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Abstract: The fundamental motion model of the conventional block-based motion compensation in
High Efficiency Video Coding (HEVC) is a translational motion model. However, in the real world,
the motion of an object exists in the form of combining many kinds of motions. In Versatile Video
Coding (VVC), a block-based 4-parameter and 6-parameter affine motion compensation (AMC) is
being applied. In natural videos, in the majority of cases, a rigid object moves without any regularity
rather than maintains the shape or transform with a certain rate. For this reason, the AMC still has
a limit to compute complex motions. Therefore, more flexible motion model is desired for new video
coding tool. In this paper, we design a perspective affine motion compensation (PAMC) method
which can cope with more complex motions such as shear and shape distortion. The proposed PAMC
utilizes perspective and affine motion model. The perspective motion model-based method uses four
control point motion vectors (CPMVs) to give degree of freedom to all four corner vertices. Besides,
the proposed algorithm is integrated into the AMC structure so that the existing affine mode and
the proposed perspective mode can be executed adaptively. Because the block with the perspective
motion model is a rectangle without specific feature, the proposed PAMC shows effective encoding
performance for the test sequence containing irregular object distortions or dynamic rapid motions
in particular. Our proposed algorithm is implemented on VTM 2.0. The experimental results show
that the BD-rate reduction of the proposed technique can be achieved up to 0.45% and 0.30% on Y
component for random access (RA) and low delay P (LDP) configurations, respectively.

Keywords: video coding; motion estimation; motion compensation; affine motion model; perspective
motion model; VVC

1. Introduction

Video compression standard technologies are increasingly becoming more efficient and complex.
With continuous development of display resolution and type along with enormous demand for
high quality video contents, video coding also plays a key role in display and content industries.
After standardizing H.264/AVC [1] and H.265/HEVC [2] successfully, Versatile Video Coding (VVC) [3]
is being standardized by the Joint Video Exploration Team (JVET) of ITU-T Video Coding Experts
Group (VCEG) and ISO/IEC Moving Picture Experts Group (MPEG). Obviously, the HEVC is
a reliable video compression standard. Nevertheless, more efficient video coding scheme is required
for higher-resolution and the newest services such as UHD and VR.
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To develop the video compression technologies beyond HEVC, experts in JVET have been actively
conducting much research. VVC provides a reference software model called as VVC Test Model
(VTM) [4]. At the 11th JVET meeting, VTM2 [5] was established with the inclusion of a group of new
coding features as well as some of HEVC coding elements.

The basic framework of VVC is the same as HEVC, which consists of block partitioning, intra
and inter prediction, transform, loop filter and entropy coding. Inter prediction, which aims to obtain
a similar block in the reference frames in order to reduce the temporal redundancy, is an essential
part in video coding. The main tools for inter prediction are motion estimation (ME) and motion
compensation (MC). Finding precise correlation between consecutive frames is important to final
coding performance. Block matching based ME and MC have been implemented in the reference
software model of the previous video compression standards such as H.264/AVC and H.265/HEVC.
The fundamental motion model of the conventional block-based MC is a translational motion model.
In the early research, a translational motion model-based MC cannot address complex motions in
natural videos such as rotation and zooming. Such being the case, during the development of the
video coding standards, further elaborate models are required to handle non-translational motions.

Non-translational motion model-based studies have also been presented in the early research on
video coding. Seferidis [6] and Lee [7] proposed deformable block based ME algorithms, in which
all motion vectors (MVs) at any position inside a block can be calculated by using control points
(CPs). Besides, Cheung and Siu [8] proposed to use the neighboring block’s MVs to estimate the affine
motion transformation parameters and added an affine mode. After those, affine motion compensation
(AMC) has begun to attract attention. A local zoom motion estimation method was proposed to
achieve more coding gain by Kim et al. [9]. In this method, they used to estimate some zoom-in/out
cases of the object or background part. However they dealt with just zoom motion cases using the
H.264/AVC standard.

Later, Narroschke and Swoboda [10] proposed an adjusted AMC to HEVC coding structure by
investigates the use of an affine motion model with analyzing variable block size. Huang et al. [11]
extended the work in [8] for HEVC and included the affine skip/direct mode to improve coding
efficiency. Also, Heithausen and Vorwerk [12] investigated different kinds of higher order motion
models. Moreover, Chen et al. [13] proposed the affine skip and merge mode. In addition,
Heithausen [14] developed a block-to-block translational shift compensation (BBTSC) technique which
related to the advanced motion vector prediction (AMVP) [15] and improved the BBTSC algorithm by
applying the translational motion vector field (TMVF) in [16]. Li [17] proposed the six-parameter affine
motion model and extended by simplifying model to four-parameter and adding gradient-based fast
affine ME algorithm in [18]. Because the trade-off between the complexity and coding performance is
attractive, the scheme in [18] was proposed to JVET [19] and was accepted as one of the core modules of
Joint Exploration Model (JEM) [20,21]. After that, Zhang [22] proposed a multi model AMC approach.
At the 11th JVET meeting in July 2018, modified AMC of JEM was integrated into VVC and Test Model
2 (VTM2) [5] based on [22].

Although AMC has significantly improved performance over the conventional translational
MC, there is still a limit to finding complex motion accurately. Affine transformation is a model that
maintains parallelism based on the 2D plane, and thus cannot work efficiently for some sequences
containing object distortions. In actual videos, motion by a non-affine transformation appears more
generally than by an affine transformation with such restriction. Figure 1 shows an example of
a non-affine transformation in nature video. When a part of an object is represented by a rectangle,
the four vertices must operate independently of each other to illustrate the deformation of the
object most similarly. Even though different frames have the same object, if the depth or viewpoint
information changes, the motion can not be completely estimated by affine transformation model.
For this reason, more flexible motion model is desired for new coding tool to raise the encoding quality.

The method using basic warping transformation model results in high computational complexity
and bit overhead because of the large number of parameters. Therefore, it is necessary to apply a model
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that is not greatly increased for bit overhead compared to the existing AMC and has flexibility enough
to replace the warping transformation model.

In this paper, we propose a perspective affine motion compensation (PAMC) method which
improve coding efficiency compared with the AMC method of VVC. Compared to prior-arts, this paper
presents two practical contributions to AMC. First, a perspective transformation model is designed
in the form of MVs so that it can be used in AMC. It is an eight parameter based motion model that
requires four CPMVs. Second, we propose a multi-motion model switch approach based framework
to operate adaptively with AMC. In other words, six and four parameter model-based AMC and eight
parameter-based perspective ME/MC are performed to select the best coding mode adaptively.

This paper is organized as follows. In Section 2, we first present AMC in VVC briefly. The proposed
perspective affine motion compensation (PAMC) is introduced in Section 3. The experimental results
are shown in Section 4. Finally, Section 5 concludes this paper.

Figure 1. Example of a non-affine transformation [23].

2. Affine Motion Estimation/Compensation in VVC

HEVC standard apply translational motion model to find a corresponding prediction block.
The translational motion model cannot describe complex motion such as rotation and zooming.
Moreover, it cannot represent combined multiple motion. In VVC, an affine motion compensation
(AMC) is implemented which supports 4-parameter and 6-parameter motion model. The motion model
for the AMC prediction method in the VVC is defined for three motions: translation, rotation and
zooming. Affine transformation is based on the use of a 6-parameter model. Furthermore, a simplified
4-parameter model is applied for AMC in VVC. In addition, two affine motion modes namely affine
inter-mode and affine merge-mode are added to AMC module. If affine inter-mode is used for a coding
unit (CU), algorithm for affine inter-mode is designed to predict the MVs at CPs. In prediction process,
a gradient-based ME algorithm is used as an encoder. When a CU is applied in affine merge-mode,
the MVs at CPs are derived from the spatial neighbouring CU.

2.1. 4-Parameter and 6-Parameter Affine Model

As shown in Figure 2, the affine motion vector field (MVF) of a CU is described by control point
motion vectors (CPMVs): (a) two CPs (4-parameter) or (b) three CPs (6-parameter). CP0, CP1 and CP2

are defined as the top-left, top-right and bottom-left corners. For 4-parameter affine motion model,
MV at sample position (x, y) in a CU is derived as

mvh(x, y) = mvh
1−mvh

0
W x− mvv

1−mvv
0

W y + mvh
0,

mvv(x, y) = mvv
1−mvv

0
W x +

mvh
1−mvh

0
W y + mvv

0.

(1)

For 6-parameter affine motion model, MV at sample position (x, y) in a CU is derived as
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mvh(x, y) = mvh

1−mvh
0

W x +
mvh

2−mvh
0

H y + mvh
0,

mvv(x, y) = mvv
1−mvv

0
W x +

mvv
2−mvv

0
H y + mvv

0.

(2)

where (mvh
0, mvv

0), (mvh
1, mvv

1) and (mvh
2, mvv

2) are MVs of CP0, CP1 and CP2 respectively. W and H
present width and height of the current CU. The mvh(x, y) and mvv(x, y) are the horizontal and vertical
components of MV for the position (x, y).

CP 0 CP 1

Current CU

(a)

CP0 CP1

Current CU

CP2

(b)

Figure 2. Affine motion vector control points: (a) 4-parameter motion model, (b) 6-parameter
motion model.

To simplify the AMC, a block based AMC is applied. Figure 3 shows an example of sub block
based MV derivation in a CU. The MV at the center position of each 4 × 4 sub block is derived from
CPMVs and rounded to 1/16 fraction accuracy. Then the motion compensation interpolation filters are
used to generate the prediction block of each sub-block with derived motion vector.

Figure 3. Affine motion vector field per sub-block.

2.2. Affine Inter Mode and Merge Mode

If a CU is coded with affine inter-mode, {mv0, mv1} for 4-parameter model or {mv0, mv1, mv2} for
6-parameter model are signaled directly from the encoder to the decoder. At this moment, the difference
of the CPMV of current CU and the control point motion vector prediction (CPMVP) is signaled in the
bitstream. Moreover, flags for parameter type and affine mode are also signaled. Affine inter mode can
be applied for CUs with both width and height larger than or equal to 16. The CPMVP candidate list
size is 2 and it is derived by using the three types of CPMVP candidate generation phase in order:

1. CPMVPs extrapolated from the CPMVs of the spatial neighbour blocks



Electronics 2019, 8, 993 5 of 15

2. CPMVPs constructed using the translational MVs of the spatial neighbour blocks
3. CPMVPs generated by duplicating each of the HEVC AMVP candidates

As shown in Figure 4, neighboring blocks A, B, C, D, E, F and G are involved for generating
CPMV candidate. First, if there are affine coded blocks through searching from A to G, add the
CPMVs of the neighbour blocks to the CPMVP candidate list of the current CU. If the number
of candidate list is smaller than 2, construct virtual CPMVP set which is composed of translational
MVs {(mv0, mv1, mv2)|mv0 = {mvA, mvB, mvC}, mv1 = {mvD, mvE}, mv2 = {mvF, mvG}, }. When the
number of candidate list is still less than 2, finally, the list padded by the MVs composed by duplicating
each of the AMVP candidates. An RD cost check process is applied to determine best CPMVP of
current CU and an index indicating best CPMVP is signaled in bitstream.

Current CU

A B

C

D E

F

G

mvA

mvB

mvC

mvD

mvE

mvF

mvG

Figure 4. CPMVP candidate list for affine inter mode.

When a CU is applied in affine merge mode, the process finds the first coded block by affine mode
among the neighbour candidate blocks. The selection order for the candidate block is from left, above,
above right, left bottom to above as shown in Figure 5. After the CPMVs of the current CU are derived
from the first neighbour block according to the affine motion model equation, the motion vector field
of the current CU is generated. Like the affine inter mode, mode flag is signaled in bitstream.

A

B C

D

E

Current CU

Figure 5. Candidate list for affine merge mode.

3. Proposed Perspective Affine Motion Estimation/Compensation

Affine motion estimation in the VVC is applied since it is more efficient than translational motion
compensation. The coding gain can be increased by delicately estimating motion on the video sequence
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in which complex motion is included. However, still it has a limit to accurately find all motions in the
natural video.

Affine transformation model has properties to maintain parallelism based on the 2D plane,
and thus cannot work efficiently for some sequences containing object distortions or dynamic motions
such as shear and 3D affine transformation. In real world, numerous moving objects have irregular
motions rather than regular translational, rotation and scaling motions. So, more elaborated motion
model is needed for video coding tool to estimate motion delicately.

The basic warping transformation model can estimate motion more accurately, but this method is
not suitable because of its high computational complexity and bit overhead by the large number of
parameters. For these reasons, we propose a perspective affine motion compensation (PAMC) method
which improve coding efficiency compared with the existing AMC method of the VVC. The perspective
transformation model-based algorithm adds one more CPMV, which gives degree of freedom to all
four corner vertices of the block for more precise motion vector. Furthermore, the proposed algorithm
is integrated while maintaining the AMC structure. Therefore, it is possible to adopt an optimal mode
between the existing encoding mode and the proposed encoding mode.

3.1. Perspective Motion Model for Motion Estimation

Figure 6 shows that the proposed perspective model with four CPs (b) can estimate motion
more flexible compared with the affine model with three CPs (a). Affine motion model-based MVF
of a current block is described by three CPs which are matched to {mv0, mv1, mv2} in illustration.
On the other hand, one more field is added for perspective motion model-based MVF. It is composed
of four CPs which are matched to {mv0, mv1, mv2, mv3}. As can be seen from Figure 6, one vertex
of the block can be used additionally, so that motion estimation can be performed on various types
of rectangular bases. Each side of the prediction block obtained through motion estimation based
on the perspective motion model has various lengths and does not has to be parallel. The typical
eight-parameter perspective motion model can be described as:

x′ = p1x+p2y+p3
p7x+p8y+1 ,

y′ = p4x+p5y+p6
p7x+p8y+1 .

(3)

where p1, p2, p3, p4, p5, p6, p7 and p8 are eight perspective model parameters. Among them, parameters
p7 and p8 serve to give the perspective to motion model. With this characteristic, as though it is
a conversion in the 2D plane, it is possible to obtain an effect that the surface on which the object is
projected is changed.

Reference Picture

Current Picture

Prediction

Block

Current

Block

(a)

Reference Picture

Current Picture
Prediction

Block

Current

Block

(b)

Figure 6. The motion models: (a) 6-parameter affine model with three CPs, (b) perspective model with
four CPs.

Instead of these eight parameters, we used four MVs to equivalently represent the perspective
transformation model like the technique applied to AMC of the existing VTM. In video codecs, using
MV is more efficient in terms of coding structure and flag bits. Those four MVs can be chosen at any
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location of the current block. However, in this paper, we choose the points at the top left, top right,
bottom left and bottom right for convenience of model definition. In a W x H block as shown in Figure 7,
we denote the MVs of (0, 0), (W, 0), (0, H), and (W, H) pixel as mv0, mv1, mv2 and mv3. Moreover,
we replace p7 ·W + 1 and p8 · H + 1 with a1 and a2 to simplify the formula. The six parameters p1, p2,
p3, p4, p5 and p6 of model can solved as following Equation (4):

p1 =
a1(mvh

1−mvh
0)

W ,

p2 =
a2(mvh

2−mvh
0)

H ,

p3 = mvh
0,

p4 =
a1(mvv

1−mvv
0)

W ,

p5 =
a2(mvv

2−mvv
0)

H ,

p6 = mvv
0.

(4)

In addition, p7 ·W and p8 · H can solved as Equation (5):
p7 ·W =

(mvh
3−mvh

2)(2mvv
0−mvv

1)+(mvv
3−mvv

2)(mvh
1−2mvh

0)

(mvv
3−mvv

2)(mvh
3−mvh

1)+(mvh
3−mvh

2)(mvv
3−mvv

1)
,

p8 · H =
(mvh

3−mvh
1)(2mvv

0−mvv
1)+(mvv

3−mvv
1)(mvh

1−2mvh
0)

(mvv
3−mvv

1)(mvh
3−mvh

2)+(mvh
3−mvh

1)(mvv
3−mvv

2)
.

(5)

Based on Equations (4) and (5), we can derive MV at sample position (x, y) in a CU by following
Equation (6): 

mvh(x, y) =
a1(mvh

1−mvh
0)

W x+
a2(mvh

2−mvh
0)

H y+mvh
0

a1−1
W x+ a2−1

H y+1
,

mvv(x, y) =
a1(mvv

1−mvv
0)

W x+
a2(mvv

2−mvv
0)

H y+mvv
0

a1−1
W x+ a2−1

H y+1
.

(6)

Current CU

mv0 mv1

mv2

mv3

W

H

(W, H)

(0, 0) (W, 0)

(0, H)

Figure 7. The representation of vertices for perspective motion model.

With the AMC, the designed perspective motion compensation also is also applied by 4 × 4 sub
block-based MV derivation in a CU. Similarly, the motion compensation interpolation filters are used
to generate the prediction block.
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3.2. Perspective Affine Motion Compensation

Based on the aforementioned perspective motion model, the proposed algorithm is integrated
into the existing AMC. A flowchart of the proposed algorithm is shown in Figure 8. Each motion model
has its own strength. As the number of parameters increases, the precision of generating a prediction
block increases. So at the same time, more bit signaling for CPMVs is required. It is effective to use the
perspective motion model with four MVs is appropriate for reliability. On the other hand, if only two
or three MVs are sufficient, it may be excessive to use four MVs. To take advantage of each motion
model, we propose an adaptive multi-motion model-based technique.

Save results for best predic!on mode

is_affine

0 1

Transla!onal 

mode

affine_type

0 21

4-parameter 

affine mode 

6-parameter 

affine mode 

Perspec!ve 

mode 

<Flag for best predic!on mode>

Start perspec!ve predic!on

Conduct perspec!ve ME

Check best mode 

between result in step (1) and step (2)

Conduct MC

Step (2)

Start affine predic!on

Conduct affine ME for 4-parameter

Compute affine4paramCost

Update affineCost

Conduct affine ME for 6-parameter

Compute affine6paramCost

affineCost < hevcCost*1.05

affineCost < affine6paramCost 

Reset to 4-parameter affine inter mode

Update affineCost

hevcCost < affineCost

Reset to hevc me result

Conduct MC

Step (1)

Figure 8. Flowchart of the proposed overall algorithm.

After performing fundamental translational ME and MC as in HEVC, the 4-parameter and
6-parameter affine prediction process is conducted first in step (1). Then, the proposed perspective
prediction process is performed as step (2). After that, we check the best mode between result in
step (1) and step (2) by RD cost check process in a current CU. Once the best mode is determined,
the flag for prediction mode are signaled in the bitstream. At this time, two flags are required: affine
flag and affine type flag. If the current CU is finally determined in affine mode, the affine flag is true
and false otherwise. In other words, if the affine flag is false, only translational motion is used for
ME. An affine type flag is signaled for a CU when its affine flag is true. When an affine type flag is 0,
4-parameter affine motion model is used for a CU. If an affine type flag is 1, 6-parameter affine motion
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model-based mode is used. Finally, when an affine type flag is 2, it means that the current CU is coded
in the perspective mode.

4. Experimental Results

To evaluate the performance of the proposed PAMC module, the proposed algorithm was
implemented on VTM 2.0 [24]. The 14 test sequences used in the experiments were from class A
to class F specified in the JVET common test conditions (CTC) [25]. Experiments are conducted under
random access (RA) and low delay P (LDP) configurations and four base layer quantization parameters
(QP) values of 22, 27, 32 and 37. We used 50 frames in each test sequence. The objective coding
performance comparison was evaluated by the Bjontegaard-Delta Rate (BD-Rate) measurement [26].
The BD-Rate was calculated by using piece-wise cubic interpolation.

Table 1 shows the overall experimental results of the proposed algorithm for each test sequence
compared with VTM 2.0 baseline. Compared with the VTM anchor, we can see that proposed PAMC
algorithm can bring about 0.07% and 0.12% BD-Rate gain on average Y component in RA and LDP
cases respectively, and besides it can be up to 0.45% and 0.30% on Y component for random access (RA)
and low delay P (LDP) configurations, respectively. Especially in LDP, shows better gain averagely.
Compared to the RA, which allow bi-directional coding schemes so have two or more prediction
blocks, LDP has one predication block. For the inter prediction algorithm, the coding performance
depends on the number of reference frames. For these reason, when the novel algorithm is applied to
the existing encoder, the coding efficiency is higher in the LDP configuration.

Table 1. BD-Rate (%) performance of the proposed algorithm, compared to VTM 2.0 Baseline.

Class Sequence Resolution
RA LDP

Y U V Y U V

A Campfire 3840 × 2160 −0.09% −0.02% 0.06% - - -
CatRobot1 3840 × 2160 −0.10% 0.41% 0.33% - - -

B
RitualDance 1920 × 1080 −0.04% 0.15% 0.22% −0.06% 0.55% 0.01%

BasketballDrive 1920 × 1080 −0.14% −0.05% 0.44% −0.06% 0.28% 0.47%
BQTerrace 1920 × 1080 −0.08% −0.11% −0.03% −0.08% 0.38% −0.16%

C BasketballDrill 832 × 480 −0.09% −0.12% −0.16% −0.02% 0.04% −0.15%
PartyScene 832 × 480 −0.06% −0.21% −0.04% 0.01% 0.46% 0.24%

D BQSquare 416 × 240 0.03% 0.45% −0.04% −0.03% −0.42% −1.87%
RaceHorses 416 × 240 0.07% −0.76% 0.09% −0.25% 0.21% 0.49%

E FourPeople 1280 × 720 - - - −0.16% −0.58% 0.15%
KristenAndSara 1280 × 720 - - - 0.07% −0.22% 0.03%

F
BasketballDrillText 832 × 480 −0.01% −0.18% 0.25% −0.07% −0.57% −0.28%

SlideEditing 1280 × 720 −0.07% −0.03% −0.03% −0.28% −0.22% −0.47%
SlideShow 1280 × 720 −0.30% 1.29% 0.19% −0.45% −1.39% 0.08%

Avg. −0.07% 0.07% 0.11% −0.12% −0.12% −0.12%

Although there were a small BD-rate losses of chroma components, the chroma components are
usually less sensitive to the perception of human eye for recognition. So the luminance component is
more important to measure the performance. The proposed algorithm achieved up to 0.45% and in the
most of sequences, the coding gain was obtained in Y component (luminance component) although
they were small value in some sequences such as BasketballDrill, PartyScene, and BQsquare with RA
configuration. For RaceHorse, SlideEditing, and FourPeople sequences in LDP configuration, 0.25%,
0.28%, and 0.45% of DB-rate savings of Y component were observed in Table 1.

Some examples of rate-distortion (R-D) curves are shown in Figure 9. The R-D curves also verify
that the proposed perspective affine MC can achieve better coding performance compared with the
VTM baseline. It can be seen from Figure 9 that the proposed algorithm works more efficiently than
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the existing affine MC algorithm in both the LDP and RA configurations. For LDP coding condition,
it is more efficient in QP = 32 and QP = 37 cases and for RA coding condition, it seems to have an effect
on QP = 22 and QP = 27.

(a) SlideShow in LDP mdoe.

(b) SlideShow in RA mdoe.
Figure 9. The R-D curves of the proposed perspective affine MC framework.

To improve the coding efficiency through the proposed algorithm, the test sequence have to
contain irregular object distortions or dynamic rapid motions. Figure 10 shows the examples of
perspective motion area in test sequences. Figure 10a–c present the examples of sequence “Campfire”,
“CatRobot1” and “BQTerrace”, respectively. The class A sequence “Campfire” contains a bonfire
that moves inconsistently and steadily. Also “CatRobot1” contains a lot of flapping scarves and
a flipped book, and class B sequence “BQTerrace” involves the ripples on the surface of the water.
All of such moving objects commonly include object distortions whose shape changes. Because of
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this, those sequences can be compressed more efficiently by the proposed framework. The results of
“Campfire” and “CatRobot1” sequences show that proposed PAMC achieves 0.09% and 0.10% BD-Rate
savings respectively on Y component in RA. The result of “BQTerrace” sequence shows a coding gain
of 0.08% on Y component for both RA and LDP.

Figure 11 shows an example of comparing AMC in VVC and the proposed PAMC using
“CatRobot1” sequence. It is a result for POC 24 encoded by setting QP 22 in RA. Figure 11a presents
the coded CU with affine mode in VVC baseline and Figure 11b shows the coded CU with affine and
perspective mode in the proposed framework. If the unfilled rectangles imply the CUs coded in affine
mode and the filled rectangles imply the CUs coded in perspective mode, in Figure 11b, some filled
rectangles can be found on scarves and on the pages of a book. The class B sequences “RitualDance”
and “BasketballDrive” and class C sequence “BasketballDrill”, which contain dynamic fast movements,
can also be seen to bring coding gains in both RA and LDP configurations. For the three sequences
mentioned above, performance result shows that proposed PAMC results in 0.04%, 0.14%, and 0.09%
BD-Rate savings respectively on Y component in RA. In LDP configuration, BD-Rate gains are 0.06%,
0.06% and 0.02% respectively on Y component.

In class F which has the screen content sequences, rapid long range motions as large as half
a frame often happen like browsing and document editing. Even in this case, the proposed PAMC
algorithm can bring BD-Rate gain. In particular, the “SlideShow” sequence gives the largest coding
gain resulting in 0.30% and 0.45% BD-Rate savings on Y component in RA and LDP respectively.
Besides, on U component in LDP, it brings 1.39% of BD-Rate gain.

When the resolution of sequence is too small such as class D, the sequence contains a small
amount of textures and object content. Therefore, it is possible to estimate the motion accurately with
only using further enhanced configuration. For that reason, it can be seen from the result of class D that
proposed algorithm contributes to overall coding gain in LDP but not in RA. The result of “BQSquare”
sequence shows that proposed PAMC achieves 0.03%, 0.42% and 1.87% BD-Rate savings on Y, U and V
components respectively in LDP. For “RaceHorces” sequence, the result shows 0.25% of BD-Rate gain
on Y component in LDP.

As the proposed algorithm is designed to better describe the motion with distortion of object shape,
some equirectangular projection (ERP) format sequences [27] are selected to verify the performance of
the proposed algorithm. Figure 12 shows an example of ERP sequence. Figure 12a presents a frame of
the “Broadway” sequence and Figure 12b shows a enlarged specific area of the frame. Figure 12c shows
a picture in posterior frame for the same area. The ERP produces significant deformation, especially in
the pole area. It can be obviously seen from Figure 12 that the distortion of the building object occurs.
Perspective motion model can take such deformation into account when compressing the planar video
of panoramic content.

The R-D performance of the proposed algorithm for the ERP test sequences is illustrated in Table 2.
From Table 2, we can see that the proposed framework can be up to 0.15% on Y component for low
delay P (LDP) configuration. The experimental results obviously demonstrate that the proposed
perspective affine motion model can well represent the motion with distortion of object shape.

As shown in some video coding research [28,29], the results show 0.07% and 0.12% BD-Rate
gain on average, respectively. Furthermore, several advanced affine motion estimation algorithms in
JVET meeting documents [30–32], the results show 0.09%, 0.09% and 0.13% BD-Rate gain on average
Y component. Compared with these results, the performance of the proposed algorithm is also
competitive. Moreover, our proposed method contributes in that the encoder can be more robust in
natural videos by proposing a flexible motion model for affine ME, one of the main inter prediction
tools of the existing VTM codec.
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(a) Campfire. (b) CatRobot1.

(c) BQTerrace.

Figure 10. An examples of perspective motion area in test sequences.

(a) AMC in VVC.

(b) Proposed PAMC.

Figure 11. An example of CUs with affine or perspective motion, CatRobot1, RA, QP22, POC24.



Electronics 2019, 8, 993 13 of 15

Figure 12. An example of the ERP format sequence (Broadway).

From experimental results, the designed PAMC achieved better coding gain compared to VTM 2.0
Baseline. It means that the proposed PAMC scheme can be applied for providing better video quality
in terms of a limited network bandwidth environment.

Table 2. BD-Rate (%) performance of the proposed algorithm for ERP format sequences compared to
VTM 2.0 Baseline.

Sequence Resolution
LDP

Y U V

Broadway 6144 × 3072 −0.15% 0.03% −0.19%
Freefall 6144 × 3072 −0.13% 0.12% 0.35%

BranCastle2 6144 × 3072 −0.08% −0.11% −0.28%
Balboa 6144 × 3072 −0.10% −0.06% 0.17%

Avg. −0.12% −0.01% 0.01%

5. Conclusions

In this paper, an efficient perspective affine motion compensation framework was proposed to
estimate further complex motions beyond the affine motion. Affine motion model has properties
which maintains parallelism, and thus cannot work efficiently for some sequences containing object
distortions or rapid dynamic motions. In the proposed algorithm, an eight-parameter perspective
motion model was first defined and analyzed. Like the technique applied to AMC of existing VTM,
we designed four MVs based motion model instead of using eight parameters. Then the perspective
motion model-based motion compensation algorithm was proposed. To take advantage of each
affine and perspective motion model, we proposed an adaptive multi-motion model-based technique.
The proposed framework was implemented in the reference software of VVC. We experimented
with two kinds of sequences. In addition to experimenting with JVET common test condition
sequences, we demonstrated the effectiveness of the proposed algorithm by showing the results for
the equirectangular projection format sequences. The experimental results showed that the proposed
perspective affine motion compensation framework could achieve much better BD-Rate performance
compared with the VVC baseline especially for sequences that contain irregular object distortions or
dynamic rapid motions.

Although the proposed algorithm improved the inter-prediction of the VVC video standard
technology, there is still room for further improvement. For future studies, the higher-order motion
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models should be investigated and applied for three-dimensional modeling of motion. Higher-order
models can improve the accuracy of irregular motion, but they can result in an increase in the number
of bits, as these parameters must be sent together. Considering these points, an approximation model
should also be conducted to be compatible for the VVC standard.
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