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Abstract: The installation of smart meters in smart cities to monitor streetlights (SLs) provides easy
access to measurements of electrical variables and lighting levels, which improves the operation of
installation. The use of smart meters in cities requires temporary high-resolution data to improve the
energy efficiency (EE) of SLs. Long range (LoRa) is an ideal wireless protocol for use in smart cities due
to its low energy consumption, secure communications, and long range indoors and outdoors. For
this purpose, we developed a low-cost new system and successfully evaluated it by developing three
devices, namely the measure and control device for street lights (MCDSL), lighting level measurement
device (LLMD) and gateway LoRa network (GWLN), based on the Arduino open-source electronic
platform. This paper describes the hardware and software design and its implementation. Further,
an algorithm has been developed to enhance the energy efficiency of public lights using MCDSL,
the energy efficiency for street lights (EESL) algorithm, that use the illumination level measured on
the same set of SLs with a dynamic control, which assumed different lighting levels throughout the
night, and adjusted luminous flux based on the traffic intensity of pedestrians. It sends the acquired
data through the LoRa low-power wide-area-network (LPWAN) to the cloud.

Keywords: measure and control device for street lights (MCDSL); energy efficient (EE); lighting level
measurement device (LLMD); Long Range (LoRa); low-power wide-area-network (LPWAN)

1. Introduction

Nowadays, the energy crisis and environment pollution have become a global problem, and the
increasing use of energy has caused climate change. In order to minimize electricity consumption,
new technology has to be implemented for street lighting systems. This energy consumption can be
reduced considerably by applying new communication and control technologies. Power is required for
most of the services to be implemented in smart cities, among which street lighting demands higher
power consumption.

Kabalci et al. [1] presented the smart infrastructure system that includes a smart energy system as
well as smart communication and smart information systems. In this way, the paper [2] provided a
classification of technical and regulatory characteristics of IoT services for smart cities which are mapped
to corresponding roles in the IoT value chain, and characterize and identify specific requirements for
several smart city services, namely, smart metering, smart parking, smart street lighting and MCS.

In order to make the environment safe, its illumination has to comply with lighting norms, and in
this context, a comparative study of differences in energy consumption while applying 2004 and 2014
releases of the CEN/TR 13201 standard for lighting designs was analysed in [3]. Also, Ref. [4] offered
a set of the most important recommendations regarding the relevant influencing factors for energy
savings in street lighting.

Furthermore, Sedziwy et al. [5] allows obtaining power saving not only by replacing high pressure
lamps with LEDs, but also by improving a design quality and by introducing a dynamic street lighting

Electronics 2020, 9, 124; doi:10.3390/electronics9010124 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-9508-1728
https://orcid.org/0000-0002-6440-021X
http://www.mdpi.com/2079-9292/9/1/124?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9010124
http://www.mdpi.com/journal/electronics


Electronics 2020, 9, 124 2 of 28

control. In addition to the paper [6] the authors improved the energy efficiency and quality of street
lighting by applying two different solutions to achieve energy saving in street lighting design: the
installation of luminous flux regulators and the replacement of existing luminaires with LED. Also,
a study has been done to analyse the different devices which influence energy consumption with
the intention of better understanding their behaviour and performance in [7], in which the authors
improve the effectiveness of these regulations and therefore to optimize energy consumption.

Carli et al. [8] studied a multi-criteria decision-making tool to support the public decision maker
in optimizing energy retrofit interventions on existing public street lighting systems. Further, a method
of determining the power losses occurring in a lighting system, depending on the power supply
conditions and the dimming level is described in [9], wherein the authors determined that loss is
dependent on the configuration of the supply network, that is, whether it is single-phase or three-phase.
The paper [10] focused on providing a formal basis to incorporate knowledge regarding multiple
sensors into the lighting control model by introducing the dual graph grammar concept.

On the other hand, the hybrid poles group based on renewable energy, street lighting, and EV
charging, which can realize fast charging and slow charging based on DC micro-grid with help of
energy storage device is proposed in [11].

The bibliographical revision realized for the energy efficiency of SLs with wireless technologies
has been elaborated on the basis of the measured parameters, wireless technology, sensors, and the
base platform. Table 1 shows the results of the review:

Table 1. Analysis of wireless technologies used in SLs monitoring and control.

Bibliography Parameters
Measured

Network
Technologies Sensors Based on

[12] Electrical
parameters Wi-Fi Not provided CC2530OEM

module

[13]
Weather

parameters, Object
detection

SIM900/GSM/SMS
PIR Sensor

Dust Sensor
Rain Sensor

Arduino

[14] Light intensity, Not provided
Lighting Sensor
Motion Sensor

PIR Sensor
Not provided

[15] Object detection,
Light intensity Not provided IR Sensor

LDR Arduino Uno

[16] Illumination level Not provided KNX Basic weather
station Not provided

[17] Illumination level Not provided Ambient light
sensor Not provided

[18] Local presence LPWAN Road-user sensor Not provided

[19] Light intensity Not provided IR sensor, PIR
sensors Atmega128

[20] Presence detector,
Light intensity LPWAN

PIR sensors, LDR,
ISL76671, RADAR

sensor

Westermo GDW-11
485 GSM

[21] Electric parameters,
Light intensity ZigBee MAVOLUX 5032 B Not provided

[22]

Electric and
weather

parameters,
Ambient light

LPWAN Not provided PLC
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Table 1. Cont.

Bibliography Parameters
Measured

Network
Technologies Sensors Based on

[23]
Humidity,

temperature, light
and infrared sensor

LPWAN
808H5V5,

MCP9700A, EKMC,
LDR

ATmega1281

[24] Lux and Temp
sensor L-INX Not provided PLC

[25] Presence sensor WiMAX Not provided Raspberry-Pi

[26]
Electrical

parameters,
Luminance

Not provided Orthoimages GIS

[27] Illumination level LPWAN Not provided EMB-LR1272

LPWAN is a generic term for a group of technologies that enable wide area communications
at lower cost points and better power consumption are developed in [28,29]. LoRa is particularly
interesting due to the openness of its higher layer specifications LoRaWAN, and for the wide availability
of low-cost devices. LoRa in [30] was also the only technology allowing construction of private LPWAN
networks. As described in the research [28], the last years have seen the widespread diffusion of novel
LPWAN technologies, which are gaining momentum and commercial interest, as technologies for the
Internet of Things (IoT) are enabled. Finally, the paper [31] discussed some of the most interesting
LPWAN solutions, focusing in particular on LoRa, one of the last born and most promising technologies
for the wide-area IoT.

There are some applications about LoRa such as in the research [32] studied the concept of
a vision system that monitors sag and temperature of overhead transmission lines using LoRa
wireless communication and data transmission, the developed system consists of a camera and a
microcomputer equipped with LoRa communication module. Also, in the paper [33] presented the
development of relays that communicate with each other using LoRa allows for the combination of the
cost-effectiveness and ease of installation of wireless networks with long-range coverage and reliability.
In this way, Paredes-Parra et al. [34] proposed a wireless low-cost solution based on LoRa technology
able to communicate with remote PV power plants, covering long distances with minimum power
consumption and maintenance. Finally, the paper [35] presented a LoRa network for monitoring and
enhancing of efficient energy of inductions motors.

In the literature reviewed, most authors do not design measuring devices for use in street lighting,
instead, they use commercially available equipment already designed, and the transmission network
has not been analysed. Therefore, in this work the authors have designed a measurement system for
public lighting that allows to improve the energy efficiency of the SLs by means of monitoring and
control equipment. In addition, the LoRa network has been designed to obtain the measured data
in real time, to optimize the installation by means of a developed algorithm. This system allows to
reduce the energy consumption of the campus.

In this paper, the authors propose a system to improve the efficient energy of SL using algorithm
developed. Therefore, the authors present a number of novel contributions from our previous work
and the state-of-the-art:

- Design of our own system to improve energy efficiency in public lighting. Three device, namely
the MCDSL, LLMD, and GWLN, have been developed.

- These devices are low cost and open source, and were evaluated successfully.
- Monitoring and control of a public lighting system using the EESL algorithm implemented in

MCDSL, with communication via a LoRa network controlled by GWLN.
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This paper is structured as follows. Section 2 presents the diverse requirements of street lighting
from different road users’ perspectives and describes the LoRa network used. Subsequently, Section 3
presents the details of MCDSL, LLMD, and GWLN systems to manage SLs and minimise energy
consumption using the EESL algorithm. Section 4 details the lamp tests done, and parameters adopted
in this paper, and also presents the performance of the proposed lighting scheme in terms of the
achieved SLs utility and consumed energy.

2. Theory Description

2.1. System Requirements

The main requirement to be taken into account in the design of the lighting of the proposed system
is the fulfilment of mandatory standards defined for various areas such as streets, sidewalks, users, etc.
For each of them, an appropriate lighting class is assigned according to the characteristics of the traffic:
types of users, traffic intensity, average speed, etc.

The European standard EN 13201-1 [36] and Table 2 of the European standard EN 13201-2 [37]
shows lighting classes for pedestrians and cyclists that set lighting levels for pedestrians use.

Table 2. P lighting classes from EN 13201-2 [37].

Class Horizontal Illuminance Additional Requirements

Horizontal
Illuminance E

(lux)

Minimum Horizontal
Illuminance

Emin (lux)

Minimum Vertical
Illuminance Ev,min

(lux)

Minimum
Semicylindrical

Illuminance Esc,min (lux)

P1 15.0 3.00 5.00 5.00
P2 10.0 2.00 3.00 2.00
P3 7.50 1.50 2.50 1.50
P4 5.00 1.00 1.50 1.00
P5 3.00 0.60 1.00 0.60
P6 2.00 0.40 0.60 0.20

The proposed system takes into account the level of lighting required at any given moment,
which is modified if pedestrians are present. Figure 1 shows the scheme of the system developed in
this research.
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Figure 1. Architecture of SLs in campus.

2.2. LoRa Network

LoRa LPWAN networks composed of end-device, gateway device, and network server are
organized in a star topology. End-devices send data to gateways over a single wireless hop and
gateways relay messages to/from central network servers through a non-LoRa LPWAN network.
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Noreen et al. [38] provides in depth analysis of the impact of these three parameters on the data rate and
time on air, and the paper [39] offers an in-depth analysis and assessment of LoRa LPWAN functional
components: its capabilities (total traffic load, packet delivery quality) versus its efficiency (collision
and frequency usage).

The LoRa radio has different configuration parameters: the carrier frequency (CF), spreading
factor (SF), bandwidth (BW) and code rate (CR) [40–43]. The combination of these parameters provides
different energy values and transmission ranges:

• CF is the centre frequency used for the transmission band. For the SX1276/SX1276 transceiver,
and is in the range of 433 MHz in Asia, 868 MHz in Europe, and 915 MHz in North America.

• SF provides a trade-off between data rate and range. The choice of higher spreading factor can
increase the range but decreases the data rate and vice versa. LoRa employs multiple orthogonal
spreading factors (between 7 to 12).

• BW: Transmitter sends the widespread data at a chip rate equal to the system bandwidth in chips
per-second-per-Hertz. LoRa can only be chosen among three options: 125, 250, or 500 kHz.

• CR: Forward error correction (FEC) techniques are used in Lora to further increase the receiver
sensitivity. Code rate defines the amount of FEC. The coding rate expression is CR = 4

4+n , n is
from 1 to 4. It denotes that every four useful bits are encoded by 5, 6, 7, or 8 transmission bits.

The nominal bit-rate (in bits per second), is obtained taking into account these parameters.
Moreover, the expression of the bit-rate is given in Equation (1):

Rb = SF×
BW
2SF ×CR (1)

For LoRa, the actual time on the air for a packet can be defined as the duration of uplink and
downlink transmissions. Further, tpk depends on parameters of LoRa modulation, such as SF, BW, CR,
and can be expressed as the sum of the time needed to transmit the preamble and the physical message.

tpk = tp + tPHY (2)

Equations (3) and (4) represent how these two terms have been calculated, where Np is the number
of symbols used by the radio transceiver as the physical preamble of the message and NPHY indicates
the number of symbols transmitted in the physical message and can be determined as shown in
Equation (6). Equation (5) defines tsym as the duration (in seconds) of a symbol which depends on SF
and BW:

tp = tsym ×Np + 4.25 (3)

tPHY = tsym ×NPHY (4)

tsym =
2SF

BW
(5)

NPHY = 8 + max
[
ceil

(
28 + 8× PL + 16×CRC− 4× SF

4× (SF− 2×DE)

)
× (CR + 4), 0

]
(6)

To calculate the time on air (or packet duration), first calculate the payload symbol. For a given
payload denoted by PL (in bytes), a spreading factor (SF) and a coding rate (CR), the number of symbols
NPHY used to transmit the payload can be calculated. CRC (cyclic redundancy check) indicates the
presence (value 1) or not (value 0) of the CRC field in the physical message and DE indicates if the
mechanism to prevent issues about the clock drift of the crystal reference oscillator is used (value 1 for
SF12 and SF11, 0 for others).
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2.3. EESL Algorithm

The algorithm has two paths: (i) hourly regulation; (ii) regulation by adaptation to the illumination
level. Each of them has a different function in relation to time and pedestrian flow. The goal is
to achieve the best adjustment of the luminous flux of the lamp, and therefore the optimization of
electricity consumption. Thus, the algorithm dynamically adapts the luminous flux to the necessary
conditions, so that the lamp does not always operate at 100% of the luminous flux.

The total energy saved Esav is given by:

Esav =
n∑

i=1

(
Pb(i) × hb(i) − Pr(i) × hpe(i)

)
(7)

where n is the number of lamps, Pb the total installed power in the baseline scenario in kW, hb the
number of operating hours in the baseline scenario, Pr the reduced power in kW, and hpe the number
of equivalent operating hours.

The regulation percentage %Reg is given by the following Equation (8)

%Reg(t) =
(
Regmax −

Lcur(t) − Lmin(t)
Lthre(t) − Lmin(t)

)
× 100 (8)

where Lcur is the current level, Lmax the maximum level, Lmin the minimum level, Lthre the threshold
level, and Regmax is the maximum regulation allowed by the lamp.

3. Street Lights System Design

3.1. Hardware

This research approaches from zero the design and development of a SL control system to be used
in a smart city with communication based on LoRa protocol and data storage in the cloud.

The system consists of three devices: (i) GWLN (gateway to LoRa network) to centralize
communications and upload data to the cloud; (ii) MCDSL to control the SLs, make measurements of
electrical variables and position with GPS, communicating through LoRa LPWAN with the GWLN;
(iii) LLMD (light level measure device) to measure the lighting level and send the data to the GWLN.

3.1.1. GWLN Design

The core of the GWLN (Figure 2) is the AUR3 board [44] microcontroller on which DLS (Dragino
LoRa shield) [45] version without GPS (global positioning system) is assembled, that centralizes
communications under the LoRa protocol. The modular design allows the GWLN to be scalable
and easy to replace components when one of them fails, so that it does not affect the operation of
the equipment.

Figure 2 shows the GWLN block diagram and the relationship between the components used and
the other components of the lighting system.

GWLN uses the serial port to perform programming with the computer. Once programmed,
the serial port serves as a communication with WMP [46] board for uploading data to the cloud. DLS
acts as GW (Gateway) for the LoRa system composed of MCDSL#1 . . . MCDSL#n and LLMD, all these
components compose the LoRa LPWAN network used in this research. GWLN is powered by a power
supply unit connected to the 230 V AC electrical network with 5 V DC output accepted by the AUR3
and WMP boards. Figure 3 shows the wiring diagram for GWLN.
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Table 3 shows the cost of the components used in GWLN, and as can be seen it is a very small,
very interesting feature for SL implementation in smart city.

Table 3. GWLN components cost.

Description Number Unit Price (€) Total Price (€)

Microcontroller AUR3 1 20.00 20.00
Lora shield for Arduino DLS 1 22.91 22.91

Microcontroller WMP 1 4.61 4.61
Power supply unit 1 1.78 1.78

Box container 1 6.98 6.98
auxiliary material and wiring 1 1.45 1.45

Total cost 57.63
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3.1.2. MCDSL Design

It is very useful to locate the SLs using GPS. Thus, in the design of MCDSL (Figure 4) the
DLGS (Dragino LoRa GPS Shield) [47] has been used, which, in addition to the LoRa features, adds
global positioning.
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DLGS uses most of the AUR3 digital outputs for its operation and the GPS position is read by
means of a serial port, in addition it makes incompatible the reading of the electric variable meter
PZEM-004t (PZEM) [48] with digital inputs and it is necessary to use a serial port for its reading. From
the above, it follows that at least two serial ports are needed in MCDSL. AUR3 only has one, so it is
necessary to use AMR3 [49] as a microcontroller that has four serial ports.

The design of MCDSL is modular, as with GWLN, to provide fault tolerance, and to affect as little
as possible the operation of the equipment. The MCDSL block diagram, together with the relationship
between the components used and the LoRa LPWAN network are shown in Figure 4.

The distribution of AMR3 ports and signals for MCDSL is: (i) Serial1 port has been assigned the
function of reading position data with GPS; (ii) serial2 performs the function of acquiring electrical
variables v, i and p from the PZEM sensor; (iii) digital inputs 2 and 47 perform the task of communication
with the AC Dimmer [50]; (iv) digital input 49 reads the data from the motion sensor to detect the
presence of people. Figure 5 shows the wiring diagram for GWLN.
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Table 4 shows the cost of the components used in GWLN, which is very small, and is especially
interesting to use in the SL system in a smart city.

Table 4. MCDSL components cost.

Description Number Unit Price (€) Total Price (€)

Microcontroller AUM3 1 28.00 28.00
Lora GPS shield for Arduino DLGS 1 35.90 35.90

PZEM-004t 1 10.08 10.08
AC Dimmer 1 3.22 3.22

Motion sensor HC SR501 1 1.53 1.53
Power supply unit 1 1.78 1.78

Box container 1 6.98 6.98
auxiliary material and wiring 1 2.03 2.03

Total cost 89.52

3.1.3. LLMD Design

To measure the level of illumination in each SL would lead to error, since when being placed in
each one of them, mistakes can be made due to the fact that it would take the illumination that this
providing the lamp and not the one that really there is in every moment.

For this purpose, a device has been designed that measures the actual level of illumination at
a high point without being affected by the light from the lamps and provides a real measure of the
illumination to be provided by the SL. The measurement times is 1 s. In case of a change in the lighting
level, the measurement made by the LLMD (Figure 6) is sent by the LoRa LPWAN network to the
GWLN. GWLN performs the necessary calculations by applying the EESL algorithm. It then sends the
new regulation obtained to each of the SLs installed in the network.

LLMD has been implemented based on AUR3 supplemented with DLS and a TSL2561 [51] lighting
meter connected to the AUR3 I2C (Inter-Integrated Circuit) bus. As for GWLN and MCDSL, a modular
design is carried out that makes it more tolerant to faults. The LLMD block diagram, along with the
relationship between the components used and the LoRa LPWAN network are shown in Figure 6.

LLMD uses the serial port of AUR3 for computer programming. Analog inputs 4 and 5 are used
to work with the I2C bus in AUR3, in the case of LLMD to read the illumination level measured by
TSL2561. Figure 7 shows the wiring diagram for LLMD.
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Table 5 shows the cost of components used in LLMD, which is very small, following the low-cost
design philosophy that is intended to be achieved with the system object of this research.

Table 5. LLMD components cost.

Description Number Unit Price (€) Total Price (€)

Microcontroller AUR3 1 20.00 20.00
Lora shield for Arduino DLS 1 22.91 22.91
Illumination sensor TSL2561 1 3.76 3.76

Power supply unit 1 1.78 1.78
Box container 1 6.98 6.98

auxiliary material and wiring 1 1.05 1.05

Total cost 56.48

3.1.4. Components

1. Microcontroller

A microcontroller is a small computer integrated into a simple integrated circuit, containing at
least one processing core, plus memory, and programmable inputs/outputs for use with peripherals.
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Microcontrollers are widely used in the construction of equipment for industrial and residential
environments due to their control and processing capabilities.

The advances made in electronic devices have made it possible to develop very powerful hardware
equipment at a low cost, which makes them ideal for use in a multitude of devices such as those
developed in this research.

In this paper, three microcontrollers have been used:

• AUR3 in GWLN and LLMD: the AUR3 development board, used in GWLN and LLMD, is
based on the ATmega328P microcontroller, equipped with an open-source platform for electronic
prototypes. The characteristics of AUR3 board are presented in [44].

• AMR3 in MCDSL: in MCDSL has been chosen as the core with the development board AMR3,
which is based on the ATmega2560 microcontroller, which like ATmega328P has open-source
platform for developing electronic prototypes. The characteristics of DLS can be seen in [49].

• WMP in GWLN: cloud access GWLN uses WMP based on the ESP-8266X microcontroller
that allows access to the Wi-Fi network. The microcontroller is compatible with the Arduino
development environment, with the open-source possibilities it offers. The characteristics of DLS
are available in [46].

GWLN and LLMD only use the serial port for programming, since GWLN takes care of all
the control functions and data traffic of the LoRa LPWAN and LLMD network reads the lighting
measurement data via the I2C bus, and it is possible to use AUR3. In contrast, MCDSL uses two serial
ports, one to read the position data with GPS and the other to read the electrical variables coming from
the PZEM sensor and it is necessary to use AMR3 which has up to four serial ports available.

2. Wireless communication access. LoRa Shield

In order to implement the LoRa LPWAN network of the SL control system developed in this
research, there are different options, among which we can highlight: (i) Arduino MKR WAN 1300 [52];
(ii) Monteino [53]; (iii) Lopy4 [54]; (iv) Libelium [55]; (v) Dragino [56]. The LoRa components used in
this equipment are:

• (i) uses the CMWX1ZZABZ chip [57] of the Murata brand.
• (ii) uses the HOPERF chip RFM95/96/97/98 [58].
• (iii) and (v) implement the Semtech SX1276/SX1278 [59] chip.
• (iv) is based on the SX1272 [60] chip of the Semtech brand.

The components used in each platform have similar features. Therefore, the decision to use one or
another platform depends on the added values that each one of them offers. The system developed uses
the Dragino platform, which works with the Arduino family, benefiting from the great versatility that
Arduino offers thanks to the large number of devices that can complement the LoRa LPWAN network.
In this research, components such as GPS positioning, reading of electrical variables, presence detection,
and measurement of the lighting level have been added. As a complement, it is very easy to program
with the Arduino development environment, and being an open source platform, the reproduction of
the system developed is possible by any researcher.

The LoRa SX1276/SX1278 chip developed for use in professional network environments with
installed sensors is the core of DLS. The sensors that can be integrated have different uses such as
irrigation systems, intelligent cities and houses, intelligent meters and industrial automation, etc.

With DLS data can be sent over long distances with different transmission frequencies. An added
advantage is the minimal energy consumption thanks to the use of the ultra-long range extended
spectrum, coupled with a high immunity to interference. The characteristics of DLS are in [45].
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3. Wireless communication access. LoRa GPS Shield

The chosen manufacturer (Dragino) produces another model of Arduino Shield with LoRa System,
to which it adds a GPS global positioning system that allows georeferencing the monitored equipment,
which gives the system an added feature to the system that provides great versatility.

DLGS, like DLS uses the SX1276/SX1278 chip, to which is added the GPS system based on the
MTK MT3339 chip. DLGS features are exposed in [47].

4. Electric power meter

To measure voltage and current, there are different techniques available on the market, which use
different measurement techniques.

As for current sensors, there are invasive and non-invasive, the first ones need to modify the
installation they monitor. The measurement techniques used are current transformers and Hall
effect sensors. Both techniques convert the electrical current into a voltage signal proportional to
the measured current. Examples of current sensors are the ACS712 [61] which is invasive and the
STC-013 [62] which is non-invasive and is manufactured by the YHDC brand.

Various techniques can be used to measure voltage: (i) 230/12 or 24 V transformer, AC/DC
rectifier and voltage divider; (ii) 230/24 V transformer, AC/DC rectifier, and FZ0430 [63] meter; (iii)
ZMPT101b [64] voltage transformer from 230 to 5 V.

For the sensors mentioned in the previous paragraphs, in order to obtain RMS values of v, i,
p, q, and PF, it is necessary to perform the corresponding calculation process. The PZEM sensor,
chosen in this investigation, measures v, i, and p in a single sensor and offers the measured RMS
values without additional calculations. In the paper [65], the authors developed and successfully
calibrated a new prototype for an accurate low-cost on-time single-phase power smart meter and is
based on the Arduino open-source electronic platform. Another example of the use of smart meters is
in Reference [66], which presents a PF compensation system using a TLBO algorithm for optimization.

5. Illumination sensor

There are several options on the market to use as a lighting meter in combination with the Arduino
platform: (i) sensor BH1750 [67]; (ii) sensor TSL2561.

The TSL2561 has been chosen for installation in LLMD because it is an advanced digital lighting
sensor with applications in a wide range of devices. The sensor is very accurate, and allows you to
select different operating modes by changing the gain and timing, with measurement range from 0.1
. . . 40,000+ lux. The sensor is composed of two diodes, one for the infrared part of the spectrum and
the other for the rest of the spectrum, allowing for the separate measurement of both areas of the
light spectrum.

The communication between the sensor and the Arduino is via the I2C bus, and three different
directions can be selected for the sensor, ensuring that it can work with other devices connected to the
bus without causing addressing problems. The features of the TSL2561 can be found at [51].

6. AC light dimmer

The dimmer used is from RobotDyn brand, which can control equipment up to 600 V and 16 A.
Lighting control can be used to control fans, pumps and so on.

Arduino interruptions are used to control the dimmer, which reduces the wiring between the
dimmer and the microcontroller. The dimmer is based on the triac BTA16-600B [68], with optocoupler
insulation. The characteristics of the dimmer can be seen in [50].

7. Motion sensor

The sensor used is the PIR (passive infrared) type, with two separate detector elements, the signal
that activates the motion alarm is the differential signal between the two detectors. The HC-SR501
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model with the PIR LHI778 [69] sensor controlled by the BISS0001 [70] integrated circuit was chosen as
the sensor to be installed in MCDSL.

It is possible to select the motion detection range with openings between 90◦ and 110◦, and distance
ranges between 3 and 7 m. It can be installed on the floor, on the wall or on the roof according to the
needs of the detection to be carried out. It uses two potentiometers and a bridge to adapt detection
sensitivity, activation time and response to repetitive actions. In [71], the characteristics of the sensor
can be consulted.

3.2. Software Design

3.2.1. GWLN Program

The AUR3 microcontroller manages the LoRa LPWAN network, receiving and sending information
from LLMD and MCDSLs. It is also responsible for sending measurement data of electrical variables
and GPS position to WMP to send to the cloud (Firebase).

The first working phase of the program is carried out when GWLN is connected, or a reset of the
equipment is carried out. In this phase the following processes are developed: (i) enable and initialize
the serial port for communications; (ii) configure and start the LoRa LPWAN network.

Once the first phase is done, the microcontroller must perform cyclically while the system is
connected the reading of the lighting level from LLMD, if there is any change must send the information
to all MCDSLs that are part of the LoRa LPWAN network, then must read the electrical variables and
GPS position of all ESLs and send them to WMP for upload to the cloud (Firebase).

The flowchart for GWLN is shown in Figure 8.

Electronics 2019, 8, x FOR PEER REVIEW 13 of 28 

 

It is possible to select the motion detection range with openings between 90° and 110°, and 
distance ranges between 3 and 7 m. It can be installed on the floor, on the wall or on the roof according 
to the needs of the detection to be carried out. It uses two potentiometers and a bridge to adapt 
detection sensitivity, activation time and response to repetitive actions. In [71], the characteristics of 
the sensor can be consulted. 

3.2. Software Design 

3.2.1. GWLN Program 

The AUR3 microcontroller manages the LoRa LPWAN network, receiving and sending 
information from LLMD and MCDSLs. It is also responsible for sending measurement data of 
electrical variables and GPS position to WMP to send to the cloud (Firebase). 

The first working phase of the program is carried out when GWLN is connected, or a reset of 
the equipment is carried out. In this phase the following processes are developed: (i) enable and 
initialize the serial port for communications; (ii) configure and start the LoRa LPWAN network. 

Once the first phase is done, the microcontroller must perform cyclically while the system is 
connected the reading of the lighting level from LLMD, if there is any change must send the 
information to all MCDSLs that are part of the LoRa LPWAN network, then must read the electrical 
variables and GPS position of all ESLs and send them to WMP for upload to the cloud (Firebase). 

The flowchart for GWLN is shown in Figure 8. 

 
Figure 8. GWLN main program. 

Communication in the LoRa LPWAN network is bi-directional between GWLN, MCDSLs, and 
LLMD with a constant exchange of information between the teams involved in the network. 

3.2.2. MCDSL Program 

As the GWLN microcontroller, the MCDSL must perform the system initialization tasks when 
connecting or resetting the equipment. These tasks are distributed in the following sequence: (i) 
prepare the serial ports #1 and #2 to obtain data; (ii) start the PZEM sensor to measure electrical 
variables; (iii) turn on and prepare the AC dimmer for lamp regulation; (iv) start the HC-SR501 
motion sensor; (v) configure and initialize DLGS for access to the LoRa LPWAN network.  

Then, and continuously while MCDSL is connected, the following processes are carried out: (i) 
read the lighting level from the LoRa LPWAN network; (ii) run EESL algorithm; (iii) measure 

GWLN main program

Initialize serial port
Initialize LoRa module

Read Illumination level from 
Level measurement device by 

LoRa LPWAN

Send all data measured using Serial port 
(WMP) to upload to Firebase

Read electrical variables 
& GPS position from all MCDSLs using LoRa

LPWAN

If Illumination
Level change

Send new illumination level to all 
MCDSL devices using LoRa LPWAN

Yes

No

Figure 8. GWLN main program.

Communication in the LoRa LPWAN network is bi-directional between GWLN, MCDSLs,
and LLMD with a constant exchange of information between the teams involved in the network.

3.2.2. MCDSL Program

As the GWLN microcontroller, the MCDSL must perform the system initialization tasks when
connecting or resetting the equipment. These tasks are distributed in the following sequence: (i) prepare
the serial ports #1 and #2 to obtain data; (ii) start the PZEM sensor to measure electrical variables; (iii)
turn on and prepare the AC dimmer for lamp regulation; (iv) start the HC-SR501 motion sensor; (v)
configure and initialize DLGS for access to the LoRa LPWAN network.
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Then, and continuously while MCDSL is connected, the following processes are carried out:
(i) read the lighting level from the LoRa LPWAN network; (ii) run EESL algorithm; (iii) measure
electrical variables and position with GPS and sending data to GWLN using the LoRa LPWAN network
to upload to the cloud.

Figure 9 shows the flowchart for MCDSL.
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The EESL algorithm proposed in this research and described in Section 2.3 has to be executed by
MCDSL and adjust in real time the luminous flux that each lamp must emit according to the data of
the level of illumination received in each instant from the LoRa LPWAN network, in addition to the
detection of the presence of people through the motion sensor.

Figure 10 shows the flow diagram of the proposed EESL algorithm.
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3.2.3. LLMD Program

The function of LLMD is to measure the lighting level for adjustment of all MCDSLs installed in
the system. Therefore, the cyclic tasks you must perform once connected must be: (i) read the lighting
level; (ii) send the measurement to GWLN using the LoRa LPWAN network.

As for the tasks of device initiation in case of connection or restart are: (i) configure and start DLS
for access to the LoRa LPWAN network; (ii) initialize the TSL2561 lighting meter.

The LLMD flowchart is shown in Figure 11.
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3.2.4. WMP Program

Finally, the program for WMP, which is responsible for uploading data to the cloud, is exposed.
Remember that WMP is installed inside GWLN. The initialization tasks for this microcontroller are: (i)
start the serial port for reading information from AUR3; (ii) configure and start the Wi-Fi system for
Internet access; (iii) start Firebase to upload data to the cloud.

As for the tasks that you must perform cyclically you have: (i) data reading from AUR3; (ii) data
upload to Firebase; (iii) data upload confirmation to the cloud.

Figure 12 illustrates the flow diagram for WMP.
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4. Result and Discussion

To validate the system developed in this research, part of the campus exterior lighting equipped
with High Pressure Sodium lamps was used. Specifically, there is a sector composed of 29 SLs in
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the administrative area of the campus. The purpose of the test is to study the reduction of energy
consumption by applying the proposed EESL algorithm.

4.1. Test Equipment

It has been assumed that in the supply network, according to EN 50160, the value of the phase
voltage will remain in the range of 230 V ± 10%, i.e., from 207 V to 253 V. Measurements have been
made for voltages of 207, 210, 215, 220, 225, 230, 235, 240, 245, 250 and 253 V, based on the assumption
that the supply voltage is pure and sinusoidal (no distortions).

The study was performed with 3 types of lamps: (i) Ceramic metal halide Philips model MASTER
CityWhite CDO-TT Plus 70W/828, luminous flux 7500 Lm (luminous efficacy of 103 Lm/W); (ii) High
Pressure Sodium Philips model SON-T 150W E40 1SL/12, luminous flux 15000 lm (luminous efficacy
of 98 Lm/W); (iii) High Pressure Mercury Philips model HPL-N 125W E27 SG 1CT/24, luminous flux
6200 Lm (luminous efficacy of 50 Lm/W).

Figures 13–15 show the regulation study carried out with electromagnetic ballast included. The
lighting values were obtained in the laboratory on a surface of 1 m2.
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In order to evaluate the accuracy of the LLMD lighting measurements, a comparison was made
with a Konica Minolta LS150 luxmeter. Measurements were taken at 1, 2, 3, 4, 5, 6, and 7 m from the
light source. The data obtained are shown in Figure 16 and Table 6.

LLMD equipment has a measurement error of less than 1% in the measurements done with
different lamps. It can be observed that, as we move away from the lamp, the error decreases
considerably, and for a near distance, it grows.Electronics 2019, 8, x FOR PEER REVIEW 18 of 28 
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Figure 16. Illumination level test. (a) Comparison between luxmeter and LLMD with CDO lamp;
(b) Luxmeter vs. LLMD; (c) Comparison between luxmeter and LLMD with SON lamp; (d) Luxmeter
vs. LLMD; (e) Comparison between luxmeter and LLMD with HPL lamp; (f) Luxmeter vs. LLMD.
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Table 6. Comparative measurements lighting level.

Distance (m)
LLMD Konica Minolta Measuring Error (ε)

CDO
(lx)

SON
(lx)

HPS
(lx)

CDO
(lx)

SON
(lx)

HPS
(lx)

CDO
(%)

SON
(%)

HPS
(%)

1 1024.564 2196.874 675.304 1026.719 2203.661 675.408 0.216 0.010 0.679
2 830.000 719.511 195.838 822.829 720.931 197.047 0.717 0.121 0.142
3 294.286 408.264 108.038 294.916 408.671 107.993 0.063 0.040 0.041
4 158.018 278.451 70.670 158.352 279.267 71.006 0.033 0.034 0.082
5 103.313 211.026 60.251 102.827 210.653 61.024 0.049 0.077 0.037
6 68.429 172.416 48.830 68.322 171.608 48.603 0.011 0.023 0.081
7 46.000 130.901 32.272 46.236 131.437 32.093 0.024 0.018 0.054

4.2. Measurement Level Illumination

In this section, tests have been carried out during the year in order to obtain measurements of the
lighting levels on different days in order to observe the behaviour of the proposed system during the
different lighting hours and their variations in the different seasons of the year.

In summary, Figure 17 shows the results obtained for a cloudy and sunny summer and winter day.
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day; (d) Winter cloudy day.

4.3. Development of Energy Saving Strategies

The regulation period runs from 17:00 to 8:00, a time frame that covers lighting needs every day
of the year.

On the other hand, the academic activity extends until 22:00, from this time until 7:00 two levels
of flow reduction are established: (i) from 23:00 to 0:00 and from 6:00 to 7:00 with a reduction of 20%;
(ii) from 00:00 to 06:00 with a reduction of 40%. Flow regulation percentages vary depending on the
lamp used. In this case a Philips High Pressure Sodium lamp model SON-T 150W E40 1SL/12 was used.
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Between 17:00 and 23:00 and between 07:00 and 08:00, the proposed EESL algorithm is applied,
which regulates the luminous flux according to the level of illumination measured by LLMD. The
illumination data is taken every 5 s (time that can be modified) and sent to GWLN which distributes
them to the 29 MCSDL to act in the regulation of each of the SLs.

Using the data obtained, a detailed analysis has been performed, which has made it possible
to configure all the parameters of importance for the system, as they can be: (i) the minimum and
maximum levels that will define the regulation of the luminaires; (ii) the duration of the time range of
these levels; (iii) measurement time.

When these limits are exceeded, or the presence of pedestrians is detected, the system acts
appropriately, regulating the lighting level of each lamp. The final objective is the reduction of energy
consumption in each SL, and therefore of the whole. This is done through an intelligent and efficient
management of the luminous flux by means of the proposed EESL algorithm.

Pedestrian Distribution

The distribution of pedestrians in the study area is related to the period of academic activity,
which is between 08:00 and 22:00. Outside this time zone, pedestrian traffic is residual, and practically
non-existent, except for security personnel.

As can be seen, the academic activity is between the hours of operation of the EESL algorithm,
and outside these hours, the algorithm proceeds to the chosen flow reduction, which can be changed if
necessary. If a pedestrian is detected within the flow reduction zone, the flow reduction is eliminated
in the coverage area of each SL, returning later to the previous level.

Figure 18 shows the variation in the distribution of pedestrians per day in relation to the minimum
flow, which is detected during night hours.
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Figure 18. Pedestrian flow distribution.

Variations in the flow of pedestrians lead to great energy savings through the use of the proposed
system. The main objective is to reduce the luminous flux as much as possible and, therefore, the energy
consumption produced. The maximum luminous flux will only be maintained when necessary or
depending on the presence of pedestrians, so that regulatory requirements are always met.

4.4. LoRa System Performance

The equipment used are MCDSL and LLMD, which are located in the adminastrative zone of
the campus, in different places according to zone distribution. The parameters assigned to the LoRa
network are BW = 250 kHz, CR = 6, SF = 8.

The objective of this section is to evaluate the functioning of the LoRa LPWAN Network. In this
sense, the parameters to be evaluated will be: (i) received signal strength indicator (RSSI); (ii) time on
air (ToA); (iii) packet lost rate (PLR). Measurements have been made with a frequency of 20 s.

The PayLoad used is in CayenneLPP format, with a length of 27 bytes distributed as follows: (i) 4
bytes for MCDSL number; (ii) 4 bytes for voltage; (iii) 4 bytes for current; (iv) 4 bytes for active power;
(v) 11 bytes for GPS position.



Electronics 2020, 9, 124 21 of 28

Table 7 shows the location of the equipment used in the test.

Table 7. Location of test devices.

Device Place
UTM Coordinates Zone 30

X (m) Y (m)

MCDSL #1 SL #1 431,300 4,182,653
MCDSL #2 SL #9 431,408 4,182,749
MCDSL #3 SL #23 431,320 4,182,808

LLMD Terrace of administration building 431,308 4,182,777

Figure 19 shows the result of the measurements made on the LoRa LPWAN network during a full
week of measurement. Enough time to evaluate the behavior of the network and be able to perform a
detailed analysis of the performance.
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Figure 19. LoRa characteristic: (a) RSSI; (b) ToA; (c) PLR.

Figure 19a shows the evolution of RSSI, which can be seen to be stable with mean values around
−73.43 dBm for MCDSL #1, −94.85 dBm for MCDSL #2, −102.94 dBm for MCDSL #3 and −101.42 dBm
for ILD. Values that are within the range as a function of distance to GWLN.

ToA parameters are shown in Figure 19b, and they have an average time for all devices around
35 ms. Finally, Figure 19c shows the most critical measured parameter, PLR, which alludes to the amount
of information lost within the LoRa LPWAN network. This parameter determines the transmission
quality within the network. It is possible to observe in Figure 19c, that the PLR is quite small, with a
maximum around 4% maximum, which ensures the quality of communication.

In order to describe the behaviour of the LoRa network, the authors have obtained the statistical
distribution of the measured parameters, which are shown in Tables 8 and 9.
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Table 8. Transmission statistics.

Device
RSSI (dBm) Time on Air (ms) Packets Lost Rate (%)

µ σ µ σ µ σ

MCDSL #1 −73.430 1.511 34.989 2.991 1.352 0.235
MCDSL #2 −94.853 1.679 34.997 3.007 2.029 0.393
MCDSL #3 −102.936 2.990 34.983 2.998 3.158 0.958

LLMD −101.417 3.892 35.001 3.020 3.750 1.967

Table 9. Packet transmission.

Device Packet Send Packet Delivery Packet Lost Packets Delivery Rate (%)

MCDSL #1 30240 29831 409 98.65
MCDSL #2 30240 29626 614 97.97
MCDSL #3 30240 29285 955 96.84

LLMD 30240 29106 1134 96.25

4.5. Dayly Electrical Variables

The MCDSL device is equipped, in addition to the regulation equipment and the PZEM variable
measurement sensor, which allows the electrical variables to be obtained at any time. Subsequently,
the electrical data of each of the installed MCDSLs are uploaded to the cloud.

The electrical variables measured with the MCDSL equipment for one day of operation are shown
in Figure 20.
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4.6. Annual Energy Saving of Street Lights

The annual study has been done in order to determine the operation of the system over an
extended period of time, including all seasons of the year. The study was done from 1 September 2018
to 1 September 2019. Figure 21 shows the result of the study performed.
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Figure 21. Annual energy saved: (a) Active energy per lamp (kWh) 2D; (b) Total active energy (kWh)
2D; (c) Active energy per lamp (kWh) 3D; (d) Total active energy (kWh) 3D.

In Table 10, the energy saved obtained by each MCDSL can be observed, with the two proposed
flow reduction levels and through the application of the EESL algorithm. The last column of the table
reflects the energy savings in the total MCDSLs installed.

Table 10. Energy saved (kWh).

Type NSL ESL Esav

EESL Algorithm
29

6.126 117.654
Flow reduction 40% (0:00–6:00) 134.685 3436.587

Flow reduction 20% (23:00–0:00, 6:00–7:00) 22.265 645.685

Total 4259.926

5. Conclusions

This study developed and successfully evaluated a new system for real-world SL facilities that
is both accurate and low-cost. This system is based on the Arduino open-source electronic platform.
Input data were gathered with a set of sensors based on Arduino components.

This system has a number of advantages. In fact, MCDSL is able to perform real-time monitoring
with high resolution time data, every 5 s, and able to be modified depending on the resolution of the
monitoring. Evidently, this real-time calculation capability and the support of large data in the cloud
have applications in real systems.

Three devices have been developed for the GWLN, MCDSL, and LLMD units, which allow the
configuration of a complete monitoring and control system of the SLs, and achieve energy savings
in the control of the SL. It can also be adapted to other types of luminaires with different regulations
within the same system.

The developed system allows to control the SLs and to monitor the electrical variables (MCDSL),
and also measures the levels of illumination (LLMD). The devices are located on the campus of the
administrative area.

This research provided a new EESL algorithm to improve the energy efficiency of SLs, with data
collection in real public lighting installations with high temporal resolution.
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The results obtained show that the GWLN has a lower rate of lost packages, with a PLR of less
than 4%, and ToA parameters have an average time for all devices around 35 ms. The data sent
to the cloud with Firebase has an upload rate of 5 s. Firebase allows an upload speed of 200 ms, a
characteristic that makes it possible to adapt the time for sending packets on the LoRa network, with
shorter time intervals.

The system developed makes it possible to obtain satisfactory energy savings, improving the
energy efficiency of the SL installation, and increasing the energy sustainability of the whole.

The proposed system can accommodate many different realities of other installations, ensuring
scalability, interoperability, and accessibility (in the sense that the system is accessible from multiple
platforms: mobile phone, PC, tablet), and its ease of deployment, with the case study of its
implementation in a section of SLs in smart cities.
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Abbreviations

The following abbreviations are used in this manuscript:

AMR3 Arduino Mega R3
AUR3 Arduino Uno R3
BW Bandwidth
CF Carrier Frequency
CR Code Rate
CRC Cyclic Redundancy Check
DLS Dragino LoRa Shield
DLGS Dragino LoRa GPS Shield
E Active energy
EE Energy Efficiency
EESL Energy Efficiency for Street Lights
FEC Forward error correction
GPS Global Positioning System
GWLN GateWay LoRa Network
LLMD Lighting Level Measurement Device
I2C Inter-Integrated Circuit
IoT Internet of Things
L Level
LED Light Emitting Diode
LLMD Lighting Level Measurement Device
LoRa Long Range
LoRaWAN Long Range Wide Area Network
LPWAN Low Power Wide Area Network
MCDSL Measure and Control Device for Street Lights
N Number
P Active power
PIR Passive infrared
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PF Power factor
PL PayLoad
PLR Packet Lost Rate
PZEM PZEM-004t
RMS Root Mean Square
RSSI Received Signal Strength Indicator
SF Spreading Factor
SL Street Light
SNR Signal-to-Noise Ratio
t Time
ToA Time on Air
Wi-Fi Wireless Fidelity
WMP Arduino Wemos Mini Pro
WNS Wireless Sensor Networks
Greek symbols
ε Measuring error
µ mean
σ standard deviation
Subscripts
b baseline
cur actual
lev level
min minimum
max maximum
p preamble
pe operation equivalent
PHY symbols transmitted in the physical message
pk packet
r reduced
sav saved
sym symbol
thre threshold
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