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Abstract: Scene text localization is a very crucial step in the issue of scene text recognition. The major
challenges—such as how there are various sizes, shapes, unpredictable orientations, a wide range of
colors and styles, occlusion, and local and global illumination variations—make the problem different
from generic object detection. Unlike existing scene text localization methods, here we present a
segmentation-based text detector which can detect an arbitrary shaped scene text by using polygon
offsetting, combined with the border augmentation. This technique better distinguishes contiguous
and arbitrary shaped text instances from nearby non-text regions. The quantitative experimental
results on public benchmarks, ICDAR2015, ICDAR2017-MLT, ICDAR2019-MLT, and Total-Text
datasets demonstrate the performance and robustness of our proposed method, compared to previous
approaches which have been proposed.

Keywords: scene text detection; curved text detection; convolutional neural networks

1. Introduction

Automatic scene text localization is a key part in many practical daily life applications, such as
instant language translation, autonomous driving, image retrieval, scene text understanding, and scene
parsing. Despite its similarity to the traditional OCR on scanned documents, scene text is much more
challenging due to a large variation of text styles, sizes, orientations, and a wide range of complex
backgrounds, where together with occlusions, it makes it challenging to locate scene texts from images.
Therefore, accurate and robust scene text detection is still an interesting research challenge.

With the great success of convolutional neural networks (CNN) used in object detection, instance
segmentation, and semantic segmentation problems, many scene text detectors based on object
detection [1–7] and instance segmentation [8,9] have recently shown promising results. Unfortunately,
some methods failed in some complex cases, such as in the case of arbitrarily shaped and curved texts,
which is difficult to represent with a single rectangle or quadrangle used in generic object detectors, as
shown in Figure 1.

As recent developments in pixel labelling problems have gained interest, in this paper we present
a semantic segmentation-based text detector which can detect text in various shapes; however, semantic
segmentation can be used to label the text regions, and it might not be able to distinguish text instances
which are very close, thus resulting in a single merged text instance, as shown in Figure 2. To deal with
this problem, in addition to representing the text instances using only text pixel masks, our proposed
method also learns the text’s outer border and offset masks. The text’s outer border masks represent
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each text instance boundary, while the offset masks represent the distance between the shrunk text
instance polygon border and its original shape. Both can greatly help to separate the adjacent text
instances.

(a) (b) (c) (d)

Figure 1. Different representations of text instances: (a) Axis-aligned bounding boxes; (b) oriented
bounding box; (c) quadrangles; and (d) text polygons. As shown in the images, the polygon
representation is able to precisely express the location, scale, and bending of the curved text, while the
others cannot give accurate text instance locations.

(a) Original image. (b) Ground truth mask. (c) Inference text instance.

Figure 2. Merged detected text instance due to the connected segmentation map.

In this paper, we present a pipeline semantic segmentation-based text detector and extended
text representation. We first used the ResNet-50 [10] combined with the feature pyramid network
(FPN) [11] as a backbone to extract features from input images. Each scale feature was combined and
up-sampled into the input image’s original sizes. Instead of using single direct upsampling to the
original size, we applied the consecutive upsampling modules, which improved the overall training
stability and output segmentation results. The text instances were independently predicted on each
scale using a simple connected component analysis. The text border information was also used to
ensure a clear cut between each text instance. By using a simple polygon non-maximum suppression
over the entire detected text instances, we obtained the final text locations. The experimental result is
promising in terms of detection accuracy on the standard test benchmarks, including ICDAR2015 [12],
ICDAR2017-MLT [13], ICDAR2019-MLT [14], and Total-Text [15].

The contribution of this paper can be summarized as follows:

1. In addition to the text pixel masks, we also employed the offset masks and text instances border
to represent the text instances, which improves the distinguishing of contiguous text instances.

2. A post-processing pipeline to predict text instances location was proposed, which apparently
yields higher accuracy while impacting slightly on inference time.

3. The experimental results show our proposed method that has a competitive accuracy on
standard benchmarks.

The remainder of this paper is organized as follows: Section 2 discusses the previous text detection
methods. In Section 3, the proposed method is described, including the text representation, network
structure, loss function, and text instance inference details. Section 4 discusses the quantitative



Electronics 2020, 9, 117 3 of 16

experimental results on standard benchmark datasets and the effect of border augmentation. Section 5
draws final conclusions and directions for future work.

2. Related Works

Text detection is still a popular and active research area in the computer vision field. In this section,
we introduce existing scene text detection methods, which can be categorized into three main
categories: the connected component-based [16–18], detection-based [3,4,7,19,20], and semantic
segmentation-based methods [9,21,22].

Connected component-based methods: Previous works in scene text detection have
been dominated by bottom-up methods which are usually built on stroke or character detection.
Individual character is detected based on the observation of scene text characteristics, such as colors,
stroke width, enclosure contours, and geometric properties. These properties lead to classic text
detection features, such as Stroke Width Transform [16] and Maximally Stable Extremal Regions
(MSER) [17]. Then, the detected characters are grouped into words or text lines. The grouping methods
usually adopt some defined heuristic or learned rules to remove false detections. Nevertheless, the
connected component-based method might not be robust in complex scenarios due to the uncertain
scene conditions, in terms of text distortion, orientation, occlusion, reflection, and noise.

Detection-based methods: Convolutional neural networks (CNN) have demonstrated strong
capability in object detection problems. Many recent object detection frameworks, such as
proposal-based detectors (Faster-RCNN [23], Mask-RCNN [24]) and regression-based detectors
(Single Shot MultiBox Detector : SSD [25], You Only Look Once : YOLO [26]) have shown splendid
performance in various practical applications. Both proposal and regression-based methods have been
shown to produce impressive results in terms of speed and accuracy on many famous object-detection
benchmark datasets. However, scene text has a different context when compared to generic objects.
More specifically, text is significantly distinct from generic objects in many aspects, such as the various
aspect ratios and non-axis-aligned orientation. These specific characteristics make it difficult to apply
the existing object detection algorithms directly.

To handle multi-oriented scene text, R2CNN [3] employed rotatable anchors based on
Faster-RCNN. TextBoxes++ [7] modified the convolution kernel shapes and SSD anchor boxes to
effectively handle various text aspect ratios, especially long text. LOMO [19] and SPCNET [20]
formulated the text detection problem into a instance segmentation problem by using Mask-RCNN as
a base to generate both the axis-aligned bounding box and text segmentation mask, which was able
to deal with arbitrary text shapes. EAST [4] directly applied regression from CNN features to form
up-text quadrangles without using the anchor box mechanism.

Semantic segmention-based methods: Instead of detecting text in character- or word-bounding
box levels, the intentions of the methods in this group are to label the text and non-text regions at a pixel
level. PixelLink [9] proposed a method which represents the text instances in eight connected text pixel
maps, and directly infers the word level boxes by using a simple connected component. TextSnake
[21] presented the arbitrary shapes text detector by using the text region-based center line, together
with geometry attribute representation. The text lines were reconstructed by a striding algorithm from
central text line point lists. PSENet [22] utilized polygon offsetting and multi-scaled text segmentation
maps to separate and detect text. These methods usually vary in the way they express text blobs and
the method used to distinguish between each text instance.

3. Proposed Method

This section presents details of the proposed text detector, including the text representation,
network structure, loss function, and text instance inference details of our method.
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3.1. Text Representation

In many previous works, scene texts are typically represented by bounding boxes, which are 2D
rectangles containing texts. Some use axis-aligned bounding boxes, which are aligned with the axes
of the coordinate system, whereas some use oriented bounding boxes, which are arbitrarily oriented
rectangles. To make the bounding box fit the text regions more accurately, quadrangles are used.
However, in some difficult cases they are still not capable of precisely capturing text instances, such as
the texts in Figure 2 which are aligned in a curved shape. To cope with this limitation, some methods
have used text masks to represent arbitrarily shaped text instances. Nonetheless, we found that this
might not be able to separate the very close text instances. Thus, in this work, instead of using only
shrunk text masks, we combine the shrunk text masks and offset masks, which are offsetting polygons
that can be either inward or outward. In addition, to make the network able to capture different text
sizes, each original text polygon is offset into multiple scaled polygons based on its area and perimeter.
If we consider the text instance ti and polygon scaling factor α, the polygon offsetting ratio di can be
calculated from the following equation:

di =
α ∗ Area(ti)

Perimeter(ti)
(1)

The ground truth for each image consists of three components: text masks gtm, which are filled
offsetting polygons; offset masks gom, where each polygon area is filled with the di; and outer border
masks gbm, which represent each text instance border. This text representation is illustrated in Figure 3.

Figure 3. Proposed text representation: (a) Text polygon ti (yellow) and its offset version toi (red);
(b) multi-scaled text masks; (c) border masks; and (d) offset masks.

3.2. Network Structure

In this work, a fully convolutional neural network based on ResNet-50 was used as our core
network. To avoid loss of spatial information, we utilized the feature pyramid network (FPN) [11].
FPN has demonstrated a significant ability to handle multi-scaled semantic information in many recent
works. The lateral connections are built between deep and shallow feature maps in order to generate
high-quality feature maps from low-level and high semantic features. Since deconvolution causes the
checkerboard pattern on the output text masks, we utilized bilinear interpolation to upsample feature
maps to the desired input size. The output from the network contains three branches, text masks, offset
masks, and border masks. The overall network structure is shown in Figure 4.
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Figure 4. Network structure.

3.3. Loss Function

The output from the network consists of three components: text, offset, and border masks. For the
text and border masks, since the ratio between text, non-text pixels, and especially border pixels
in scene text images are greatly imbalanced, making the network tends to put more emphasis on
non-text pixels, yielding false detections when using standard binary cross-entropy loss. Since our
problem aims to maximize the overlapping regions between ground truth and the predicted mask,
there are many region-based losses which can be applied to cope with this problem, such as weighted
cross-entropy [27], tversky loss [28], and focal loss [29]. However, to maximize classification loss
efficiency, the parameters need to be tuned. To address this problem, we utilized dice loss, which
is non-parametic loss, for both the text mask Ltm and border masks Lbm, which can be formulated
as follows:

Ltm(otm, gtm) =
2 ∗∑ otm(x, y) ∗ gtm(x, y)

∑ otm(x, y)∑ gtm(x, y)
(2)

Lbm(obm, gbm) =
2 ∗∑ obm(x, y) ∗ gbm(x, y)

∑ obm(x, y)∑ gbm(x, y)
, (3)

where otm(x, y), obm(x, y), gtm(x, y), and gbm(x, y) represent the pixel value at (x, y) on the output text
masks, and border masks on their ground truth masks, respectively.

For the offset masks, to ensure good training stability, we employed smooth L1 loss. The loss
function for the offset mask can be formulated as:

Lom(oom, gom) = ∑ SmoothL1(oom(x, y)− gom(x, y)). (4)

In this work, we combined all losses into multi-task loss, L, which can be defined as:

L = λ1Ltm + λ2Lbm + λ3Lom, (5)

where λ1, λ2, and λ3 weigh the importance between text, border, and offset masks, respectively.

3.4. Text Instance Inference

After the forward pass, the network outputs are multi-scaled text masks, border, and offset masks.
We employed thresholding on both text and border masks. To ensure a clear cut between each text
instance, the border augmentation was used in combination with standard connected component
analysis to detect and separate each component.
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Border augmentation is a simple and fast operation between corresponding output text masks
otm and border masks obm, which can be defined as.

oba(x, y) =

{
1 if otm(x, y) = 1 and obm(x, y) = 0
0 otherwise,

(6)

where oba represents the output text border augmented masks.
We then calculated the text instance score using polygon scoring, which can be defined as:

P(ti) =
1
N ∑

(x,y) ∈ ti

tm(x, y), (7)

where P and N represent polygon scoring and the number of pixels in text instance ti, respectively.
Each text component is restored back to its original size by using the offset value v(ti), which can

be calculated from output offset masks oom, as follows:

v(ti) = median
(x,y) ∈ ti

{oom(x, y)}. (8)

Given such text polygon candidates with their associated scoring probabilities, we performed
polygon non-maximum suppression to discard the overlapping detections, thus obtaining the final set
of text instances.

4. Experiments

In order to evaluate the performance of the proposed method, we conducted a quantitative test
on standard benchmarks for scene text detection and compared with the existing methods.

4.1. Datasets

SynthText [30] is a large-scale, computer-generated dataset. This dataset contains about
800,000 images. The images were created by fusing natural background images with rendered text.
In order to make the text look more realistic, artificial transformations were applied, such as random
fonts, sizes, colors, and orientations. In this dataset, text instances were annotated in both word and
character levels. For this work, we utilized this dataset to pre-train our model.

ICDAR2015 [12] first appeared in the 2015 incidental scene text detection robust reading
competition. The images in this dataset were taken by Google Glasses without taking image quality
and viewpoint into consideration. This dataset contained small, blurred, and multi-oriented text
instances. There were 1500 images in total, which can be separated into 1000 training and 500 testing
images. The text instances from this dataset were labeled in word-level quadrangles.

ICDAR2017-MLT [13] is a large, multi-lingual scene text dataset. This dataset included
7200 training, 1800 validation, and 9000 testing images, containing text from nine languages. The text
instances from this dataset were annotated at word level by using four vertices quadrangles.

ICDAR2019-MLT [14] is the latest multi-lingual scene text dataset. This real-world dataset
consisted of 10,000 training and 10,000 testing images containing text from 10 languages. The text
instances from this dataset were annotated at word level by using four vertices quadrangles, as in
ICDAR2017-MLT.

Total-Text [15] is a dataset which contains both horizontal and multi-oriented text instances.
The dataset specially features curved text, which is occasionally presented in other benchmarks.
The dataset is split into training and testing sets with 1255 and 300 images, respectively.

4.2. Implementation Details

We first trained our model on the SynthText dataset for 1 epoch, and continued to train and
fine-tune on benchmark datasets until the model converged. The stochastic gradient descent (SGD)
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with momentum was used by setting the momentum and weight decay to 0.9 and 5× 10−4. During the
training on SynthText, the learning rate was initially set to 10−3, which then decayed to 10−4 until the
loss was stable. At the beginning, the batch size was set to 1, then increased to 4. We believed that
the adaptive training batch size could slightly boost the model accuracy. From the experiment, the
polygon scaling factor α was set as [0.6, 0.75, 0.9, 1.25]. The λ weighted the importance between text,
border masks, and offset, which were set to 1, 1, and 0.1, respectively.

After we obtained the pre-trained weights from SynthText, the model was then fine-tuned on
standard benchmarks, ICDAR2015, ICDAR2017-MLT, ICDAR2019-MLT, and Total-Text. The learning
rate was initially set to 10−4 and decreased by a factor of 10 at every 250 epoches. We set the batch
size as equal to 4, and trained the models on 4 × NVIDIA Tesla K-80. For the ICDAR datasets, the
non-readable text regions, which were labeled as “###”, were not used during the training. To correct
the imbalance ratio between the number of text and non-text pixels, for each text scale mask we
adopted Online Hard Negative Mining (OHEM) [31] with a ratio of 1:3. As data augmentation was
crucial to increasing the robustness of the algorithm, the following augmentations were applied:

• Photometric distortion, as described in [32].
• Image rotation in range [−30◦, 30◦], horizontal and vertical flip with a probability of 0.5.
• Image size re-scale in range [0.5, 3].
• Randomly cropping image to 512 × 512.
• Mean and standard deviation normalization.

In this work, we also introduced a mosaic data augmentation technique by randomly combining
multiple image patches into a new training image. This technique can increase the amount of training
data and algorithm robustness. The sample of input and output images is shown in Figure 5.

Figure 5. Result of a mosaic data augmentation example from four input images (best viewed in color).

The output results for each dataset depend on its ground truth representation. For the ICDAR
datasets, which represented text instances in quadrangles, we calculated the minimal area rectangle
by using the standard OpenCV function to acquire the four-point output. In the case of the arbitrary
shape text dataset, the text polygons and masks were considered as outputs.

4.3. Results

The results were evaluated by standard evaluation, depending on the dataset corresponding protocol.



Electronics 2020, 9, 117 8 of 16

4.3.1. Multi-Oriented English Text

We compared our proposed method with previous works on the ICDAR2015 dataset. The model
was fine-tuned by using a pre-trained weight from SynthText, and was further trained for 200 epoches.
In the testing stage, we scaled the longer side of the image to 1280 pixels, while still preserving the
image aspect ratio and using only single-scale testing. From the quantitative results list in Table 1, our
method gives a competitive result in terms of the f-measure. The samples of several detection results
are shown in Figure 6.

Table 1. Experimental results on standard benchmark datasets. P, R, F, and BA denote precision, recall,
f-measure, and border augmentation, respectively. The best single-scale test results from each paper
are reported.

Method

Dataset

ICDAR 2015 ICDAR2017 ICDAR2019 Total-Text

P R F P R F P R F P R F

CTPN [1] 51.6 74.2 60.9 - - - - - - - - -
EAST [4] 80.5 72.8 76.4 - - - - - - - - -
SegLink [8] 73.1 76.8 75.0 - - - - - - - - -
TextBoxes++ [7] 87.2 76.7 81.7 - - - - - - - - -
R2CNN [3] 85.6 79.7 82.5 - - - - - - - - -
PixelLink [9] 85.5 82.5 83.7 - - - - - - - - -
TextSnake [21] 84.9 80.4 82.6 - - - - - - 82.7 74.5 78.4
PSENet [22] 88.7 85.5 87.1 75.4 69.2 72.1 - - - 84.0 78.0 80.9
SPCNET [20] 88.7 85.8 87.2 73.4 66.9 70.0 - - - 83.0 82.8 82.9
Pixel-Anchor [33] 88.3 87.1 87.7 79.5 59.5 68.1 - - - - - -
PMTD [34] 91.3 87.4 89.3 85.2 72.7 78.5 87.5 78.1 82.5 - - -
CRAFT [35] 89.8 84.3 86.9 80.6 68.2 73.9 81.4 62.7 70.9 87.6 79.9 83.6
LOMO [19] 91.2 83.5 87.2 78.8 60.6 68.5 87.7 79.8 83.6 87.6 79.3 83.3
Our Method (ResNet-50 without BA) 87.2 84.9 86.0 76.8 67.4 72.1 83.3 72.4 77.9 85.2 78.2 81.5
Our Method (ResNet-50 with BA) 89.8 86.8 88.1 78.7 69.8 73.4 86.1 75.7 80.9 88.2 79.9 83.5

4.3.2. Multi-Oriented and Multi-Language Text

To verify the robustness of our proposed method on multi-language scene text detection,
we conducted the experiment on ICDAR2017-MLT and ICDAR2019-MLT datasets. The model
weight from SynthText was fine-tuned for 300 epoches on the ICDAR2017-MLT training dataset,
and 450 epoches on ICDAR2019-MLT. Since the image sizes in this dataset were not equal, we resized
the longer side of the image to 1280 pixels, while still preserving the aspect ratio and test by using only
single-scale. The experimental result on this dataset is shown in Table 1. Our method shows good and
respectable performance compared to other state-of-the-art methods. Samples of the detection results
on ICDAR2017-MLT and ICDAR2019-MLT datasets are shown in Figures 7 and 8, respectively.

4.3.3. Multi-Oriented and Curved English Text

We tested our method’s ability to detect curved and arbitrary-oriented texts on the Total-Text
dataset. Similar to the experiment on ICDAR2017-MLT and ICDAR2019-MLT, we started from the
SynthText pre-trained weights and fine-tuned them on Total-Text for 150 epoches. The experimental
results showed that our method surpassed other methods in terms of precision with respectable recall
and f-measure. Detailed results are shown in Table 1. Figure 9 shows that our method can detect
curved text in various styles, shapes, and orientations.
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Figure 6. Some example results of our proposed method on ICDAR2015 benchmark datasets (best
viewed in color).
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Figure 7. Some example results of our proposed method on ICDAR2017 benchmark datasets (best
viewed in color).
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Figure 8. Some example results of our proposed method on ICDAR2019 benchmark datasets (best
viewed in color).
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Figure 9. Some example results of our proposed method on Total-Text benchmark datasets (best viewed
in color).

4.4. Speed Analysis

We also employed a comparative experiment in terms of text detection speed. All of the
experiments were tested on NVIDIA GTX 1080 Ti and Intel i7-4770K.

As shown in Table 2, our proposed method gives a good balance between detection speed
and accuracy. In the experiment, ResNet-50 and ResNet-34 are considered as the feature extraction
backbone to trade off the speed and accuracy. If we change the backbone to ResNet-34, our proposed
method gives nearly real-time detection speed.
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Table 2. Average text detection speed on standard benchmark datasets.

Method Dataset and F-Measure results FPS
ICDAR2015 ICDAR2017 ICDAR2019 Total-Text

CTPN [1] 60.9 - - - 7.5
EAST [4] 76.4 - - - 17.1
SegLink [8] 75.0 - - - 12.2
TextBoxes++ [7] 81.7 - - - 13.2
R2CNN [3] 82.5 - - - -
PixelLink [9] 83.7 - - - -
TextSnake [21] 82.6 - - 78.4 12.7
PSENet [22] 87.1 72.1 - 80.9 9.6
SPCNET [20] 87.2 70.0 - 82.9 -
Pixel-Anchor [33] 87.7 68.1 - - -
PMTD [34] 89.3 78.5 82.5 - -
CRAFT [35] 86.9 73.9 70.9 83.6 11.2
LOMO [19] 86.0 72.1 77.9 81.5 -
Our method (ResNet-34 without BA) 83.2 67.6 72.5 78.9 26.1
Our method (ResNet-34 with BA) 84.5 68.9 75.4 80.1 25.2
Our method (ResNet-50 without BA) 86.0 72.1 77.9 81.5 18.7
Our method (ResNet-50 with BA) 88.1 73.4 80.9 83.5 17.5

4.5. Border Augmentation

To analyze the adjacent text instance separation capability of our method, we removed the entire
border augmentation part and conducted the experiment under the same configurations. As shown in
Table 1, the border augmentation can improve the result on all datasets. The sample result of border
augmentation is shown in Figure 10.

(a) (b)

(c)
Figure 10. The effect of border augmentation: (a) without border augmentation; (b) with border
augmentation; (c) close-up of adjacent text instances. As shown in the images, the border augmentation
is able to provide clear-cut and accurate text instances.
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5. Conclusions

In this paper, we presented a method based on semantic segmentation which can be used to
localize arbitrarily-oriented text in natural scene images. By using shared, multi-scaled convolution
features to learn text and offset masks, we were able to effectively pinpoint the locations of exact
text instances. The border augmentation mechanism also helps distinguish between adjacent text
components. The numerical results on different standard scene text benchmarks show the advantages
in terms of speed, while still preserving acceptable accuracy when compared to previously proposed
text detectors.

In the future, we will investigate the causes of failed detection and the possibility to build a single
and lightweight network for end-to-end scene text localization and recognition.
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