SDP solution as the starting point. Nevertheless, to the best of our
knowledge, SDP-based location algorithms with elliptical range measurements have not yet been
addressed in the literature.

In this work, we design an MLE for AEL, which is also ready for SEL. The optimization problem
involved in the original maximum likelihood estimation can be effectively transformed into an SDP
problem, which will be solved using an interior-point method. The main contributions of this article
are summarized as follows.
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1. We present the negative log-likelihood (NLL) function of the elliptical location estimation
problem with multiple transmitters and multiple receivers in a concise form, and then derive the
Cramér–Rao bound (CRB) of the problem. This is the theoretical basis for the feasibility analysis
of the problem.

2. We identify the NLL function minimization as a quadratic optimization problem with multiple
quadratic equality/inequality constraints and design its semidefinite relaxation.

3. We find the dual problem of the primal SDP problem and give the pseudo-code of the
interior-point primal-dual path-following algorithm. With these results, engineers can design
customized algorithms themselves, instead of relying on codes provided by mathematicians that
are not optimized for a specific problem.

4. We theoretically analyze the polynomial time complexity of the algorithm and experimentally
confirm that the proposed estimator attains the CRB approximately.

5. We cautiously verify the deployability of the algorithm by setting the measurement noise levels
far higher than what can be achieved by real systems. Simulation experiments with extreme
parameter settings are alternative to the costly field tests.

The rest of this paper is organized as follows. Section 2 provides the location scenario and
its observation model. Section 3 performs the CRB analysis for the elliptical location problem.
Section 4 presents the SDP-based location algorithm and its complexity analysis. Section 5
contains the simulation results and compares our algorithm with state-of-the-art ones, and Section 6
draws conclusions.

We shall use bold uppercase letter to denote a matrix and bold lowercase letter to denote a vector.
The notation M � 0 means that M is a positive semidefinite matrix, and v ≥ 0 means that each element
of v is non-negative. 1p×q is a p× q ones matrix, and Ip is an identity matrix of size p. The symbol ⊗ is
the Kronecker product operator. ‖v‖ is the Euclidean norm of v. cond(M) is the condition number
of M. diag(v) is the square diagonal matrix with the elements of vector v on the main diagonal.
B = blkdiag(M1, . . . , MN) is the block diagonal matrix created by aligning the matrices M1, . . . , MN
along the diagonal of B. If X and Y are symmetric, then 〈X, Y〉 is a Frobenius inner product of X and Y.
We use ρx,y as a shorthand for (x− y)/‖x− y‖.

2. Problem Formulation and Data Model

We are interested in a d-dimensional (d = 2 or d = 3) elliptical location scenario where the
transmitters and receivers are stationary. Let M be the number of transmitters and N be the number
of receivers. The position vectors of transmitters and receivers are ti and sj, for i = 1, 2, . . . , M
and j = 1, 2, . . . , N, which are available in practice. Let c be the known signal propagation speed.
The unknown position vector of the target of concern is denoted by uo. A typical location scenario for
a two-dimensional case is illustrated in Figure 1. The equations of the ellipses in Figure 1 are shown
in Equation (1). The target is located at the intersection of these ellipses.

The transmitter at ti radiates a signal and the receiver at sj observes the signal from direct
propagation (from ti to sj) and from indirect reflection of the target at uo (from ti to uo and then from
uo to sj). The ideal differential TOA measurement between the indirect path and direct path is

τo
i,j =

1
c
(
‖uo − ti‖+ ‖uo − sj‖ − ‖ti − sj‖

)
, i = 1, 2, . . . , M, j = 1, 2, . . . , N. (1)

Obviously, the graph of uo is an ellipse with foci ti and sj for each pair of i and j.
In an actual elliptical location system, we have the measurements

τi,j = τo
i,j + ni,j, i = 1, 2, . . . , M, j = 1, 2, . . . , N, (2)
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where ni,j is the measurement noise. For notation simplicity, we collect τi,j to form a measurement
vector. For the transmitter at ti(i = 1, 2, . . . , M), all the related measurements can be collected in
a column vector τi = [τi,1, τi,2, . . . , τi,N ]

T. Further, the measurements related to all the transmitters can

be denoted as τ = [τT
1 , τT

2 , · · · , τT
M]

T. It is customary to assume that

τi ∼ N (τo
i , Qτi ), i = 1, 2, . . . , M, (3)

where τo
i is the mean vector of τi and Qτi is a known covariance matrix of τi [28]. Furthermore,

τ ∼ N (m, V), (4)

where m = [τo
1

T, τo
2

T, . . . , τo
M

T]
T

is the mean vector of τ and V is the covariance matrix of τ. V =

blkdiag(Qτ1 , Qτ2 , . . . , QτM ) if we further assume that the measurements across distinct transmitters
are uncorrelated. So far we get the overall data model of (4) for AEL. Omitting the term ‖ti − sj‖ in (1)
yields the data model for SEL. The problem we are facing is to design, implement and evaluate an
estimator for the unknown target position vector uo in the data model.

target

transmitters

receivers

Figure 1. A two-dimensional elliptical location scenario.

3. Cramér–Rao Bound

We now give the CRB for the estimation problem proposed in Section 2. The CRB can serve as the
benchmark for our proposed estimator in Section 4. The CRB gives a lower bound for the mean square
error (MSE) matrix of an unbiased estimator of unknown parameter vector uo [61]. The square root of
the trace of CRB matrix has the physical meaning that it is the minimum possible root-mean-square
error (RMSE) for positioning the target unbiasedly. Evaluation of CRB is very useful because it not
only gives us a performance benchmark, but also provides us insight into the system design.

Because the observation model (4) is a Gaussian model, it is easy to get the CRB for the estimation
of uo as follows [61].

CRB =

[(
∂m
∂uo

)T
V−1 ∂m

∂uo

]−1

. (5)

For numerical computation using (5), ∂m/∂uo is needed. The details are given below.
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∂m
∂uo =


∂τo

1/∂uo

∂τo
2/∂uo

...
∂τo

M/∂uo

 , (6)

where

∂τo
i

∂uo =

[(
∂τo

i,1
∂uo

)T
,
(

∂τo
i,2

∂uo

)T
, . . . ,

(
∂τo

i,N
∂uo

)T
]T

,

∂τo
i,j

∂uo =
1
c

(
ρuo ,ti + ρuo ,sj

)T
,

for i = 1, 2, . . . , M and j = 1, 2, . . . , N.

4. Design of the Estimator

Maximum likelihood estimation is overwhelmingly the most popular approach to obtaining
practical estimators. Our design procedure of MLE based on semidefinite relaxation (SDR) technique
is divided into three steps. We first establish a quadratic optimization problem with multiple quadratic
equality/inequality constraints based on the maximum likelihood criterion. In the second step we
rewrite the quadratic optimization problem using Frobenius inner product. Finally, we drop the
nonconvex constraints in the problem.

4.1. Formulation of MLE as a Quadratic Optimization Problem

Under the Gaussian noise assumption in (4) and with the matrix reformulation of (1), the NLL
function of the estimation problem is

`(u) = (A x− b)TV−1(A x− b) + ξ1, (7)

where
vi =

1
c
[‖zi − zM+1‖, . . . , ‖zi − zM+N‖]T, i = 1, 2, . . . , M,

x =
1
c
[‖u− z1‖, ‖u− z2‖, . . . , ‖u− zM+N‖]T,

A = [IM ⊗ 1N×1, 1M×1 ⊗ IN ],

v = [vT
1 , vT

2 , . . . , vT
M]

T
,

b = v + τ.

In (7), u is the optimization variable and ξ1 does not depend on u. Here we write zi = ti for
i = 1, 2, . . . , M and zi = si−M for i = M + 1, M + 2, . . . , M + N. The NLL function is nonconvex with
respect to the optimization variable u.

In the MLE sense, by introducing auxiliary optimization variable x, the estimator can be considered
as the optimal solution of the constrained optimization problem as below.

minimize u,x (Ax− b)TV−1(Ax− b), (8a)

subject to x =
1
c
[‖u− z1‖, ‖u− z2‖, . . . , ‖u− zM+N‖]T. (8b)

The objective function (8a) can be expanded as

xTATV−1Ax− 2bTV−1Ax + ξ2,
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where ξ2 = bTV−1b is a constant. Then the original problem (8) can be rewritten as follows.

minimize u,x xTATV−1Ax− 2bTV−1Ax, (9a)

subject to x =
1
c
[‖u− z1‖, ‖u− z2‖, . . . , ‖u− zM+N‖]T. (9b)

It is ready to recognize the problem (9) as a quadratic optimization problem with multiple
quadratic equality constraints [38,62]. While the objective function (9a) is convex, the constraint
functions (9b) are nonconvex. In short, the MLE involves a nonconvex optimization problem. It is well
known that computing the MLE via a grid search results in computationally prohibitive solutions and
Gauss-Newton implementation of the MLE requires carefully chosen initial guesses [61]. For such
a computationally difficult problem, our strategy is to approximate the problem (9) to a convex one
using SDR technique. The related SDP can be solved in a polynomial complexity using interior-point
methods without causing the risk of local convergence [63,64].

4.2. Some Equivalent Transformation

In order to introduce semidefinite constraints, some necessary equality transformations are
made in this subsection. Rewriting the objective function (9a) in matrix form and reformulating the
constraints (9b), the problem (9) is recast as

minimize u,x

[
xT 1

]
F
[
xT 1

]T
, (10a)

subject to xi ≥ 0, i = 1, 2, . . . , M + N, (10b)

x2
i =

1
c2

[
uT 1

]
Gi

[
uT 1

]T
, i = 1, 2, . . . , M + N, (10c)

where

F =

[
ATV−1A −ATV−Tb
−bTV−1A 0

]
,

Gi =

[
Id −zi
−zT

i ‖zi‖2

]
, i = 1, 2, . . . , M + N. (11)

Note that the parameter matrices F and Gi are positive semidefinite. Then we introduce two new
matrix variables U and X, reformulating the problem (10) as

minimize u,x,U,X 〈F, X̃〉, (12a)

subject to U = uuT, (12b)

X = xxT, (12c)

xi ≥ 0, i = 1, 2, . . . , M + N, (12d)

Xi,i =
1
c2 〈Gi, Ũ〉, i = 1, 2, . . . , M + N, (12e)

where

X̃ =

[
X x
xT 1

]
, Ũ =

[
U u
uT 1

]
. (13)

We emphasize that by now the problem (12) is still equivalent to the original MLE problem (8),
but not a convex one.
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4.3. Semidefinite Relaxation

In this subsection, we relax the problem (12) to an SDP problem. The semidefinite programs can be
solved almost as easily as linear programs with interior-point methods [64] and several advanced SDP
solvers are readily available [65]. By the Schur complement condition for positive semidefiniteness [66],

U = uuT ⇔ Ũ � 0 has rank 1, (14)

X = xxT ⇔ X̃ � 0 has rank 1. (15)

In view of (14) and (15), if the constraints (12b) and (12c) in (12) are relaxed to drop the (nonconvex)
rank-one constraints, then we obtain the following (convex) SDR problem.

minimize Z 〈F, X̃〉, (16a)

subject to Ũ � 0, X̃ � 0, x ≥ 0, (16b)

Ũd+1,d+1 = 1, X̃M+N+1,M+N+1 = 1, (16c)

X̃M+N+1,i = xi, i = 1, 2, . . . , M + N, (16d)

X̃i,i =
1
c2 〈GiŨ〉, i = 1, 2, . . . , M + N, (16e)

where Z = blkdiag(X̃, Ũ, diag(x)) is the primal variable.
Now note that the problem (16) is an approximation of the original problem (8), but a more

tractable one. We call the minimizer (if unique) of the SDP problem (16) as an SDR solution to the
original elliptical location problem.

4.4. Semidefinite Programming Solver

In order to design an efficient numerical optimization algorithm, we first find the dual problem of
the primal problem (16). By the conic duality theorem [41], the dual of problem (16) is as follows.

maximize S,y y1 + y2, (17a)

subject to

[
−c2 diag(β) α/2

αT/2 y1

]
+ S1 = F, (17b)[

0d×d 0
0T y2

]
+

M+N

∑
i=1

βiGi + S2 = 0, (17c)

− α + s = 0, (17d)

S � 0, (17e)

where y = [y1, y2, αT, βT]
T

and S = blkdiag(S1, S2, diag(s)) are the dual variables. The lengths of
vectors α and β are both (M + N).

From the perspective of optimization theory, the rest of the work is to reduce the duality gap of
primal-dual problem pairs (16) and (17) to find the optimal solution. We will solve the primal-dual
problem pairs with an interior-point primal-dual path-following method.

To develop efficient interior-point algorithms, the key is to find suitable barrier functions.
With an appropriate choice of barrier functions, the interior-point algorithm admits a polynomial time
implementation. We choose the canonical barrier functions for our problems (16) and (17), and then
the parameter of barrier is n = 2(M + N + 1) + d [41]. The barrier functions are added to the objective
functions, forming primal and dual barrier problems. Given a barrier weight parameter µ > 0,
the central path associated with these barrier problems is defined as the set of points

CSDP(µ) = {(Z, S, y) strictly feasible in (16) and (17) | ZS = µI}, µ > 0. (18)
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Now all we need for obtaining good primal and dual approximate solutions is to trace fast the
central path (18). In practice, path following (i.e., computing primal-dual search directions) can be
implemented in a moderate (few tens) number of iterations, each iteration reducing to assembling and
solving a Newton system of linear equations resulted from linearization of (19) below.

the equality constraints in the primal problem (16)

the equality constraints in the dual problem (17)

ZS = µI

Z � 0, S � 0.

(19)

In summary, our algorithm is shown in Algorithm 1, where (Z0, S0, y0) are the initial values
of primal and dual variables, and ε > 0 is a tolerance parameter for balancing the accuracy and
speed. One advantage of using SDR technique is that the convergence of the algorithm is guaranteed,
regardless of the initial values.

Algorithm 1 Primal-dual path-following interior-point method.

1: procedure PD-PF-IP( Z0, S0, y0, ε > 0 )
2: Z← Z0, S← S0, y← y0

3: µ← 〈Z, S〉/n
4: while 〈Z, S〉 > ε do
5: Compute primal-dual search directions ∆y, ∆S and ∆Z using Newton’s method on (19)
6: Z← Z + ∆Z, S← S + ∆S, y← y + ∆y, µ← 〈Z, S〉/n
7: end while
8: end procedure

Using (13), the minimizer of (16) (i.e., the SDR solution) contains an estimate of target location uo.
Strictly speaking, if rank(X̃) = rank(Ũ) = 1 holds, we do not need to further refine the SDR solution.
Otherwise, some post-processing techniques are required to improve the accuracy of the estimate [45].
Fortunately, our experiments in Section 5 show that our algorithms require little post-processing.

4.5. Complexity Analysis

Now we give a complexity analysis to show that our algorithm complexity is controllable
as the numbers of transmitters and receivers increase. Since our estimator is implemented using
the interior-point method, its complexity analysis can be based on some established theoretical
results [40,41]. The worst-case Newton complexity of an interior-point primal-dual path-following
method is O(1)n

1
2 ln 1

ε .
We should also know how heavy a Newton step is, i.e., what is its arithmetic cost of each iteration.

We count the numbers of semidefinite matrix blocks and equality constraints in the SDP problem (16).
In total, there is one semidefinite matrix block of size (M + N + 1), one semidefinite matrix block of
size (d + 1), and (M + N) non-negative scalar variables. Furthermore, there are 2(M + N + 1) equality
constraints on these matrix/scalar variables. When (M + N + 1)� d, the flop count in each Newton
step is approximately 6(M + N + 1)4.

In conclusion, the total complexity of our algorithm is on the order of (M + N + 1)4.5 ln 1
ε .

5. Results and Discussion

We conducted a series of Monte Carlo simulations to evaluate the proposed SDR estimator
comprehensively. Generally, when using convex relaxation techniques for parameter estimation,
three aspects of the estimator are of concern: What is the statistical performance of the estimator,
What is the degree of relaxation of the related optimization model, and whether the relaxed solution
needs post-processing.
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1. To ascertain the statistical performance of the proposed SDR estimator, we compared it with
several closed-form methods recently proposed, i.e., Yang’s TS-WLS method [21] and Amiri’s
CWLS method [20]. For a given estimator û of the unknown parameter uo, its performance is
measured by the empirical bias and RMSE, which are defined as follows.

bias =

∥∥∥∥∥ 1
L

L

∑
`=1

u` − uo

∥∥∥∥∥ ,

RMSE =

√√√√ 1
L

(
L

∑
`=1
‖u` − uo‖2

)
,

where L is the number of Monte Carlo simulations and u` is the `-th random realization of û.
In our following experiments, we set L = 104 and compared the biases and RMSEs of all these
estimators at different noise levels.

2. To measure the tightness of the relaxed optimization model in (16), we recorded the condition
numbers of the optimal solutions of X̃ and Ũ in (17) at different noise levels. The motivation
is that if the condition number of a matrix is greater than 104, then it can be approximated as
a rank-1 matrix [44].

3. To verify whether the SDR solution needs post-processing, we checked the performance
improvement gifted by post-processing using local search under different noise conditions.
We used the SDR solution as the initial point for the commercial optimization solver
MATLAB function lsqnonlin, and the algorithm for lsqnonlin was set as ‘trust-region-reflective‘.
Our estimator with post-processing is simply referred to as SDR-LS.

5.1. Localization Scenarios

Our experimental design was as follows. We used M = 3 transmitters and N = 5 receivers to
determine the position uo of a stationary object. Their positions are given in Table 1.

Table 1. Positions of transmitters and receivers in Monte Carlo experiments.

Transmitter/Receiver No. Position Coordinates (m)

t1 [1500, 1500]T

t2 [−900, 4000]T

t3 [−3000,−4000]T

s1 [−1000, 3000]T

s2 [2500,−500]T

s3 [−3000, 1000]T

s4 [2000,−4000]T

s5 [−2000,−2000]T

The location geometry was the same as the one in [22] and depicted in Figure 2.
The signal propagation speed was c = 1500 m/s. The covariance matrix of the observation vector

τi related to the i-th transmitter was Qτi = σ2
τ R for i = 1, 2, . . . , M, where στ was a given positive

constant, and R = 1
2 (1N×N + IN) [34].
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Figure 2. Location geometry for Monte Carlo experiments.

5.2. Visualization of Cramér–Rao Bound and Selection of Testing Points

We visualized the CRB given by (5), which sets a lower bound for the MSE of our estimation
problem proposed in Section 2. We selected two representative positions as test points according to the
square root of the trace of CRB matrix. Based on these considerations, we plotted the contours of the
square root of the trace of CRB matrix for στ = 0.2 as in Figure 3.

Figure 3. Contours of square root of trace of a Cramér–Rao bound (CRB) matrix for στ = 0.2.

The positioning difficulty of the target at different locations indicated by the contours in Figure 3
is consistent with our intuitive experience. According to the contours, we selected easier point
[0,−1000] m (with the minimum square root of trace of CRB matrix) and harder point [−5000, 5000] m
(with the maximum square root of trace of CRB matrix) as the two representative test points for further
in-depth comparative study in next subsection.
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5.3. Results on the Two Representative Test Points

In order to examine the performance of various algorithms at different noise levels, we increased
measurement noise level στ from 0.01 s to 0.1 s with a step size of 0.01 s in the following
simulation experiments.

5.3.1. Results on Easier Test Point

For this easier test point uo = [0,−1000]T m, the biases and RMSEs produced by different
estimators at different noise levels are shown in Figures 4 and 5.
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Figure 4. Biases of various estimators for uo = [0,−1000]T m at different noise levels.
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Figure 5. Root-mean-square errors (RMSEs) of various estimators for uo = [0,−1000]T m at different
noise levels.

It can be seen that when the noise level increases, there is a sharp increase in the bias of CWLS
estimator, while the other three algorithms control the bias very well over a wide range of noise levels.
Furthermore, a closer look at Figure 4 reveals that the bias of TS-WLS estimator is still moderately
larger than that of SDR estimator and SDR-LS estimator. We believe that these findings are due to the
following two facts. First, the square terms of observation errors are ignored in the models of CWLS
estimator and TS-WLS estimator. In addition, CWLS estimator involves solving high-order polynomial
equations with numerical instability.

Due to their excellent biases, we limited our attention to SDR estimator and SDR-LS estimator.
Figure 5 shows that the RMSEs of both SDR estimator and SDR-LS estimator agree well with CRBs
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at all noise levels. This implies that our SDR estimator has achieved the theoretically optimal RMSE
performance at this test point and it does not need to use local search for post-processing.

To further confirm that the SDR model is tight enough, we showed the maxima and minima of
the condition numbers of optimal X̃ and Ũ in the Monte Carlo experiments at different noise levels in
Figure 6. As can be seen, the condition numbers are much larger than the critical value of 104 proposed
by [44].
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Figure 6. Maxima and minima of condition numbers of X̃ and Ũ in the Monte Carlo experiments for
uo = [0,−1000]T m at different noise levels.

As a practical guideline for deploying our SDR estimator in actual systems, we drew the scatter
plots of its Monte Carlo random realizations at even higher noise levels in Figure 7. It can be seen that,
no matter how high the noise level is, the average value of a huge large number of estimation results is
highly consistent with the actual coordinates of the target.
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Figure 7. Scatter plots of semidefinite relaxation (SDR) estimator for uo = [0,−1000]T m with the
standard deviation of measurement noise from 0.08 s to 0.32 s. The red crosses are the markers of
uo = [0,−1000]T m.
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5.3.2. Results on Harder Test Point

For this harder test point uo = [−5000, 5000]T m, the biases and RMSEs produced by different
estimators at different noise levels are shown in Figures 8 and 9.
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Figure 8. Biases of various estimators for uo = [−5000, 5000]T m at different noise levels.

As shown in Figure 8, the bias of SDR-LS estimator is the smallest, and that of CWLS estimator
is the largest. What is worth noting in Figure 8 is that at all noise levels, SDR estimator’s bias is
slightly larger than that of SDR-LS estimator. Furthermore, a similar situation was observed when
we examined the RMSEs in Figure 9. It must be pointed out that SDR-LS estimator’s RMSE agrees
well with CRB here. These results suggest that SDR estimator provides a reliable initial solution for
local search, and local search based on this initial solution achieves theoretically optimal performance.
Since SDR estimator is near optimal, we suggest that the practitioners decide whether post-processing
is required based on time requirements and accuracy requirements in practice.
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Figure 9. RMSEs of various estimators for uo = [−5000, 5000]T m at different noise levels.

As in Figure 6 for the easier test point, Figure 10 confirms from the perspective of condition
numbers that the SDR model is also tight enough at this harder test point.
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Figure 10. Maxima and minima of condition numbers of X̃ and Ũ in the Monte Carlo experiments for
uo = [−5000, 5000]T m at different noise levels.

As with the easier test point, to ensure the reliability of the actual deployment, we drew the scatter
plots of SDR estimator’s Monte Carlo random realizations at even higher noise levels in Figure 11.
Not surprisingly, increasing the standard deviation of the measurement noise did not cause significant
deviations in the position estimation results.

-5200 -5000 -4800

4800

5000

5200

-5500 -5000 -4500

4600

4800

5000

5200

5400

-5500 -5000 -4500

4500

5000

5500

-6000 -5000 -4000

4000

4500

5000

5500

6000

Figure 11. Scatter plots of SDR estimator for uo = [−5000, 5000]T m with the standard deviation of
measurement noise from 0.08 s to 0.32 s. The red crosses are the markers of uo = [−5000, 5000]T m.

6. Conclusions

This work develops an SDP-based estimator (i.e., SDR estimator) for elliptical location problems
with multiple transmitters and multiple receivers, implementing advanced optimization techniques in
critical signal processing in wireless communication systems. The performance degradation of the
SDR estimator is almost negligible compared with the statistical performance of the optimal estimator.
Its performance is more pronounced at higher noise levels, ensuring its deployability. As with the
other closed-form algorithms from the literature, the SDR solution has neither the difficulties in
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initialization, nor the problems of divergence and local convergence. In particular, the SDR solution is
computationally efficient owing to the polynomial complexity of the interior-point method.

Based on the modelling flexibility of SDP, our future efforts are to extend the algorithm in this
paper to scenarios (1) where the locations of transmitters or receivers are uncertain and (2) where
signal propagation paths involve non-line-of-sight interference.
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The following abbreviations are used in this manuscript:

AEL Asynchronous Elliptical Location
AOA Angle of Arrival
CRB Cramér–Rao Bound
CWLS Constrained Weighted Least-squares
FDOA Frequency Difference of Arrival
MLE Maximum Likelihood Estimator
MSE Mean Square Error
NLL Negative Log-likelihood
RMSE Root-mean-square Error
RSS Received Signal Strength
SDP Semidefinite Programming
SDR Semidefinite Relaxation
SEL Synchronous Elliptical Location
SI Spherical-interpolation
SX Spherical-intersection
TDOA Time Difference of Arrival
TOA Time of Arrival
TS-WLS Two-stage Weighted least-squares
WLS Weighted Least-squares

References

1. Landolsi, M.A.; Khan, H.R.; Al-Ahmari, A.S.; Muqaibel, A.H. On the performance of wireless sensor network
time difference of arrival localization under realistic interference and timing estimation errors. Int. J. Distrib.
Sens. Netw. 2019, 15, 1–15, doi:10.1177/1550147719832537. [CrossRef]

2. Sun, Y.; Ho, K.C.; Wan, Q. Solution and analysis of TDOA localization of a near or distant source in closed
form. IEEE Trans. Signal Process. 2019, 67, 320–335, doi:10.1109/tsp.2018.2879622. [CrossRef]

3. Wang, T.; Hua, W.; Ke, W. A two-step sequential method for device-free localization using wireless sensor
networks. Int. J. Distrib. Sens. Netw. 2019, 15, 1–14, doi:10.1177/1550147719832817. [CrossRef]

4. Zuo, W.; Xin, J.; Liu, W.; Zheng, N.; Ohmori, H.; Sano, A. Localization of near-field sources based
on linear prediction and oblique projection operator. IEEE Trans. Signal Process. 2019, 67, 415–430,
doi:10.1109/tsp.2018.2883034. [CrossRef]

5. Otim, T.; Díez, L.E.; Bahillo, A.; Lopez-Iturri, P.; Falcone, F. Effects of the body wearable sensor position on
the UWB localization accuracy. Electronics 2019, 8, 1351, doi:10.3390/electronics8111351. [CrossRef]

https://doi.org/10.1177/1550147719832537
http://dx.doi.org/10.1177/1550147719832537
https://doi.org/10.1109/tsp.2018.2879622
http://dx.doi.org/10.1109/TSP.2018.2879622
https://doi.org/10.1177/1550147719832817
http://dx.doi.org/10.1177/1550147719832817
https://doi.org/10.1109/tsp.2018.2883034
http://dx.doi.org/10.1109/TSP.2018.2883034
https://doi.org/10.3390/electronics8111351
http://dx.doi.org/10.3390/electronics8111351


Electronics 2020, 9, 128 16 of 18

6. Hall, D.L.; Narayanan, R.M.; Jenkins, D.M. SDR based indoor beacon localization using 3D probabilistic
multipath exploitation and deep learning. Electronics 2019, 8, 1323, doi:10.3390/electronics8111323.
[CrossRef]

7. Mendrzik, R.; Wymeersch, H.; Bauch, G.; Abu-Shaban, Z. Harnessing NLOS components for position
and orientation estimation in 5G millimeter wave MIMO. IEEE Trans. Wirel. Commun. 2019, 18, 93–107,
doi:10.1109/twc.2018.2877615. [CrossRef]

8. Nguyen, N.H.; Dogancay, K. Closed-form algebraic solutions for angle-of-arrival source localization with
Bayesian priors. IEEE Trans. Wirel. Commun. 2019, 18, 3827–3842, doi:10.1109/twc.2019.2918516. [CrossRef]

9. Liu, M.; Ma, L.; Wang, N.; Zhang, Y.; Yang, Y.; Wang, H. Passive multiple target indoor localization based on
joint interference cancellation in an RFID system. Electronics 2019, 8, 426, doi:10.3390/electronics8040426.
[CrossRef]

10. Zhou, B.; Liu, A.; Lau, V. Joint user location and orientation estimation for visible light communication
systems with unknown power emission. IEEE Trans. Wirel. Commun. 2019, 18, 5181–5195,
doi:10.1109/twc.2019.2934107. [CrossRef]

11. Tran, H.Q.; Ha, C. Fingerprint-based indoor positioning system using visible light communication—A novel
method for multipath reflections. Electronics 2019, 8, 63, doi:10.3390/electronics8010063. [CrossRef]

12. Sinha, R.S.; Hwang, S.H. Comparison of CNN applications for RSSI-based fingerprint indoor localization.
Electronics 2019, 8, 989, doi:10.3390/electronics8090989. [CrossRef]

13. Li, J.; Gao, X.; Hu, Z.; Wang, H.; Cao, T.; Yu, L. Indoor localization method based on regional division with
IFCM. Electronics 2019, 8, 559, doi:10.3390/electronics8050559. [CrossRef]

14. Haider, A.; Wei, Y.; Liu, S.; Hwang, S.H. Pre- and post-processing algorithms with deep learning classifier
for Wi-Fi fingerprint-based indoor positioning. Electronics 2019, 8, 195, doi:10.3390/electronics8020195.
[CrossRef]

15. Xu, C.; Ji, M.; Qi, Y.; Zhou, X. MCC-CKF: A distance constrained Kalman filter method for indoor TOA
localization applications. Electronics 2019, 8, 478, doi:10.3390/electronics8050478. [CrossRef]

16. Aditya, S.; Dhillon, H.S.; Molisch, A.F.; Buehrer, R.M.; Behairy, H.M. Characterizing the impact of SNR
heterogeneity on time-of-arrival-based localization outage probability. IEEE Trans. Wirel. Commun. 2019,
18, 637–649, doi:10.1109/twc.2018.2883726. [CrossRef]

17. Wang, G.; Ho, K.C. Convex relaxation methods for unified near-field and far-field TDOA-based localization.
IEEE Trans. Wirel. Commun. 2019, 18, 2346–2360, doi:10.1109/twc.2019.2903037. [CrossRef]

18. Yan, J.; Tiberius, C.C.J.M.; Janssen, G.J.M.; Teunissen, P.J.G.; Bellusci, G. Review of range-based positioning
algorithms. IEEE Aerosp. Electron. Syst. Mag. 2013, 28, 2–27, doi:10.1109/maes.2013.6575420. [CrossRef]

19. Zhang, Y.; Ho, K.C. Multistatic localization in the absence of transmitter position. IEEE Trans. Signal Process.
2019, 67, 4745–4760, doi:10.1109/tsp.2019.2929960. [CrossRef]

20. Amiri, R.; Behnia, F.; Sadr, M.A.M. Exact solution for elliptic localization in distributed MIMO radar systems.
IEEE Trans. Veh. Technol. 2018, 67, 1075–1086, doi:10.1109/tvt.2017.2762631. [CrossRef]

21. Yang, L.; Yang, L.; Ho, K.C. Moving target localization in multistatic sonar by differential delays and Doppler
shifts. IEEE Signal Process. Lett. 2016, 23, 1160–1164, doi:10.1109/lsp.2016.2582043. [CrossRef]

22. Rui, L.; Ho, K.C. Efficient closed-form estimators for multistatic sonar localization. IEEE Trans. Aerosp.
Electron. Syst. 2015, 51, 600–614, doi:10.1109/taes.2014.140482. [CrossRef]

23. Malanowski, M.; Kulpa, K. Two methods for target localization in multistatic passive radar. IEEE Trans.
Aerosp. Electron. Syst. 2012, 48, 572–580, doi:10.1109/taes.2012.6129656. [CrossRef]

24. Gogineni, S.; Nehorai, A. Target estimation using sparse modeling for distributed MIMO radar. IEEE Trans.
Signal Process. 2011, 59, 5315–5325, doi:10.1109/tsp.2011.2164070. [CrossRef]

25. Zhou, Y.; Law, C.L.; Guan, Y.L.; Chin, F. Indoor elliptical localization based on asynchronous UWB range
measurement. IEEE Trans. Instrum. Meas. 2011, 60, 248–257, doi:10.1109/tim.2010.2049185. [CrossRef]

26. Simakov, S. Localization in airborne multistatic sonars. IEEE J. Ocean. Eng. 2008, 33, 278–288,
doi:10.1109/joe.2008.927916. [CrossRef]

27. Sandys-Wunsch, M.; Hazen, M.G. Multistatic localization error due to receiver positioning errors. IEEE J.
Ocean. Eng. 2002, 27, 328–334, doi:10.1109/joe.2002.1002488. [CrossRef]

28. Rui, L.; Ho, K.C. Elliptic localization: performance study and optimum receiver placement. IEEE Trans.
Signal Process. 2014, 62, 4673–4688, doi:10.1109/tsp.2014.2338835. [CrossRef]

https://doi.org/10.3390/electronics8111323
http://dx.doi.org/10.3390/electronics8111323
https://doi.org/10.1109/twc.2018.2877615
http://dx.doi.org/10.1109/TWC.2018.2877615
https://doi.org/10.1109/twc.2019.2918516
http://dx.doi.org/10.1109/TWC.2019.2918516
https://doi.org/10.3390/electronics8040426
http://dx.doi.org/10.3390/electronics8040426
https://doi.org/10.1109/twc.2019.2934107
http://dx.doi.org/10.1109/TWC.2019.2934107
https://doi.org/10.3390/electronics8010063
http://dx.doi.org/10.3390/electronics8010063
https://doi.org/10.3390/electronics8090989
http://dx.doi.org/10.3390/electronics8090989
https://doi.org/10.3390/electronics8050559
http://dx.doi.org/10.3390/electronics8050559
https://doi.org/10.3390/electronics8020195
http://dx.doi.org/10.3390/electronics8020195
https://doi.org/10.3390/electronics8050478
http://dx.doi.org/10.3390/electronics8050478
https://doi.org/10.1109/twc.2018.2883726
http://dx.doi.org/10.1109/TWC.2018.2883726
https://doi.org/10.1109/twc.2019.2903037
http://dx.doi.org/10.1109/TWC.2019.2903037
https://doi.org/10.1109/maes.2013.6575420
http://dx.doi.org/10.1109/MAES.2013.6575420
https://doi.org/10.1109/tsp.2019.2929960
http://dx.doi.org/10.1109/TSP.2019.2929960
https://doi.org/10.1109/tvt.2017.2762631
http://dx.doi.org/10.1109/TVT.2017.2762631
https://doi.org/10.1109/lsp.2016.2582043
http://dx.doi.org/10.1109/LSP.2016.2582043
https://doi.org/10.1109/taes.2014.140482
http://dx.doi.org/10.1109/TAES.2014.140482
https://doi.org/10.1109/taes.2012.6129656
http://dx.doi.org/10.1109/TAES.2012.6129656
https://doi.org/10.1109/tsp.2011.2164070
http://dx.doi.org/10.1109/TSP.2011.2164070
https://doi.org/10.1109/tim.2010.2049185
http://dx.doi.org/10.1109/TIM.2010.2049185
https://doi.org/10.1109/joe.2008.927916
http://dx.doi.org/10.1109/JOE.2008.927916
https://doi.org/10.1109/joe.2002.1002488
http://dx.doi.org/10.1109/JOE.2002.1002488
https://doi.org/10.1109/tsp.2014.2338835
http://dx.doi.org/10.1109/TSP.2014.2338835


Electronics 2020, 9, 128 17 of 18

29. Monica, S.; Bergenti, F. Hybrid indoor localization using WiFi and UWB technologies. Electronics 2019,
8, 334, doi:10.3390/electronics8030334. [CrossRef]

30. Smith, J.O.; Abel, J.S. Closed-form least-squares source location estimation from range-difference
measurements. IEEE Trans. Acoust. Speech Signal Process. 1987, 35, 1661–1669, doi:10.1109/tassp.1987.1165089.
[CrossRef]

31. Schau, H.; Robinson, A. Passive source localization employing intersecting spherical surfaces from
time-of-arrival differences. IEEE Trans. Acoust. Speech Signal Process. 1987, 35, 1223–1225,
doi:10.1109/tassp.1987.1165266. [CrossRef]

32. Einemo, M.; So, H.C. Weighted least squares algorithm for target localization in distributed MIMO radar.
Signal Process. 2015, 115, 144–150, doi:10.1016/j.sigpro.2015.04.004. [CrossRef]

33. Godrich, H.; Haimovich, A.M.; Blum, R.S. Target localization accuracy gain in MIMO radar-based systems.
IEEE Trans. Inf. Theory 2010, 56, 2783–2803, doi:10.1109/tit.2010.2046246. [CrossRef]

34. Chan, Y.T.; Ho, K.C. A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process.
1994, 42, 1905–1915, doi:10.1109/78.301830. [CrossRef]

35. Wang, Q.; Li, T.; Feng, R.; Yang, C. An efficient large resource-user scale SCMA codebook design method.
IEEE Commun. Lett. 2019, 23, 1787–1790, doi:10.1109/lcomm.2019.2929766. [CrossRef]

36. Jiang, Y.; Zou, Y.; Guo, H.; Tsiftsis, T.A.; Bhatnagar, M.R.; de Lamare, R.C.; Yao, Y.D. Joint power and
bandwidth allocation for energy-efficient heterogeneous cellular networks. IEEE Trans. Commun. 2019,
67, 6168–6178, doi:10.1109/tcomm.2019.2921022. [CrossRef]

37. Zhu, F.; Gao, F.; Eldar, Y.C.; Qian, G. Robust simultaneous wireless information and power transfer in
beamspace massive MIMO. IEEE Trans. Wireless Commun. 2019, 18, 4199–4212, doi:10.1109/twc.2019.2916405.
[CrossRef]

38. Luo, Z.; Ma, W.; So, A.; Ye, Y.; Zhang, S. Semidefinite relaxation of quadratic optimization problems.
IEEE Signal Process. Mag. 2010, 27, 20–34, doi:10.1109/msp.2010.936019. [CrossRef]

39. Luo, Z. Applications of convex optimization in signal processing and digital communication. Math. Progr.
2003, 97, 177–207, doi:10.1007/s10107-003-0442-2. [CrossRef]

40. Nesterov, Y. Lectures on convex optimization. In Springer Optimization and Its Applications; Springer Nature
Switzerland AG: Basel, Switzerland, 2018; Volume 137.

41. Ben-Tal, A.; Nemirovski, A. Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering
Applications; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2001.

42. Hernandez, M. Novel maximum likelihood approach for passive detection and localisation of multiple
emitters. EURASIP J. Adv. Signal Process. 2017, 2017, doi:10.1186/s13634-017-0473-0. [CrossRef]

43. Yan, Y.; Shen, X.; Hua, F.; Zhong, X. On the semidefinite programming algorithm for energy-based acoustic
source localization in sensor networks. IEEE Sens. J. 2018, 18, 8835–8846, doi:10.1109/jsen.2018.2869000.
[CrossRef]

44. Wang, G.; Li, Y.; Wang, R. New semidefinite relaxation method for acoustic energy-based source localization.
IEEE Sens. J. 2013, 13, 1514–1521, doi:10.1109/jsen.2012.2237026. [CrossRef]

45. Wang, G. A semidefinite relaxation method for energy-based source localization in sensor networks.
IEEE Trans. Veh. Technol. 2011, 60, 2293–2301, doi:10.1109/TVT.2011.2142204. [CrossRef]

46. Chan, F.K.W.; So, H.C.; Ma, W.K.; Lui, K.W. A flexible semi-definite programming approach for source
localization problems. Digit. Signal Process. 2013, 23, 601–609, doi:10.1016/j.dsp.2012.10.003. [CrossRef]

47. Jiang, J.; Wang, G.; Ho, K.C. Sensor network-based rigid body localization via semi-definite relaxation
using arrival time and doppler measurements. IEEE Trans. Wirel. Commun. 2019, 18, 1011–1025,
doi:10.1109/twc.2018.2889051. [CrossRef]

48. Meng, C.; Ding, Z.; Dasgupta, S. A semidefinite programming approach to source localization in wireless
sensor networks. IEEE Signal Process. Lett. 2008, 15, 253–256, doi:10.1109/lsp.2008.916731. [CrossRef]

49. Guo, X.; Chu, L.; Sun, X. Accurate localization of multiple sources using semidefinite programming based
on incomplete range matrix. IEEE Sens. J. 2016, 16, 5319–5324, doi:10.1109/jsen.2016.2558184. [CrossRef]

50. Jia, C.; Yin, J.; Wang, D.; Wang, Y.; Zhang, L. Semidefinite relaxation algorithm for multisource localization
using TDOA measurements with range constraints. Wirel. Commun. Mob. Comput. 2018, 2018, 1–9,
doi:10.1155/2018/9430180. [CrossRef]

51. Zou, Y.; Liu, H.; Wan, Q. Joint synchronization and localization in wireless sensor networks using
semidefinite programming. IEEE Internet Things J. 2018, 5, 199–205, doi:10.1109/jiot.2017.2777917. [CrossRef]

https://doi.org/10.3390/electronics8030334
http://dx.doi.org/10.3390/electronics8030334
https://doi.org/10.1109/tassp.1987.1165089
http://dx.doi.org/10.1109/TASSP.1987.1165089
https://doi.org/10.1109/tassp.1987.1165266
http://dx.doi.org/10.1109/TASSP.1987.1165266
https://doi.org/10.1016/j.sigpro.2015.04.004
http://dx.doi.org/10.1016/j.sigpro.2015.04.004
https://doi.org/10.1109/tit.2010.2046246
http://dx.doi.org/10.1109/TIT.2010.2046246
https://doi.org/10.1109/78.301830
http://dx.doi.org/10.1109/78.301830
https://doi.org/10.1109/lcomm.2019.2929766
http://dx.doi.org/10.1109/LCOMM.2019.2929766
https://doi.org/10.1109/tcomm.2019.2921022
http://dx.doi.org/10.1109/TCOMM.2019.2921022
https://doi.org/10.1109/twc.2019.2916405
http://dx.doi.org/10.1109/TWC.2019.2916405
https://doi.org/10.1109/msp.2010.936019
http://dx.doi.org/10.1109/MSP.2010.936019
https://doi.org/10.1007/s10107-003-0442-2
http://dx.doi.org/10.1007/s10107-003-0442-2
https://doi.org/10.1186/s13634-017-0473-0
http://dx.doi.org/10.1186/s13634-017-0473-0
https://doi.org/10.1109/jsen.2018.2869000
http://dx.doi.org/10.1109/JSEN.2018.2869000
https://doi.org/10.1109/jsen.2012.2237026
http://dx.doi.org/10.1109/JSEN.2012.2237026
https://doi.org/10.1109/TVT.2011.2142204
http://dx.doi.org/10.1109/TVT.2011.2142204
https://doi.org/10.1016/j.dsp.2012.10.003
http://dx.doi.org/10.1016/j.dsp.2012.10.003
https://doi.org/10.1109/twc.2018.2889051
http://dx.doi.org/10.1109/TWC.2018.2889051
https://doi.org/10.1109/lsp.2008.916731
http://dx.doi.org/10.1109/LSP.2008.916731
https://doi.org/10.1109/jsen.2016.2558184
http://dx.doi.org/10.1109/JSEN.2016.2558184
https://doi.org/10.1155/2018/9430180
http://dx.doi.org/10.1155/2018/9430180
https://doi.org/10.1109/jiot.2017.2777917
http://dx.doi.org/10.1109/JIOT.2017.2777917


Electronics 2020, 9, 128 18 of 18

52. Wang, Y.; Wu, Y. An efficient semidefinite relaxation algorithm for moving source localization using TDOA
and FDOA measurements. IEEE Commun. Lett. 2017, 21, 80–83, doi:10.1109/lcomm.2016.2614936. [CrossRef]

53. Wang, G.; So, A.M.C.; Li, Y. Robust convex approximation methods for TDOA-based localization under
NLOS conditions. IEEE Trans. Signal Process. 2016, 64, 3281–3296, doi:10.1109/tsp.2016.2539139. [CrossRef]

54. Shi, X.; Anderson, B.D.O.; Mao, G.; Yang, Z.; Chen, J.; Lin, Z. Robust localization using time difference of
arrivals. IEEE Signal Process. Lett. 2016, 23, 1320–1324, doi:10.1109/lsp.2016.2569666. [CrossRef]

55. Gholami, M.R.; Gezici, S.; Strom, E.G. A concave-convex procedure for TDOA based positioning.
IEEE Commun. Lett. 2013, 17, 765–768, doi:10.1109/lcomm.2013.020513.122732. [CrossRef]

56. Wang, G.; Li, Y.; Ansari, N. A semidefinite relaxation method for source localization using TDOA and FDOA
measurements. IEEE Trans. Veh. Technol. 2013, 62, 853–862, doi:10.1109/tvt.2012.2225074. [CrossRef]

57. Xu, E.; Ding, Z.; Dasgupta, S. Reduced complexity semidefinite relaxation algorithms for source localization
based on time difference of arrival. IEEE Trans. Mob. Comput. 2011, 10, 1276–1282, doi:10.1109/tmc.2010.263.
[CrossRef]

58. Lui, K.W.K.; Chan, F.K.W.; So, H.C. Semidefinite programming approach for range-difference based source
localization. IEEE Trans. Signal Process. 2009, 57, 1630–1633, doi:10.1109/tsp.2008.2010599. [CrossRef]

59. Lui, K.W.K.; Chan, F.K.W.; So, H.C. Accurate time delay estimation based passive localization. Signal Process.
2009, 89, 1835–1838, doi:10.1016/j.sigpro.2009.03.009. [CrossRef]

60. Yang, K.; Wang, G.; Luo, Z.Q. Efficient convex relaxation methods for robust target localization by
a sensor network using time differences of arrivals. IEEE Trans. Signal Process. 2009, 57, 2775–2784,
doi:10.1109/tsp.2009.2016891. [CrossRef]

61. Van Trees, H.L.; Bell, K.L.; Tian, Z. Detection, Estimation, and Modulation Theory Part I: Detection, Estimation,
and Filtering Theory; John Wiley & Sons: Hoboken, NJ, USA, 2013.

62. Beck, A.; Stoica, P.; Li, J. Exact and approximate solutions of source localization problems. IEEE Trans.
Signal Process. 2008, 56, 1770–1778, doi:10.1109/tsp.2007.909342. [CrossRef]

63. Vandenberghe, L.; Boyd, S. Semidefinite programming. SIAM Rev. 1996, 38, 49–95, doi:10.1137/1038003.
[CrossRef]

64. Bertsekas, D.P. Convex Optimization Algorithms; Athena Scientific: Nashua, NH, USA, 2015.
65. Grant, M.; Boyd, S. CVX: MATLAB Software for Disciplined Convex Programming, Version 2.1. 2014.

Available online: http://cvxr.com/cvx (accessed on 9 January 2020).
66. Horn, R.A.; Johnson, C.R. Matrix Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2013.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1109/lcomm.2016.2614936
http://dx.doi.org/10.1109/LCOMM.2016.2614936
https://doi.org/10.1109/tsp.2016.2539139
http://dx.doi.org/10.1109/TSP.2016.2539139
https://doi.org/10.1109/lsp.2016.2569666
http://dx.doi.org/10.1109/LSP.2016.2569666
https://doi.org/10.1109/lcomm.2013.020513.122732
http://dx.doi.org/10.1109/LCOMM.2013.020513.122732
https://doi.org/10.1109/tvt.2012.2225074
http://dx.doi.org/10.1109/TVT.2012.2225074
https://doi.org/10.1109/tmc.2010.263
http://dx.doi.org/10.1109/TMC.2010.263
https://doi.org/10.1109/tsp.2008.2010599
http://dx.doi.org/10.1109/TSP.2008.2010599
https://doi.org/10.1016/j.sigpro.2009.03.009
http://dx.doi.org/10.1016/j.sigpro.2009.03.009
https://doi.org/10.1109/tsp.2009.2016891
http://dx.doi.org/10.1109/TSP.2009.2016891
https://doi.org/10.1109/tsp.2007.909342
http://dx.doi.org/10.1109/TSP.2007.909342
https://doi.org/10.1137/1038003
http://dx.doi.org/10.1137/1038003
http://cvxr.com/cvx
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Formulation and Data Model
	Cramér–Rao Bound
	Design of the Estimator
	Formulation of MLE as a Quadratic Optimization Problem
	Some Equivalent Transformation
	Semidefinite Relaxation
	Semidefinite Programming Solver
	Complexity Analysis

	Results and Discussion
	Localization Scenarios
	Visualization of Cramér–Rao Bound and Selection of Testing Points
	Results on the Two Representative Test Points
	Results on Easier Test Point
	Results on Harder Test Point


	Conclusions
	References

