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Abstract: Multi-robot systems require collective map information on surrounding environments
to efficiently cooperate with one another on assigned tasks. This paper addresses the problem of
grid map merging to obtain the collective map information in multi-robot systems with unknown
initial poses. If inter-robot measurements are not available, the only way to merge the maps is to find
and match the overlapping area between maps. This paper proposes a tomographic feature-based
map merging method, which can be successfully conducted with relatively small overlapping areas.
The first part of the proposed method is to estimate a map transformation matrix using the Radon
transform which can extract tomographically salient features from individual grid maps. The second
part is to determine the search space using Gaussian mixture models based on the estimated map
transformation matrix. The final part is to optimize an objective function modeled from tomographic
information within the determined search space. Evaluation results with various pairs of individual
maps produced by simulations and experiments showed that the proposed method can merge the
individual maps more accurately than other map merging methods.
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1. Introduction

Multi-robot systems have received attention in recent years because they have many advantages
over single-robot systems such as time-efficiency and cost reduction [1]. Even though multiple robots
can complete not only a single task faster but also multiple tasks simultaneously, there are many
challenging problems to be resolved to realize the multi-robot systems. One of the challenging problems
is to share the knowledge of their surrounding environments because the shared knowledge is the
fundamental information for task allocation, path planning, and collision avoidance. Generally, in
multi-robot systems, the knowledge of the surrounding environments of a single robot is represented
by a grid map that consists of occupied grid points indicating obstacles and unoccupied grids indicating
empty places. Then, the shared knowledge can be obtained by merging the individual grid maps of the
robots. Note that the performance of map merging affects the performance of the overall multi-robot
system. For example, when two robots perform their own tasks, a robot can obtain the information on
unexplored areas from the merged map including the individual map of the other robot. But, if the
merged map is inaccurate, the former robot cannot efficiently perform its own task because the path
planned in the inaccurately merged map is not efficient.

If the relative initial poses among multiple robots are known to one another, the problem of map
merging can be easily solved because the map transformation matrices among the individual maps
can be derived from the relative initial poses among the robots. However, if the relative initial poses
among the robots are unknown to one another, the problem of map merging becomes more challenging
due to the lack of initial clues to map the transformation matrix. The researches on map merging with
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unknown relative initial poses can be divided into two categories, which are direct map merging and
indirect map merging.

The direct map merging is to directly acquire the map transformation matrix by obtaining the
inter-robot measurements which consist of relative distance and orientation between robots, which
can be performed under a rendezvous. Konolige et al. [2] proposed a hypothesis-and-verification
based map merging algorithm. The first step, called hypothesis, sees robots try to meet each other
with inter-robot measurements. If they succeed in meeting each other at the estimated location, the
hypothesis is accepted, which means that their maps are merged. Zhou et al. [3] proposed a geometry
and formulations to acquire the map transformation matrix using inter-robot measurements obtained
from omnidirectional vision sensors. Tungadi et al. [4] proposed a two-step map merging system which
is the combination of place recognition and laser scan matching. Kim et al. [5] presented an extension to
iSAM (incremental smoothing and mapping) to facilitate online multi-robot mapping based on multiple
pose graphs. Their method was conducted by a probabilistic approach to solving the full multi-robot
nonlinear SLAM optimization problem when robots encountered each other. Li et al. [6] proposed a
vehicle-to-vehicle relative pose estimation method using an objective function based on occupancy
likelihood and provide some concrete procedures designed in the spirit of a genetic algorithm to
optimize the defined objective function. Dinnissen et al. [7] proposed a reinforcement learning-based
map merging method using the current status of the mapping particle filters and the current status of the
environment when robots meet each other upon rendezvous, which can decide when is the best to merge.
Garcia-Cruz et al. [8] proposed a method to reduce the processing time for obstacle or robot detection,
which can be used to prevent missing the chances to obtain inter-robot measurements. Lindner et al. [9]
proposed a new approach of estimating this residual error by use of a friction model to improve
their laser scan system, which can be used to obtain inter-robot or robot-to-object measurements.
In our previous work [10], we proposed a probabilistic map merging framework for multi-robot
Rao-Blackwellized particle filter-based simultaneous localization and mapping (RBPF-SLAM). The
most appropriate map merging bases were obtained by Gaussian processes, and map merging was
performed by the inter-robot measurements. However, since the inter-robot measurements included
inevitable errors caused by imperfect sensors, the performance of the direct map merging depends
on the system configuration to acquire the inter-robot measurements. In another of our previous
works [11], we proposed a grid map merging technique based on one-way observations, which reduced
the conditions on rendezvous points. However, it needed supplementary methods to improve the
accuracy of map merging such as curvature-based map matching and particle swarm optimization.

The indirect map merging acquires the map transformation matrix by finding and matching the
overlapping areas of the individual maps of robots, which is called map matching. Generally, map
matching techniques define an objective function which represents how much the individual maps
are matched. Then, they find iteratively the map transformation matrix as the optimal solution of
the objective function. Zhou et al. [3] used the nearest neighbor test as a map matching algorithm
to improve the accuracy of direct map merging based on inter-robot measurements. Birk et al. [12]
proposed a good index to indicate the similarity between individual maps for map merging and
applied it to the random walk stochastic search algorithm. Leon et al. [13] mentioned that their
main problem was to obtain very precise inter-robot detection for map merging. They solved the
problem by laser scan matching techniques. Wang et al. [14] also used the well-known scan matching
technique, ICP (iterative closest points), to more accurately merge individual maps. Saeedi et al. [15,16]
proposed a combined approach to map merging, which includes image preprocessing, neural networks,
cross-correlation, approximating the relative transformation matrix, tuning of the transformation
through the Radon image transform and similarity index. Howard [17] proposed the concept of the
virtual robot traveling backward in time to build a complete map. After direct map merging with
the inter-robot measurements, the virtual robots traveled backward in time and updated the past
information iteratively to improve the accuracy of the merged map. However, his work was developed
in the framework of iterative processes which could cause much computation time. Carpin [18] tackled
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the iterative process of the conventional map matching algorithms using spectral information on
robot maps. His method reduced computation time compared with the previous grid map matching
techniques in a deterministic and non-iterative manner. In another previous work [19], we proposed a
variant of spectra-based map merging algorithm using virtual supporting lines, which was suitable for
merging not grid maps but feature maps.

This paper proposes a tomographic feature-based map merging method for multi-robot systems
with unknown initial poses, which is categorized as indirect map merging. The first part of the
proposed method is to estimate a map transformation matrix using the Radon transform which can
extract tomographically salient features from individual grid maps. The second part of the proposed
method is to determine the search space using Gaussian mixture models based on the estimated map
transformation matrix. The final part of the proposed method is to optimize an objective function
modeled from tomographic information within the determined search space. No predetermined
rendezvous between robots and no common landmark between maps and no a priori information on
overlapping regions between maps are required in the proposed map merging method. The remainder
of this paper is organized as follows. In Section 2, the formulation of the map transformation and the
problem of the overlapping areas in grid map merging are described. In Section 3, the proposed grid
map merging method is presented in detail. Section 4 shows experimental results with public grid
map data and a real multi-robot system. Finally, in Section 5, we give conclusions.

2. Problem Description

2.1. Map Merging in Multi-Robot Systems

When multi-robot systems with unknown initial poses are utilized to explore unknown areas, each
robot has built the individual map of the explored areas by the simultaneous localization and mapping
(SLAM) technique with range or vision sensors. If a laser scan sensor is used as the range sensor, the
individual map is generally represented by a grid map that consists of occupied, unoccupied, and
unknown grids. To efficiently obtain a collective map for the surrounding environments, the robots
should share and merge accurately their own individual maps. The map merging technique is the
key to reducing the cost for exploration, which is the main advantage of multi-robot systems because
the individual maps of the different robots represent the different parts of the given environment.
When the map merging technique is implemented, the issue of the missing data may be raised.
The missing data can be considered as two categories: systematic missing data and environmental
missing data. First, the systematic missing data may occur from communication systems between
robots, which depends on the real-time performance of the robot platforms. In this work, I assumed
that the systematic missing data does not occur to focus on improving the accuracy of a map merging
algorithm. This assumption can be relaxed by analyzing the timing diagram of communications
between individual robots and optimizing the number of messages and the period of transmissions.
The detailed description for solving the problem of real-time communications is presented in my
previous works [20,21]. The problem of the systematic missing data may be considered in my future
work. Second, the environmental missing data may occur from the occlusion between individual
robots, which means that a structure or an object may be differently observed due to the different
trajectories of the robots and the limitations of sensor ranges and line-of-sight. In other words, for the
same structure, one robot can observe the large part of the structure, but the other robot can observe
the small part structure. In the worst-case, the other robot can observe nothing for the same structure.
However, it is hard that the information on the occlusion is unknown for individual robots in real
multi-robot systems, which is the most challenging point of map merging algorithms. If the information
on the occlusion is known for individual robots, the level of difficulty of map merging becomes low
because it can be avoided that matching missing data from one robot with missing data from another
robot as you commented. However, this is not a reasonable assumption because the information on
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the occlusion is generally unknown for individual robots in real multi-robot systems. Consequently,
the difficulties caused by the environmental missing data should be overcome by algorithmic abilities.

Grid map merging can be formulated as follows. A 2D grid map M is assumed as a matrix with
nr rows and nc columns, which can be regarded as a nr × nc binary image. Each grid contains map
information on the location represented by the grid in the global coordinate system. For convenient
map transformation, M is represented as a matrix with three rows and Nocc columns. Nocc is the number
of occupied grids in the original M. The first and second rows represent x-coordinate and y-coordinate
of the occupied grids, respectively. The last row is filled with 1 so that the computation with a map
transformation matrix (MTM) is performed conveniently. Given two grid maps, M1 and M2, the MTM
T which translates ∆x in the direction of x-coordinate and ∆y in the direction of y-coordinate, and
rotates ∆θ in a counter-clockwise is defined as follows:

T
(
∆x, ∆y, ∆θ

)
=


cos ∆θ −sin ∆θ ∆x

sin ∆θ cos ∆θ ∆y

0 0 1

, (1)

where M2 = TM2. Here, M2 is a new map rotated and translated from M2, which is represented in the
same coordinate system with M1.

2.2. The Accuracy of Map Merging

To fully take advantage of multi-robot systems, the map merging should be accurately conducted to
provide accurate collective information on the surrounding environments for each robot. For example,
if a robot refers to the merged map including non-exploring areas, the robot will decide its own
collision-free and efficient path to complete the assigned tasks through the merged map. If the merged
map is not accurate, the robot may be faced with unexpected collisions or task failure. When robots use
the measurements of relative robot poses for map merging, inevitable errors caused by the uncertainties
of sensors and communications should be considered. Besides, the measurements of relative robot
poses may not be available due to the limitations of extreme environments and unexpected damages
on sensors. Therefore, it is hard to solve the problem of map merging solely with direct observation for
relative poses among the robots.

This paper focuses on the indirect map merging technique which obtains the MTM between the
individual maps by finding and matching the overlapping areas among them, which can be successfully
conducted without any inter-robot measurements. If the corridors are perfectly orthogonal or symmetric,
map merging cannot be accurately conducted because there are multiple maximum correlations. In that
case, map merging needs additional methods as visual features and indoor localization systems.
This work has been conducted with an assumption that the explored environments are not orthogonal
or symmetric corridors. Although the conventional indirect map merging techniques have their
own advantages, they are commonly faced with the problem of local maxima or minima. There are
several hybrid works to avoid the local maxima or minima using one-way observation [11] or common
landmarks [1], however, they do not meet the conditions in this work. This paper proposes a new
map merging method using tomographic features, which can avoid the local maxima or minima more
robustly with no inter-robot measurements and no a priori information on overlapping regions.

3. Proposed Method

This section describes the proposed map merging method using tomographic features without
any initial relative poses among individual robots. The proposed method consists of three parts which
are the estimation of a coarse MTM using the Radon transform, the search space determination using
the multivariate normal distribution, and the acquisition of a fine MTM based on tomographically
derived score function.
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3.1. Estimation of the MTM Using Tomographic Features

The Radon transform [22] is an integral transform which consists of the integral of a function
over straight lines. The Radon transform data is often called a sinogram because the Radon transform
of a Dirac delta function is a distribution supported on the graph of a sine wave. Let f (x, y) be a
continuous function vanishing outside some large disc in R2 as shown in Figure 1a. The straight line L
is parametrized by:

(x(t), y(t)) = ((t sinα+ s cosα), (−t cosα+ s sinα)), (2)

where t is a parameter for the parametric form of L, and s is the distance of L from the origin, and α is
the angle of the normal vector to L with the x axis. The Radon transform, RT f , is a function defined on
the space of straight lines L in R2 by the line integral along each such line:
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RT f (s,α) =
∫
∞

−∞
f (x(t), y(t))dt

=
∫
∞

−∞
f ((t sinα+ s cosα), (−t cosα+ s sinα))dt

≡ S f .
(3)

The visualization of S f called sinogram is shown in Figure 1b, which is 3D data with intensity
along α-s axes. The tomographic features represented by the sinogram can be used to find the salient
parts for grid map merging.

3.1.1. Estimation of a Rotation Angle

In the sinogram of a grid map, tomographic features are represented by the variation of column-wise
levels according to α, which can give the clue to the shape of the grid map. Especially, αmax at the
location of the maximum level indicates that the most elongated direction of the grid map is αmax − 90

◦

.
For example, if the maximum intensity of S f in Figure 1b appears at

(
3, 106

◦
)
, the most elongated

direction of f (x, y) is 16
◦

. Therefore, the rotation angle between two grid maps can be estimated by
comparing the locations indicating the maximum levels in their sinograms.

Figure 2 shows two individual grid maps, M1 and M2, which are generated from the whole
map of ACES3 [23]. The sizes of M1 and M2 are respectively r1 × c1 and r2 × c2. Their sinograms are
respectively generated for 0

◦

≤ α ≤ 180
◦

as follows:

SM1 = RTM1(s,α), −ρ1 ≤ s ≤ ρ1, (4)

SM2 = RTM2(s,α), −ρ2 ≤ s ≤ ρ2, (5)
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where ρn is the maximum s-value of SMn which are computed as follows:

ρn =

⌈√
(rn − r∗n)

2 + (cn − c∗n)
2
⌉
+ 1, (6)

where the center of M1 is
(
r∗1, c∗1

)
=

(⌊ r1+1
2

⌋
,
⌊ c1+1

2

⌋)
, and the center of M2 is

(
r∗2, c∗2

)
=

(⌊ r2+1
2

⌋
,
⌊ c2+1

2

⌋)
.

Here, d·e denotes a ceiling function, and b·c denotes a floor function.
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Let (s1,max,α1,max) and (s2,max,α2,max) be the locations of the maximum levels in SM1 and SM2 .
Then, the rotation angle ∆θ between M1 and M2 can be estimated as follows:

∆θ = α2,max − α1,max. (7)

For example, the given maps and their sinograms as shown in Figure 3, since α2,max = 106
◦

and
α1,max = 91

◦

, the rotation angle ∆θ = 15
◦

. Note that in this work since the sinograms were extracted for
the range of 0 ≤ α ≤ 180

◦

as shown in Figure 3, the problem of Moebius strip symmetry of sinogram
can be avoided. Consequently, the rotation angle is acquired from −180

◦

≤ ∆θ ≤ 180
◦

.
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3.1.2. Estimation of X-Y Translations

The tomographic features represented in sinograms also provide the clue to translations between
two grid maps. Based on the estimated rotation angle ∆θ at the previous step, M̃2 is obtained by
rotating M2 of ∆θ as follows:

M̃
a
2 = T(0, 0, ∆θ)Ma

2, (8)

where M̃
a
2 and Ma

2 are the alternative forms of M̃2 and M2, respectively. The alternative form is another
version of the original grid map, which is a 3 ×Nocc matrix for the convenient matrix calculation,
where Nocc is the number of occupied grid points. The first and second rows represent the x and
y coordinates of occupied grid points, respectively. The last row is filled with 1 for the convenient
matrix multiplication.

The size of M̃2 is r̃2 × c̃2. For 0
◦

≤ α ≤ 180
◦

, the sinogram of M̃2 is generated as follows:

SM̃2
= RTM̃2

(s,α), −ρ̃2 ≤ s ≤ ρ̃2, (9)

where ρ̃2 is the maximum s-value of SM̃2
, which is computed as follows:

ρ̃2 =


√(̃

r2 − r̃∗2
)2
+

(̃
c2 − c̃∗2

)2
+ 1, (10)

The estimation of each translation can be obtained by finding the s-value which maximizes
the cross-correlation between two partial sinograms corresponding to a certain α-value. Each partial
sinogram indicates the distribution of grids along the α direction, which means that it is the distribution
of s corresponding to the α-value. Given SMn with 2ρn + 1 rows and φn columns generated from
the n-th map Mn with rn rows and cn columns, the partial sinogram corresponding to the α′-value is
defined as follows:

PSα
′

Mn
(t) = SMn(t− ρn − 1,α′), 0 < t ≤ 2ρn + 1, (11)

where ρn is the maximum s-value of SMn , which can be computed by (6).
Especially, the partial sinogram of s for x and y axes may be simply computed with α′ = 180

◦

and α′ = 90
◦

such as PS180
◦

Mn
(s) and PS90

◦

Mn
(s). However, since the sizes of the maps are generally

different as shown in M2 and M̃2, the partial sinograms for x and y axes are redefined to obtain the
cross correlation function between them. In other words, they should be represented with the same
dimension, which is defined as the maximum size of the maps M1 and M̃2 as follows: rm = max(r1, r̃2)

and cm = max(c1, c̃2). Then, the partial sinograms of M1 for x and y axes are respectively redefined by

PSX
M1

(i) =

 PS180
◦

M1

(
i + ρ∗1 − c∗m

)
1 ≤ i ≤ 2c∗m + 1

0 otherwise
, (12)

PSY
M1

( j) =

 PS90
◦

M1

(
j + ρ∗1 − r∗m

)
1 ≤ j ≤ 2r∗m + 1

0 otherwise
, (13)

where ρ∗1 =
⌈ 2ρ1+1

2

⌉
, c∗m =

⌈
2cm+1

2

⌉
, and r∗m =

⌈
2rm+1

2

⌉
.

The partial sinograms of
~

M2 for x and y axes are similarly redefined. Then, the X and Y translation
amounts between M1 and M̃2 can be estimated by finding the arguments which maximize the discrete
cross correlation between their partial sinograms. The discrete cross correlation between them for
x-axis is computed as follows:

CCXM1M̃2
(τ) =

 ∑
∞

k=−∞ XSM1(K + τ)XSM̃2
(k) 1 ≤ τ ≤ cm

0 otherwise
, (14)
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where cm is the maximum column size of the map matrices M1 and M̃2. Within the maximum range,
the discrete cross-correlation is computed. Otherwise, it is zero. Figure 4 shows the visualization of
PSX

M1
, PSX

M̃2
, and CCXM1M̃2

, respectively. Similarly, the cross correlation between them for y-axis is

computed as follows:

CCY
M1

~
M2

(υ) =

 ∑
∞

l=−∞ YSM1(l + υ)YS ~
M2

(l) 1 ≤ υ ≤ rm

0 otherwise
, (15)

where rm is the maximum row size of the map matrices M1 and M̃2. Within the maximum range, the
discrete cross-correlation is computed. Otherwise, it is zero. Figure 5 shows the visualization of PSY

M1
,

PSY
M̃2

, and CCY
M1

~
M2

, respectively.
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Finally, the X-translation and the Y-translation amounts between the maps are respectively
obtained by selecting the argument which maximizes CCX

M1
~

M2
and CCY

M1
~

M2
as follows:

∆x = argmax
τ

CCXM1M̃2
(τ) , (16)

∆y = argmax
υ

CCYM1M̃2
(υ) . (17)

Then, since the elements of the MTM between M1 and M2 are completely computed, M2 can be
merged into M1 by rotation and translations.
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3.2. Search Space Determination with Gaussian Mixture Models

The MTM estimated by matching the tomographic features of the individual maps may be
inaccurate due to inevitable transformation errors and local maxima. The more accurate MTM can be
obtained by optimization algorithms, but it requires too much computation time because the initially
given search space is too large. In the proposed method, the search space can be efficiently determined
using Gaussian mixture models (GMMs). The search range for the rotation angle is determined using a
univariate Gaussian mixture model (UGMM), and the search space for the translations is determined
using a multivariate Gaussian mixture model (MGMM).

First, the numbers of the reference points in SM1 and SM2 to determine the means and standard
deviations of the univariate random variable for the rotation angle are respectively determined with
the concept of entropy as follows:

Nθ1 =
⌈
−

∑
p1 log2 p1

⌉
, (18)

Nθ2 =
⌈
−

∑
p2 log2 p2

⌉
, (19)

where p1 and p2 are respectively the histograms of SM1 and SM2 . Then, the reference points for each
sinogram are extracted by Nθ1 and Nθ2 in the descending order of the intensities of SM1 and SM2 as
follows: Θ1 =

{
α1,n

}
n=1,··· ,NUGMM

and Θ2 =
{
α2,n

}
n=1,··· ,NUGMM

where NUGMM = min
(
Nθ1 , Nθ2

)
, which

is the number of the univariate random variables for the rotation angle. Then, means of the univariate
random variable for the rotation angle are calculated as follows:

Ωθ =
{
α2,n − α1,n

∣∣∣ α1,n ∈ Θ1,α2,n ∈ Θ2
}
. (20)
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The above equation can be rewritten for the simplicity as follows: Ωθ
′ =

{
βi
∣∣∣βi ∈ Ωθ

}
i=1,··· ,NUGMM

.
The standard deviations of the univariate random variable is calculated as follows:

Σθ =
{
σθ,i

∣∣∣∣∣σθ,i =
√(∑

p1 log2 p1

)(∑
p2 log2 p2

)}
i=1,··· ,NUGMM

(21)

Next, the means of the multivariate random variable for X and Y translations are respectively
calculated using the sets of peak locations, ΛX and ΛY which are sorted in the descending order of the
correlation values of CCXM1M̃2

and CCY
M1

~
M2

as follows:

ΩX = {τn | τn ∈ ΛX}n=1,··· ,NMGMM
, (22)

ΩY = {νm | νm ∈ ΛY}m=1,··· ,NMGMM
, (23)

where NMGMM = max
(⌈
−

∑
px log2 px

⌉
,
⌈
−

∑
py log2 py

⌉)
. Here, px and py are the histograms of

CCX
M1

~
M2

and CCY
M1

~
M2

, respectively. The standard deviations for the multivariate random variables

are respectively calculated using the obtained observation points and the coarse MTM as follows:

ΣX =
{
σx,i

∣∣∣∣∣σx,i =
√(∑

px log2 px

)(∑
py log2 py

)}
i=1,··· ,NMGMM

, (24)

ΣY =
{
σy,i

∣∣∣∣∣σy,i =
√(∑

px log2 px

)(∑
py log2 py

)}
i=1,··· ,NMGMM

. (25)

Now, if there is no dependency among the variances, the covariance matrices of the multivariate
random variables for X and Y translations are calculated using ΣX and ΣY as follows:

ΣXY =

{[
σx,i 0
0 σy,i

]
| σx,i ∈ ΣX, σy,i ∈ ΣY

}
i=1,··· ,NMGMM

(26)

3.3. Optimization for the More Accurate MTM

The estimation results of the MTM with tomographic features presented in Section 3.1 may contain
slight mismatches due to inevitable sensing errors. If the multi-robot system requires a more accurate
MTM, the accuracy of the MTM can be improved by modeling the objective function and optimizing it.
In this paper, we propose a new objective function based on tomographic information. Also, this paper
presents how the Monte-Carlo optimization (MCO) algorithm can be applied to map merging with the
proposed objective function. The overall optimization algorithm is summarized in Table 1.

The sampling process in the MCO is divided into two categories such as the rotation angle
sampling from the UGMM and the translation amounts sampling from the MGMM. One-dimensional
candidates for the rotation angle and two-dimensional candidates for the translation amounts are
respectively sampled from the UGMM and the MGMM as follows:

T̂θ ∼ N1(Ωθ
′, Σθ), (27)

T̂xy ∼ N2

([
ΩX

ΩY

]
,
[

ΣX 0
0 ΣY

])
, (28)

where the numbers of components in T̂θ and T̂xy are respectively represented as Ns,θ and Ns,xy, which are
user-defined parameters. Then, the set of three-dimensional combined candidates, Γ =

{
T̂1, · · · , T̂Ns

}
,

are obtained by connecting each candidate in T̂θ with each candidate in T̂xy, where Ns = Ns,θNs,xy.
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The sampled configuration is evaluated by the objective function which indicates how the
tomographically salient features in the individual maps are matched as follows:

Υn
(
M1, T̂nM2

)
=

Kd∑
k=1

[
P̂Sα

′

M1
(k) − P̂Sα

′

T̂nM2
(k)

]
, (29)

where Kd is the length of saliency check points. P̂Sα
′

M1
and P̂Sα

′

T̂nM2
are respectively sorted forms in the

descending order of PSα
′

M1
and PSα

′

T̂nM2
, where α′ is generally set to 90

◦

or 180
◦

. After the evaluation of
all sampled configurations is over, the best MTM for map merging is obtained by:

Tbest = argmax
T̂n∈Γ

Υn
(
M1, T̂nM2

)
. (30)

Table 1. Optimization to acquire the more accurate MTM (map transformation matrix).

Algorithm: Monte-Carlo optimization for the more accurate MTM

Input: Given individual maps: M1 and M2
The mean set and variance set of the UGMM: Ωθ

′ and Σθ
The mean vector set and covariance set of the MGMM: ΩX, ΩY, and ΣXY

Output: The best MTM in Tbest

1: Determine the number of samples Ns,θ and Ns,xy, where Ns = Ns,θNs,xy
2: Initialize the objective function Υ

3: Sample one-dimensional candidates T̂θ for the rotation angle in Eq. (27)
4: Sample two-dimensional candidates T̂xy for the translation amounts in Eq. (28)

5: Obtain the set of three-dimensional combined candidates, Γ by combining
^
Tθ and T̂xy

6: Define the normal distribution with µMND and ΣMND
7: for n= 1 to NS do
8: Pick the n-the candiate T̂n from Γ

9: Obtain T̂nM2 by transforming M2 using T̂n

10: Calculate the n-th value of the objective function Υn
(
M1, T̂nM2,

)
in Eq. (29)

11: end for
12: Take T̂n indicating the maximum of the objective function in Eq. (30)
13: return Tbest

4. Evaluation Results

4.1. Simulation Results

To test and evaluate the performance of the proposed method, the individual maps were generated
from the whole map produced by one of the public datasets [23], which is also used to describe the
proposed method in the previous sections. The result of merging the individual maps using the
proposed method is shown in Figure 6. The proposed method does not always outperform the other
map merging methods. This is because the accuracy of indirect map merging without any initial
correspondences methods depends on not only the size of overlapping areas but also the shape of
overlapping areas. A map merging method works well in a certain case with overlapping areas, but
it does not work well in other cases with the same amount of overlapping areas because its shape is
hard for the method. In other words, even though there are enough overlapping areas, the method
may not work well due to the shape of the overlapping areas. Therefore, the accuracy of map merging
methods should be evaluated by average and standard deviation from the various cases of overlapping
areas as many as possible. Therefore, for the quantitative evaluation of the proposed map merging
method, one hundred different pairs of individual maps were randomly produced from the whole
map and rearranged according to the average ratio of overlapping areas to individual maps as shown
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in Figure 7. The maximum average ratio and the minimum average ratio were 0.8532 and 0.1929,
respectively. To evaluate the accuracy of a result MTM, Tresult, obtained by the proposed method or
other methods, a matching index Ψ was defined as follows:

Ψ(M1, TresultM2) =

∑a2
x=a1

∑b2
y=b1

M1(x, y) · [TresultM2(x, y)]

Noverlap
(31)

where Noverlap is the number of occupied grids in overlapping areas, and the sizes of M1 and M2 are
commonly as a1 ≤ x ≤ a2 and b1 ≤ y ≤ b2.
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The performance of the proposed method was compared with spectra-based map merging
(SMM) [18] because it is a well-known grid map merging method with unknown initial correspondences.
Also, the proposed method was compared with a local feature descriptor matching method such
as SURF (speeded up robust features) [24], Harris corner detection (HCD) [25], and maximum
eigenvalue-based corner detection (MEV) [26]. Also, the proposed method was compared with the
intensity-based image registration method (REG) because it is similar to this work in the context that
each individual map can be regarded as a binary image. The comparison results with the different
pairs of individual maps are shown in Figure 8. In some cases, the accuracy of the proposed method
was similar to others or lower than others, but the differences were not significant. The proposed
method showed consistently good accuracy and averagely better performance than others. For the
statistical comparison and analysis, the averages and standard deviations of the matching indices with
the proposed method and other methods are summarized in Table 2, which indicates that the proposed
method can work consistently better than the other methods.
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Figure 8. Comparison of matching indices with the proposed method and other methods according to
the different pairs of individual maps produced from the whole map in simulations. The matching
indices with the proposed method were consistently higher than those with other methods.

Table 2. Comparison of the averages and standard deviations of matching indices with different
methods in simulations and experimental data.

Type Proposed. SMM SURF HCD MEV REG

Sim.
Avg. 0.9457 0.5970 0.7244 0.3209 0.3487 0.2351

Std. Dev. 0.0334 0.4442 0.2553 0.4122 0.4140 0.3292

Exp. Avg. 0.9393 0.6665 0.0543 0.6507 0.0596 0.0756
Std. Dev. 0.0552 0.1557 0.0483 0.2668 0.0658 0.0232

4.2. Experimental Results

The performance of the proposed method was also tested by individual maps produced by a real
multi-robot system in indoor environments. The multi-robot system was composed of three mobile
robots with laser scan sensors and a wireless router. The robot was Pioneer3-DX, and the laser scan
sensor was Hokuyo UTM-30LX. The indoor environment was the third floor of the Automation and
Systems Research Institute at Seoul National University. Its size is about 48 m × 17 m. Two individual
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maps were produced by the multiple robots using our multi-robot SLAM framework as shown in
Figure 9, and the sinograms of them are shown in Figure 10. The individual maps were successfully
merged by the proposed method as shown in Figure 11.Electronics 2019, 2, x FOR PEER REVIEW  14 of 18 

 

 
(a) Map 3, 𝐌  (b) Map 4, 𝐌  

Figure 9. The individual maps, (a) 𝐌  and (b) 𝐌 , produced by three robots in indoor environments. 

 
(a)  𝐒𝐌 : the sinogram of 𝐌  (b) 𝐒𝐌 : the sinogram of 𝐌  

Figure 10. The sinograms, 𝐒𝐌  and 𝐒𝐌 , of the individual maps produced by three robots in indoor 
environments. 

 

Figure 11. The result of merging the individual maps, 𝐌  and 𝐌 , which are produced from 
experiments. 

To evaluate the accuracy of the proposed algorithm according to the ratio of overlapping areas 
to individual maps, the matching indices should be measured with various cases in the experimental 
environment. Thus, the translation amounts and the rotation angles were randomly selected and 
combined into various pairs of individual maps. Then, they were rearranged according to the average 
ratio of overlapping areas to individual maps, which are represented by the blue dotted line as shown 
in Figure 12. Differently from the simulation results, the accuracy of map merging was significantly 
affected by the number of overlapping areas due to the errors in individual maps. Therefore, the 
matching indices were analyzed according to the average ratio of overlapping areas to individual 

Figure 9. The individual maps, (a) M3 and (b) M4, produced by three robots in indoor environments.

Electronics 2019, 2, x FOR PEER REVIEW  14 of 18 

 

 
(a) Map 3, 𝐌  (b) Map 4, 𝐌  

Figure 9. The individual maps, (a) 𝐌  and (b) 𝐌 , produced by three robots in indoor environments. 

 
(a)  𝐒𝐌 : the sinogram of 𝐌  (b) 𝐒𝐌 : the sinogram of 𝐌  

Figure 10. The sinograms, 𝐒𝐌  and 𝐒𝐌 , of the individual maps produced by three robots in indoor 
environments. 

 

Figure 11. The result of merging the individual maps, 𝐌  and 𝐌 , which are produced from 
experiments. 

To evaluate the accuracy of the proposed algorithm according to the ratio of overlapping areas 
to individual maps, the matching indices should be measured with various cases in the experimental 
environment. Thus, the translation amounts and the rotation angles were randomly selected and 
combined into various pairs of individual maps. Then, they were rearranged according to the average 
ratio of overlapping areas to individual maps, which are represented by the blue dotted line as shown 
in Figure 12. Differently from the simulation results, the accuracy of map merging was significantly 
affected by the number of overlapping areas due to the errors in individual maps. Therefore, the 
matching indices were analyzed according to the average ratio of overlapping areas to individual 

Figure 10. The sinograms, SM3 and SM4 , of the individual maps produced by three robots in
indoor environments.

Electronics 2019, 2, x FOR PEER REVIEW  14 of 18 

 

 
(a) Map 3, 𝐌  (b) Map 4, 𝐌  

Figure 9. The individual maps, (a) 𝐌  and (b) 𝐌 , produced by three robots in indoor environments. 

 
(a)  𝐒𝐌 : the sinogram of 𝐌  (b) 𝐒𝐌 : the sinogram of 𝐌  

Figure 10. The sinograms, 𝐒𝐌  and 𝐒𝐌 , of the individual maps produced by three robots in indoor 
environments. 

 

Figure 11. The result of merging the individual maps, 𝐌  and 𝐌 , which are produced from 
experiments. 

To evaluate the accuracy of the proposed algorithm according to the ratio of overlapping areas 
to individual maps, the matching indices should be measured with various cases in the experimental 
environment. Thus, the translation amounts and the rotation angles were randomly selected and 
combined into various pairs of individual maps. Then, they were rearranged according to the average 
ratio of overlapping areas to individual maps, which are represented by the blue dotted line as shown 
in Figure 12. Differently from the simulation results, the accuracy of map merging was significantly 
affected by the number of overlapping areas due to the errors in individual maps. Therefore, the 
matching indices were analyzed according to the average ratio of overlapping areas to individual 

Figure 11. The result of merging the individual maps, M3 and M4, which are produced
from experiments.

To evaluate the accuracy of the proposed algorithm according to the ratio of overlapping areas to
individual maps, the matching indices should be measured with various cases in the experimental
environment. Thus, the translation amounts and the rotation angles were randomly selected and
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combined into various pairs of individual maps. Then, they were rearranged according to the
average ratio of overlapping areas to individual maps, which are represented by the blue dotted
line as shown in Figure 12. Differently from the simulation results, the accuracy of map merging
was significantly affected by the number of overlapping areas due to the errors in individual maps.
Therefore, the matching indices were analyzed according to the average ratio of overlapping areas to
individual maps, which are represented by the red solid line as shown in Figure 12. In the microscopic
context, it was difficult to find any patterns for the matching index between the individual maps since
there were many abrupt changing points in the matching index. But, in the macroscopic context,
the matching index gradually decreases according to the average ratio. Even though the matching
index decreased as the average ratio decreased, the proposed method showed relatively high matching
indices for all the cases of individual maps.
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Figure 12. The average ratio of overlapping areas to the various pairs of the individual maps of
the merged map in experiments and the corresponding matching indices. One-hundred and twenty
different pairs of individual maps were randomly produced from the merged map and rearranged
according to the average ratio of overlapping areas to individual maps. The matching index between
the individual maps decreases macroscopically according to the average ratio.

For more comparative analysis, the matching indices of the proposed method with the different
pairs of individual maps were compared with those of the SMM, SURF, HCD, MEV, and REG, which
are shown in Figure 13. For the statistical comparison and analysis, the averages and standard
deviations of the matching indices with the proposed method and other methods are summarized
in Table 2. The SMM showed relatively high matching indices, but its accuracy abruptly decreased
for a low average ratio of overlapping areas. The HCD also showed relatively high matching indices,
which was much different from the simulation results. However, its abrupt decrease in the accuracy
of map merging was larger than the SMM, and its average matching index was also smaller than
not only the proposed method but also the SMM. The SURF showed low matching indices even
though it showed relatively high matching indices for map merging in simulations. The MEV and
REG did not show acceptable performance. These varying results indicate that the accuracy of the
descriptor-based map matching methods highly depends on the shape and quality of individual maps.
In other words, although a descriptor-based map matching method was good for map merging in a
certain environment, its accuracy could not be guaranteed for map merging in different environments.
Consequently, the matching indices of the proposed method were higher than those of other methods,
which verifies that the proposed method is more accurate than the others.
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Figure 13. Comparison of matching indices with the proposed method and other methods according
to the different pairs of individual maps produced from real experimental data. The matching indices
with the proposed method were consistently higher than those with other methods.

The computational times were quantitatively compared using averages and standard deviations
from as shown in Table 3. Since the sizes of individual maps in simulations were larger than
those in experiments, the computational times in simulations were overall smaller than those in
experiments. The average of the computational times of the proposed method was larger than the
others except for REG. This is because the Monte-Carlo optimization included in the proposed method
to improve the accuracy of map merging requires much computational time due to its iterative property.
Note that the computational times decreased by about 56.64% when Monte-Carlo optimization is
excluded from the proposed method, which was similar to the others as shown in Table 3. If the total
computational time of the proposed method is larger than the update period of the collective map
of the multi-robot system, one can consider acceleration methods based on graphics processing unit
(GPU) [27] or field-programmable gate array (FPGA) [20], which will be researched more thoroughly
in my future work.

Table 3. Comparison of the averages and standard deviations of the computational times with different
methods in simulations and experimental data (unit: sec).

Type Proposed. Proposed. w/o MCO SMM SURF HCD MEV REG

Sim.
Avg. 7.6219 3.3047 3.1527 5.3756 4.7475 4.8870 17.3969

Std. Dev. 1.1282 0.3013 0.4235 0.3948 0.4463 0.3995 1.2543

Exp. Avg. 0.3766 0.1781 0.1531 0.2198 0.4297 0.3017 0.6509
Std. Dev. 0.0432 0.0223 0.1263 0.0480 0.0907 0.0613 0.1208

5. Conclusions

The grid map merging without any information on initial robot poses or inter-robot measurements
is one of the challenging problems in multi-robot systems. Especially, if the overlapping area between
maps is insufficient, it is too difficult to accurately merge the given individual maps. This paper
proposed a new map merging method using tomographic features, which can be conducted well
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with relatively small overlapping area. The evaluation results showed that the proposed method can
successfully merge the given individual maps with relatively small overlapping areas, and its accuracy
was higher than other map merging methods.
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