
electronics

Article

Performance-Aware Scheduling of Parallel
Applications on Non-Dedicated Clusters

Alberto Cascajo *, David E. Singh and Jesus Carretero

Computer Science and Engineering Department, Universidad Carlos III de Madrid,
Avenida Universidad 30, Leganés, 28911 Madrid, Spain
* Correspondence: acascajo@inf.uc3m.es

Received: 1 August 2019; Accepted: 29 August 2019; Published: 2 September 2019
����������
�������

Abstract: This work presents a HPC framework that provides new strategies for resource management
and job scheduling, based on executing different applications in shared compute nodes, maximizing
platform utilization. The framework includes a scalable monitoring tool that is able to analyze the
platform’s compute node utilization. We also introduce an extension of CLARISSE, a middleware for
data-staging coordination and control on large-scale HPC platforms that uses the information provided
by the monitor in combination with application-level analysis to detect performance degradation
in the running applications. This degradation, caused by the fact that the applications share the
compute nodes and may compete for their resources, is avoided by means of dynamic application
migration. A description of the architecture, as well as a practical evaluation of the proposal, shows
significant performance improvements up to 20% in the makespan and 10% in energy consumption
compared to a non-optimized execution.
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1. Introduction

Currently, one of the key challenges in cluster computing is the development of scalable
components that operate in a coordinated manner for a more efficient use of hardware resources.
Over the past few years, researchers have studied ways of improving the scheduling model taking into
account the application characteristics [1]. Traditionally, in HPC, schedulers assign compute nodes
in a static way following two different allocation policies. The first one consists of running different
applications on different nodes in order to provide exclusive access to the hardware resources [2].
This provides application isolation at the expense of a degree of under-usage of computational resources
when the number of the application processes is smaller than the number of existing cores. The second
allocation policy involves sharing the compute nodes between different applications. This allows
for more efficient use of the resources given that now it is possible to pack several small-sized
applications on the same compute node, maximizing platform utilization [3]. However, with this
latter option, the running applications may now interfere competing for the compute node resources
(like the last-level cache memory or the network controller) potentially producing a degradation in the
application performance.

This work addresses these challenges by providing a novel interference-aware technique that is
able to detect when two applications experience interference (referred to as hot-spots in this work)
called hot-spot) that produces a performance degradation. Additionally, we present a methodology
to overcome this degradation by migrating one of the applications to a different compute node.
The solution presented in this paper includes a prototype of a malleable scheduler and an extension of
CLARISSE [4], a middleware for data-staging coordination and control on large-scale HPC platforms.
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This extension includes new functionalities in CLARISSE, and provides its integration with the
application scheduler, the LIMITLESS monitor [5] and the FlexMPI runtime [6].

LIMITLESS is a scalable light-weight monitor that analyzes the compute nodes and detects
interference-related hazards on the executing applications. FlexMPI provides MPI application with
monitoring and malleable capabilities. The hot-spot detection is carried out by a combination of
compute node and application monitoring, performed by LIMITLESS and FlexMPI, respectively.
The conflicting applications are migrated by means of the malleable capabilities provided by FlexMPI.
This paper provides a detailed description of the architecture as well as a practical evaluation on
a real platform. As far as we know, this is the first work that coordinates these three features
(system/application-level monitoring, scheduling and malleability) in a unified framework to enhance
the system utilization.

To summarize, the main contributions of this work are:

• LIMITLESS, a light-weight scalable monitor that evaluates the compute-node status and provides
resource allocation based on different policies.

• An extension of CLARISSE that includes control components integrated with LIMITLESS and
FlexMPI, as well as a performance-aware policy for avoiding conflicts between applications.

• An execution framework that includes a scheduler that works in cooperation with the previous
components. This framework permits execution of workflows and dynamically migrates the
running applications when CLARISSE detects interference-related hot-spots.

• An extensive performance evaluation that demonstrates the capabilities of CLARISSE to enhance
application performance and the cluster throughput.

The structure of the paper is as follows: Section 2 describes the architecture organization; Section 3
provides a detailed description of the framework components; Section 4 provides a practical evaluation
of the CLARISSE middleware and LIMITLESS monitor; Section 5 shows relevant works related to our
proposal; Finally, Section 6 summarizes the main conclusions.

2. Architecture Organization

2.1. Software and Management Tools

The previous implementation of CLARISSE provided an elastic load-aware collective I/O
technique and cross-application parallel I/O scheduling policies. This work extends CLARISSE’s
functionalities integrating system and application monitoring as well as an interference-aware policy.
Figure 1 shows CLARISSE’s structure that consists of three components corresponding to data, control,
and policy layers. The data plane is responsible for staging data between applications and storage
or between different applications. This component is related to I/O management, a topic that is not
considered in this paper.

Scheduler
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Data plane
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controller
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controller
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Figure 1. Diagram that illustrates the separation of data plane, control, and policy in CLARISSE and
the interaction with the different software and management tools of the platform.

The control plane consists of three controllers: I/O, LIMITLESS and FlexMPI. Originally, the
I/O controller acted as a coordination framework of data staging, including the functionalities of I/O
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load balancing, I/O scheduling, and resilience. The new functionalities incorporate the LIMITLESS
controller that gathers system-wide monitoring alerts and provides a global view of the platform status.

FlexMPI controller is related to application-oriented control actions that include the use of
monitoring, dynamic load balancing and malleable reconfiguration. The monitoring can be selectively
activated in order to obtain application-related performance metrics like execution time as well as
hardware-counter information such as FLOPS and cache misses. Dynamic load balance permits the
distribution of the application workload based on the performance of each compute-node and takes
into account whether the CPU resources are exclusive or shared between different applications [7].
By means of malleability, FlexMPI controller can dynamically send commands to create or destroy the
applications processes and, in the case of creation, allocate them to certain compute nodes.

Finally, the policy layer includes different policies that leverage the information gathered by the
previous layers. The I/O-related policies include an elastic collective I/O and a parallel I/O scheduling
policy [4]. In this work, we extend this layer with a novel interference-aware policy that is able to
detect hot-spots and prevent performance degradation of the running applications.

2.2. Overview

Figure 2 shows a general overview of our scalable framework. The central part corresponds to
the cluster’s compute nodes organized into two racks. The upper half of the figure corresponds to
LIMITLESS middleware, responsible for the monitoring of the platform resources. It consists of one
LIMITLESS Daemon Monitor (LDM) per compute node that periodically gathers different metrics related
to the compute node status, another LIMITLESS DaeMon Aggregators (LDA) that gathers information
on the node’s LDMs (arrows 1) and sends them to the LIMITLESS DaeMon Server (LDS) (arrow 2),
which processes and stores the information in a database and includes a GUI. Moreover, the LDS
locally analyzes the monitor metrics and notifies the LIMITLESS controller (arrow 3) when a compute
node has a hot spot. In this work, we consider three different classes of interference: use of nearly all
the existing node memory (RAM hot spot), conflicting accesses to the node network interface (NET
hot spot), and cache-related conflicts (CACHE hot spot).
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Figure 2. System architecture.

The lower half of Figure 2 shows the scheduler that is responsible for executing the new
applications according to the availability of resources. FlexMPI consists of a library that is executed
with the applications and is connected to CLARISSE’s FlexMPI controller (arrow 4) that collects the
application-related monitoring metrics. Finally, CLARISSE’s policy manager performs the analysis
and coordination of the running applications. It leverages the information provided by both the
LIMITLESS monitor and FlexMPI (arrows 5 and 6) in order to verify whether a hot-spot in a compute
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node produces a real performance degradation of the applications running on it. If the degradation
exists, then the policy manager is responsible for sending the control command to the scheduler
(arrow 7) and FlexMPI (arrow 6) for migrating one of the applications to a different compute node.
In this work, LIMITLESS also acts as a resource manager that provides (arrow 8) resource allocation
for each application that is executed or migrated.

We now introduce how the framework works with a practical example. Let’s assume that
each compute node in Figure 2 consists of 12 cores and that there are two applications with 18 and
30 processes ready to be executed. Application 1 is firstly executed in nodes 1 and 2 with 12 and
6 processes, respectively. The scheduler monitors the application (using FlexMPI) and extracts different
performance metrics. Then, application 2 is executed in a similar way, being allocated in compute
nodes 3, 4 and 5, with 12, 12, and 6 processes, respectively. Note that all the nodes are exclusively
used by each application, thus, when the performance metrics are collected by FlexMPI, there is
no risk of interference with other applications. After that, the six processes in compute node 5 are
dynamically migrated (using FlexMPI) to compute node 2, which becomes a shared node. Note that,
with this strategy, only four compute nodes are used (instead of five which would be the case if the
application was be exclusively allocated), saving resources and energy. Note also that this stage can be
avoided when the runtime has previous information about the application performance, for instance,
by recording performance from previous executions. In this case, the applications could be directly
allocated in shared nodes.

Let’s now assume that applications 1 and 2 create a cache-related interference in node 2.
This interference is detected by the LDM and is notified to the LDS that subsequently alerts the
LIMITLESS controller to the risk. Following this, CLARISSE selectively activates the application-level
monitoring for both applications and compares the metrics with the original ones. After detecting a
performance degradation, the six processes of application 2 are moved from node 2 to another free
node (for instance, node 6) that is allocated exclusively for this application. Now, node 2 has six cores
available for other new applications.

Note that the framework is scalable because the LDAs receive as many connections as nodes per
rack, and they are connected with the LDS in a hierarchical way. On the application side, the FlexMPI
controller has only one connection per application, and the rest of the components are interconnected
according to a peer-to-peer basis. The application monitoring is performed on demand, for just a short
duration if an interference risk exists.

3. Component Description

This section provides a detailed description of the different components of the execution framework.

3.1. Limitless Monitor

LIMITLESS is designed to provide scalability in two different ways. First, the monitor logic is
distributed in a topological-aware configuration. The different monitor components are interconnected
using a graph-based scheme that can be mapped to the cluster’s network topology. The second
scalability mechanism is aimed to reduce the memory and network monitoring overhead for
large-scale platforms. The LDMs process the monitored data applying in-node filtering that reduces
the network traffic based on the predefined tolerance. Additionally, the monitor includes a heartbeat
protocol to detect faulting nodes.

Algorithm 1 shows the LIMITLESS Daemon Monitor distributed logic that collects the different
node-related performance metrics. Variable samplei is a vector of metrics collected at the i-th sample
interval that includes, among others, CPU, memory and network utilization as well as last-level cache
misses and energy consumption. Once the LDM collects a new sample, it evaluates whether any of the
metrics are not within the given tolerance (given by tolj where j is the metric index) of a given reference
metric sample ref_metric. In this case, the complete sample is sent to the LDA. Then, the daemon
sleeps until new collection time. The reference samples are created when the monitor is deployed



Electronics 2019, 8, 982 5 of 21

and updated periodically based on the average value of the previous samples. The user defines the
frequency that the metrics are collected, it is an argument of the program. In our experiments, a new
sample is collected every second.

Figure 3 shows the LDS architecture which is a multi-thread application with four types of
components: receiver, scheduler communicator, client communicator and processors. The receiver thread is
in charge of receiving all the monitoring packets and storing them in a buffer. The processor threads are
executed using a pool of threads in order to leverage the machine concurrency. They are responsible
for extracting the packets from the buffer and processing them, evaluating the existence of hot-spots,
and saving the monitoring data into a database. The Client communicator is in charge of receiving
the petitions from the clients (GUI, CLARISSE, etc.) and retrieving the requested information from
the system.

Receiver Client 
communicator

Scheduler 
communicator

Processors

p p p p p

Buffer

Daemon Server

BBDD
CLARISSE 
limitless 

controller

Figure 3. LIMITLESS server architecture.

The scheduler communicator acts as a resource manager, allocating the resources required by
the scheduler. Algorithm 2 describes the Scheduler communicator logic, which allows allocation or
reallocation of compute nodes for applications. Function allocate() receives requests from the scheduler
to allocate new resources. The input arguments are the application id (appi), the number of processes to
be allocated (∆p) and a flag that indicates whether the compute nodes must be non-exclusive (excl = 0)
or exclusive (excl = 1). Using the appi value, it is possible to distinguish whether the request is related
to a new application that should be executed, or an existing running application that should be migrated
by means of malleability. Note that the allocation policy depends on this. On one hand, for new
applications, allocate_new() returns the related compute nodes. These nodes may not be exclusively
for the application. On the other hand, for existing applications, reallocate() returns the related
compute nodes that are exclusive based on the value of excl argument. Function return_scheduler()
sends the list of selected nodes to the system scheduler. Note that ∆p may be negative in the case of
reducing the application size or may be positive. For positive ∆p, this function takes into account the
existing application layout and tries to allocate the new processes in the same compute nodes as those
currently used by the application. If it is not possible, it allocates the nearest ones using the topological
information of the system.
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Algorithm 1 LIMITLESS DaeMon Monitor algorithm.

1: while running do

2: // Data collection
3: samplei = collect_node_metrics()
4: i ++
5: // In-node analysis
6: for each metricj ∈ samplei do

7: if metricj /∈ [re f _metricj − tolj, re f _metricj + tolj] then

8: send(samplei)
9: break

10: end if
11: end for
12: update(re f _metric)
13: waitTillNewCollectionTime( f requency)
14: end while

Algorithm 2 Scheduler communicator algorithm in a LIMITLESS DaeMon Server.

1: Scheduler communicator
2: while running do

3: rcvd_query = socket_scheduler_listener()
4: [appi, ∆p, excl] = exec_multicriteria_query(rcvd_query)
5: if allocate(appi, ∆p, excl) then

6: if is_new_application(appi) then

7: nodes = allocate_new(∆p)
8: else

9: nodes = reallocate(appi, ∆p, excl)
10: end if
11: return_scheduler(nodes)
12: end if
13: end while

3.2. Flexmpi

FlexMPI is a runtime which implements performance-aware dynamic malleability for iterative
MPI applications. This runtime was previously developed in [6] and is implemented as a library on
top of the MPICH implementation. FlexMPI includes an Application Programming Interface (API) to
access its functionalities from external components. The source code of FlexMPI as well as several use
cases can be found in [8].

Figure 4 shows an example of the integration of FlexMPI with an MPI applications. This is
achieved by intercepting selected MPI calls through the profiling mechanism of MPI (PMPI) and
inserting control points that implement the logic of distributed control algorithms. When an MPI
routine is wrapped by FlexMPI (arrows 1 in Figure 4), some actions are performed by the library [6]
and, subsequently, the corresponding MPI routine is called through the PMPI interface. This scheme
permits us to execute the library-related actions in a transparent way, while preserving the original
MPI call behavior. For example, the MPI_Init() and MPI_Finalize() routines are wrapped and used
to initialize and terminate the internal components of our framework. MPI communication routines
are also intercepted by FlexMPI and used to collect different performance metrics. Finally, some
application’s MPI calls (arrow 2 in Figure 4) are not intercepted by the libraries and are directly
executed by MPI. Examples of these are synchronization and datatype-management routines.

The control point logic of each library is responsible for coordinating all the processes of the
application (arrow 3 in Figure 4). This coordination includes collecting monitoring data from the all
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the processes into the application controller, and broadcasting control information received by the
application controller. For each parallel application, FlexMPI employs an application controller
(one per library) that is executed associated with the rank-0 process. These controllers include
the communication API that is responsible (arrow 4 in Figure 4) for sending the monitoring
data to the performance modeler, and receiving different commands from FlexMPI central
controllers. These commands include the performance of dynamic reconfiguration, load balance
and activation/deactivation of the monitoring service.

Parallel application

MPI library

(2) MPI non-wrapped

calls

Application rank 1

(1) MPI wrapped calls

FlexMPI

Control Point Logic

MPI library

Application rank 0

FlexMPI

Application Controller

FlexMPI

Control Point Logic

(4) FlexMPI monitoring 

and control

(3) FlexMPI application 

communication

(1) MPI wrapped calls(2) MPI non-wrapped

calls

Figure 4. Example of an MPI application executed with the FlexMPI library.

3.3. Clarisse Interference-Aware Logic

Algorithm 3 shows the interference-aware logic. This algorithm requires, for each new running
application, the related performance metrics (Sinit

i ) for when it is being executed without interference.
These metrics include application user, system, communication times and other performance-counter
related values. There are two ways of obtaining these metrics. The first one is from a previous execution
of the application. In this case, function query_metrics() returns true, and recorded_metrics() fetches
the metrics from a record.

If these metrics are not available, FlexMPI_Monitor() instruments the application and collects
the metrics during its execution. This monitoring is only active for a short period of time when the
application starts executing. In order to obtain performance metrics unaffected by interference,
the application is initially executed in exclusive nodes. Then, when the metrics are obtained,
the processes running in the last assigned node (the one that runs a number of processes smaller than
the compute-node capacity) are migrated to a shared compute node. Note that this step could be
avoided if the performance metrics are already available from a previous execution.

The noti f y_scheduler() function (line 7) returns information provided by the monitor about
compute nodes (nodei) with potential hot-spots. The class of interference is coded in the inter f erence
variable and, according its value, different actions are taken.

For memory-related interference, one conflicting application is immediately migrated to another
node in order to decrease the used RAM. For cache and network-related interference, by means
of FlexMPI_Monitor(), all the conflicting applications are monitored—obtaining, for each one of
them, the current performance metrics Scurr

i . Function evaluate_inter f erence() determines if any
applications in the compute node have a slowdown comparing the metrics against the original ones.
If there are no changes in performance, then the interference signal is subsequently inhibited for a
certain amount of time or until a new application is executed in the node. In an alternative scenario
that, in our experiments, corresponds to a performance degradation of over 10%, one application
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is selected (appj) and migrated to an exclusive node. There are several policies for selecting the
migrated application. In our current implementation of the framework, the policy consists of migrating
the latest executing application. The migration operation is performed by two steps, first creating
∆p processes (by means of malleability) in the new exclusive node provided by the monitor (lines 16
and 17) and then removing ∆p processes (lines 18 and 19) from the shared node where the conflict exists.
These operations rely on the FlexMPI controller for performing the application reconfiguration.
In addition, the scheduler is notified in order to update the running application’s status.

Algorithm 3 CLARISSE interference-aware algorithm.

1: if query_metrics(appi) then

2: Sinit
i = recorded_metrics(appi)

3: else

4: Sinit
i = FlexMPI_Monitor(appi, 0)

5: end if
6: while (1) do

7: if {nodei, inter f erence} = noti f y_scheduler() then

8: if inter f erence == RAM then

9: appj = latest_application_id(nodei)
10: else if (inter f erence == CACHE || inter f erence == NET) then

11: Scurr
i = FlexMPI_monitor(appi, inter f erence) ∀appi ∈ nodei,

12: appj = evaluate_inter f erence(Sinit, Scurr)
13: end if
14: if appj 6= 0 then

15: ∆p = num_processes(appj, node)
16: nodes = allocate(appj, ∆p, 1)
17: FlexMPI_spawn(nodes, appj, ∆p, 0)
18: nodes = return_scheduler(appj,−∆p, 0)
19: FlexMPI_remove(nodes, appj,−∆p, 0)
20: end if
21: end if
22: end while

4. Evaluation

In this section, we present the platform and applications used as well as the experiments
performed and the results obtained from them.

4.1. Experimental Environment

For the experiments, we have used a heterogeneous cluster of eight nodes divided in two racks.
The connection between nodes in the same rack is a 10 Gbps Ethernet, whilst the connection between
racks is made through a 1 Gbps Ethernet. The cluster contains two nodes with Intel(R) Xeon(R) E5
with eight cores and 256 GB of RAM in one rack and six nodes with Intel(R) Xeon(R) E7 with 12 cores
and 128 GB of RAM in the other.

As use cases, we have chosen a collection of applications and real and synthetic kernels. All of
them have been integrated with FlexMPI. Table 1 shows the use cases’ characteristics. EpiGraph [9]
is a parallel and stochastic simulator of the propagation of the flu virus. It is currently configured to
carry out the simulation in Bilbao, Spain, using an un-directed weighted graph of 703,258 nodes and
8,806,520 edges that corresponds to the individual-connections in the simulation. Jacobi is the kernel of
the Jacobi iterative method that operates with dense matrices.
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Table 1. Use cases considered in the evaluation.

Code Name Class Access Pattern Size Intensive on

A EpiGraph Application irregular small CPU & network
Bll , Bhl CG Kernel irregular small CPU

C Jacobi Kernel regular medium CPU
Dm CPU Synthetic regular medium CPU
Dxl CPU Synthetic regular large CPU & memory
E CPUNET Synthetic regular medium CPU & network
F IMEM Synthetic irregular medium memory

CG is the kernel of the Conjugate Gradient iterative method that operates with sparse matrices
and performs sparse-matrix-vector multiplications (SpMV). In order to analyze the impact of data
locality on interference, two different input matrices have been used. The first one, executed
with code Bll (CG kernel with low locality), is a square sparse matrix with 500,000 rows and
39,996,827 non-zero elements. The non-zero entries are randomly distributed across all the matrix and
produce low data locality on the vector accesses during the SpMV. The second matrix, executed with
code Bhl (CG kernel with high locality), corresponds to a random sparse matrix with 500,000 rows
and 39,967,238 non-zero elements. The non-zero entries are randomly distributed conforming a block
diagonal matrix with a block size of 20,000 entries. This pattern provides much better data locality on
the vector accesses.

We have also used a set of kernels to characterize main features. CPU is a synthetic kernel that
is similar to Jacobi but without communications. It represents a pure CPU application with two
subclasses: Dm with a medium memory footprint that uses six 20,000-entry square dense matrices
and Dxl (extra-large) that operates with six 50,000-entry square dense matrices (120 GB). CPUNET is a
variation of the Dm kernel that alternates CPU and communication-intensive phases. This kernel is used
for creating and evaluating network interference. IMEM is a memory-intensive kernel that accesses
several matrices using indirections. It is used to create interference in the processor cache memory.
The kernel operates with six 20,000-entry square dense matrices (19.2 GB).

4.2. Interference-Aware Scheduling

We have first evaluated the ad hoc use case that illustrates the impact of each class of interference
as well as the overhead related to the proposed framework. For the experiments, the code was compiled
with gcc 7.4.0 and MPICH 3.2. This use case consists of a sequence of applications that are executed in
three shared compute nodes. Table 2 shows the structure and results for this use case. The execution
order (also used as application id) is shown in the first column of the table. For each code, the table
includes the name, number of processors and memory footprint of each application. Shared label
shows the application id that is executed in the same compute node. For example, applications 1 and 2
are located in the same shared node, producing an increase in the last-level cache miss ratio detected
by the monitor. Once the notification is received by the scheduler, FlexMPI is used to monitor both
applications. T1, T2 and T3 are the execution times before the interference, during the interference
and after the interference, respectively. We can observe in the table that application 1 doubles the
execution time while application 2 is unaffected (mainly because it does not have temporal data
locality). In order prevent this performance degradation, application 2 is moved to an exclusive node.
The reconfiguration overhead quantifies the cost of moving an interfering application to another
compute node. This overhead is shown in the table in the column labelled “Overhead”. Note that
this overhead corresponds to four reconfigurations: (1) creating eight processes in the shared node,
(2) destroying eight processes in the initial exclusive node, and, following this, after the analysis,
(3) creating eight processes in the new exclusive node, and (4) destroying eight processes in the
shared node. Note that the first two reconfigurations can be avoided if the performance metrics of
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the application were previously recorded. For application 2, the overhead is mainly related to the
data redistribution.

Table 2. Use case example of interference. T1, T2, T3 are the execution times per 10 iterations.
Overhead is the application reconfiguration overhead measured in seconds.

Id. Code Procs. Size (Gb) Shared T1 (s) T2(s) T3(s) Overhead # Iterations

1 Bll 4 0.3 2 3.2 6.4 3.2 - 15,000
2 F 20 17.9 1 29.6 29.2 29.1 32.2 600

3 Bhl 4 0.3 4 2.8 2.8 2.8 - 12,000
4 F 20 17.9 3 29.5 29.6 29.5 - 500

5 E 20 1.2 6–7 6.9 9.0 7.0 - 400
6 E 20 1.2 5 7.0 8.78 7.6 2.8 4000
7 Dm 20 1.2 5 0.03 0.03 0.03 - 2,000,000

8 Dxl 6 94.6 9 21.0 27.8 21.6 - 500
9 Dxl 16 111.8 8 9.4 9.6 9.4 101.1 1500

Applications 3 and 4 produce a conflict in a shared node that does not produce any performance
degradation (due to the existence of good data locality for both of them), thus no reconfiguration is needed.
Applications 5 and 6 produce communication interference that affects both of them negatively. Application
6 is migrated to an exclusive node that is located in a different rack, increasing the final execution time
(T3) compared with the initial one (T1) due to a slower network bandwidth. Given the small amount of
data, the overhead is mainly related to process creation/destruction. After this migration, application 7 is
placed in the same node as 5, producing no degradation given that they have different profiles.

Finally, applications 8 and 9 almost reach the memory capacity in the shared compute node.
This is detected by the monitor and application 9 is immediately migrated to a free node. Note that the
overhead is more significant because of the large amount of data used by the applications. Taking into
account the performance improvement by avoiding the interference (T3 vs. T2 values), the overhead
penalty can be overcome in a few iterations.

Figure 5 shows the performance evaluation of the framework for Scenario A that consists of 20 jobs
that are executed as a workflow. Each job is an independent application. The x-axis represents the
application name and the y-axis is the execution time per 100 iterations. Note that some applications,
like 4(A) in Scenario A, may have a much smaller execution time per iteration than the others,
but their impact on the overall time might be important due to executing a larger number of iterations.
The threshold used by the monitor for generating a hot-spot was a memory use of over 90%, an overall
last-level cache miss ratio greater than 40%, and a network use greater than 40% of the maximum
network capacity.

Scenario A is a medium-conflict workflow with jobs of classes A, BLL and F. Note that the
performance of the first two is degraded by F, and F is unaffected by interference. Figure 6 shows
the Gantt diagram associated with this scenario. For this scenario, six conflicting applications created
hot-spots that resulted in six cases of performance degradation. Six performance-degraded cases
were detected and avoided, except the 7 (BLL) case in which the degradation did not exceed the
predefined threshold and no action was taken. These cases are displayed in the figure with two bars.
The leftmost one represents the execution times when interference occurs (before redistribution,
which is related to the conflicting application), and the rightmost one represents the final time,
after avoiding the interference. In order to show that 7 (BLL) did not improve the execution time,
the representation is the opposite: the initial time is the execution without interference and the final
time is longer because it corresponds to one with interference. The rest of the jobs do not exhibit
performance degradation. Consequently, the second bar (after the redistribution) is not shown for
these jobs for the sake of clarity.
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Figure 5. Framework evaluation for Scenario A. Each bar shows the execution time per 100 iterations of
each application. Applications with striped bars are applications that create interference. Applications with
two bars exhibit change in the execution time due to interferences.

Figure 6. Gantt diagram of Scenario A when CLARISSE is not active and, consequently, the interferences
are not avoided. The length of diagram corresponds to the workflow makespan with a value of 14.889 s.

The interfering applications are the ones that, after commencing the execution, reduce the
performance of other jobs that were already running in the same compute nodes. These interfering
applications are displayed in the figure with striped bars. During the workflow execution, these
applications are identified by CLARISSE and are migrated to a spare compute node. Note that the
execution time per iteration of the interfering applications is the same after and before the migration
process, thus only one striped bar is displayed. The migration has some overhead related to process
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creation and data redistribution. Overall, the total overhead (for all the applications of the workflow)
was of 17.8 s per process creation/destruction and 183.6 for data redistribution.

Figure 7 shows a diagram with the CPU use of each compute node during the workflow execution.
We assume that the user has requested five compute nodes to run the workflow and the scheduler has
allocated nodes 1 to 5 for this task. In addition, nodes 6 and node 7 represent spare compute nodes
that are only employed by CLARISSE for the execution of conflicting applications. Node 8 (not shown
in the figure) is used to execute the shared processes of the application exclusively in order to obtain
the initial performance metrics. This evaluation takes a short time and, following this, these processes
are migrated to a shared node. In total, the workflow makespan is 11,909 s (including overheads) and
the total energy consumption (taking into account the eight compute nodes) is 6.9 MJ.

Figure 8 shows system use when CLARISSE is not used and the conflicts are not avoided. In this
case, the makespan is 14,889 s. There are two reasons for the increment of the makespan in relation to the
previous strategy. First, given that the conflicts are not avoided, the conflicting applications take longer to
complete their execution. Second, nodes 6 and 7 are not used. Note that there is a trade-off between the
amount of computational resources involved in the execution and the application execution time. For this
scenario, the total energy consumption is 7.7 MJ. Despite using less computational resource, the increase
in the conflicting application execution time produces a larger amount of energy consumption.

Figure 9 shows system use when each application is executed in exclusive nodes. Here, the
applications do not experience performance degradation due to the lack of conflicts. However, some
computational resources may be underused. For example, nodes 1 and 2 have a reduced workload as
some jobs only use two processes. Now, the makespan is 15,277 s and the energy consumption is 7.9 MJ.
Note that both values are larger than the previous policies that are based on sharing the compute nodes.

2000 4000 6000 8000 10000

Time (s)

node7

node6

node5

node4

node3

node2

node1

0

2

4

6

8

10

12

Figure 7. Overall system load for Scenario A using a shared node policy assignment with CLARISSE
for avoiding interferences.
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Figure 8. Overall system load for Scenario A using a shared node assignment policy without CLARISSE,
thus interferences are not avoided.
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Figure 9. Overall system load for Scenario A using an exclusive node assignment policy.

Scenario B consists of a mixed workload with different applications and input matrices that
produce a larger number of conflicts. The idea in this scenario is to evaluate CLARISSE under more
intense conditions. In this scenario, nine applications create interference that degrades the performance
of the other six applications.

As shown in Figure 10, the combined work of the monitor and scheduler is able to detect these
situations and migrate the conflicting applications. The migration overhead is 31.3 s for process creation
and 501.9 for data redistribution. For applications 13(BLL) and 16(BLL), there are several jobs that
produce conflict with them. More specifically, jobs 14(DM), 15(DM), 17(DM) and 20(F). The scheduler
migrates all of them, but, because of their large number, the original applications (13(BLL) and 16(BLL))
cannot be executed without conflicts for a significant amount of time. Despite this, the makespan
and energy consumption of this scenario is 10,759 s and 6.3 MJ. These values are smaller than those
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in which the conflicts are not taken into account (that produce a makespan of 13,256 s and energy of
6.9 MJ) or when the jobs are executed exclusively (makespan of 14,929 s and energy of 7.4 MJ). Overall,
CLARISSE provides a more efficient execution in both scenarios. Figure 11 shows the Gantt diagram
associated with this scenario.
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Figure 10. Framework evaluation for Scenario B. Each bar shows the execution time per 100 iterations of
each application. Applications with striped bars are applications that create interference. Applications
with two bars exhibit change in the execution time due to interferences.

Figure 11. Gantt diagram of Scenario B when CLARISSE is not active and, consequently, the interferences
are not avoided. The length of diagram corresponds to the workflow makespan with a value of 13.256 s.

4.3. Daemon Monitor

In this section, we present a quantitative analysis of LIMITLESS’s performance. We evaluate
the monitor overhead as well as the effect of different monitor features on reducing the network
usage. In order to evaluate the effect of the in-node analysis, we have used a benchmark executed in
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two nodes of the cluster, one to manage the LDS and another to evaluate the LDM. The experiment
consists of three different compute phases: up until minute 10, the compute node is idle. Then, a CPU
benchmark with a constant workload is executed for ten minutes. Finally, at minute 20, another CPU
benchmark with a variable workload is executed. The CPU workload of the compute node is shown in
Figure 12.

Figure 13 shows the network traffic related to the monitor when in-node analysis is enabled
as well as when in-node analysis is disabled. The results of the experiment show that the in-node
analysis reduces the network traffic dramatically (up to 90% in phases 1 and 2). Even with variable
load (phase 3), almost 50% of the monitor traffic can be reduced. Note that there is a trade-off between
the tolerance value and the amount of information that the server receives. In our experiments, we
found that tolerance values between 5% and 10% provided accurate measurements with important
reductions in network use.

Figure 12. CPU evolution during evaluation of the tracks.

Figure 13. Network traffic with/without in-node analysis of redundancy with two different tolerances.

In Figure 14, the CPU load of a single compute node for a 10% tolerance is represented for a period
of 24 h. During this period, the previous scenarios A and B were running in the system. Figure 15
represents the difference between the metrics obtained with 10% tolerance and without tolerance.
Note that these values are the error produced by using the tolerance threshold. As we can see,
the biggest error obtained in some samples is 10% , but, on average, is 0.27%—and the total percentage
of metrics with an error is 5.6%. In terms of network traffic, the use of tolerance drastically decreases
the amount of packets sent from the monitors to the aggregator. In this example, this number decreases
by more than 87% (from 5314 packets to 680). In our experiments, we found that tolerance values
between 5% and 10% provide accurate measurements with important reductions in the network use.
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Figure 14. Collected CPU use with a 10% tolerance for a single compute node during a 24 h period.

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

Error (%)

Figure 15. Error expressed as the difference of CPU use for a single compute node between the use of
10% (Figure 14) and 0% tolerances.

LIMITLESS scalability has been tested by simulation using the tool described in [10] and
OMNET++ [11]. Simulation results show that both server and aggregators support connection with
up to 200 aggregators and monitors, respectively. This corresponds to the worst case configuration
scenario with samples collected every second and a server with just one processor thread. This means
that scalability will increase for servers with more processor threads and larger intervals between
successive samples.

The global overhead of the monitoring module depends on the interval time for measuring.
Our experimentation has been done with three different values, the minimum interval time that is one
second, a sort interval time that is 5 s, and an acceptable interval time for a general purpose that is 10 s.
The worst case for processing is the first, and the monitoring module consumes less than 1.0% of CPU.
The rest of the cases, with higher values of interval time, consume less CPU percentage. Regarding the
memory usage, it is despicable because the value is below 0.1%.
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5. Related Work

System monitoring for large-scale HPC platforms is a difficult task, which becomes increasingly
challenging as the scale and complexity of the infrastructure increases. From a technological point
of view, monitoring information in HPC systems has been addressed by many approaches and tools.
One example of this is Ganglia [12], which is one of the most-used monitoring tools for HPC systems.
It uses a listen/announce protocol for the monitor state and a point-to-point connected tree system
between representative nodes, in order to make groups from them. One feature of Ganglia is that all
the nodes receive information from the others. This increases system reliability because in the case of
failure, the system (or a part of it) is updated, but it implies an important quantity of overhead.

Exascale requires new monitoring techniques, such as sub-optimal period scheduling [13] and
strong usage of HPC system statistics [14] to improve system utilization. Thus, the effort on monitors
development has been continuous in HPC systems. A daemon is collected [15] that collects system
(and application) performance metrics and provides different mechanisms to store them. Nagios [16] is
an open source solution for monitoring networks of hosts and services. It is a well-known framework
for gathering monitoring information in large-scale systems. However, Nagios is not designed for
HPC systems, thus its scalability in large-scale platforms is unclear.

In [17], authors present a system that they named Distributed Modular Monitoring system (DiMMon).
The main features of this tool are: data can be sent by different paths and with different purposes,
dynamic reconfiguration of the modes, and the capability to calculate performance metrics of
an individual job while data are being collected. Its architecture is based on monitoring agents.
These agents are processes, but they represent an execution environment which allows monitoring,
connection between nodes and message transmissions. In DiMMon, each node can be different,
with distinct tasks and metrics, which makes it adaptive.

In [18], authors present the Supermon architecture, a flexible set of tools for cluster monitoring with
features like high-speed communications and scalability, thanks to improvement of the rstad performance.
It uses a data protocol based on symbolic expressions, from individual nodes to entire clusters. For this
reason, the author states that Supermon is scalable and can run in a heterogeneous clusters.

Monitoring clusters and LSDS is an important theme, and there are plentiful related works, more
than we have described above. For example, Agelastos et al. produced some similar works. In [19],
the authors put the focus on the results obtained after doing profiling (at a system and application level)
based on global monitoring in an HPC cluster. They collect metrics as we have done, and use a
hierarchical model to transmit the data from the compute nodes to aggregating nodes. The results
are provided through their tool LDMS [20], and it gets the metrics directly from the kernel system
/proc and /sys. In [20], a tool named LDMS (Lightwheight Distributed Metric Service) is presented,
which allows the collection of data, and its transmission and storage. The system is composed of three
different kinds of components: aggregators, samplers and storage. Even though there are three kinds of
nodes, all of them have the same code and the only difference is the configuration.

There are further related works such as Open-SpeedShop [21] that shows some lack in efficiency,
adaptability and scalability. In addition, to improve this lack, the authors use MRNet [22] to create a
communication infrastructure based on trees.

In [23], authors propose static scheduling for multiple periodic applications consisting of strictly
and non-strictly periodic tasks on time-critical completion time. It is an interesting job because the
solution is based on an improved Mixed Integer Linear Programming (MILP) method in order to
obtain an optimal scheduling solution. Our work differs as we present a real-time scheduling based on
monitoring, and our framework is able to do that scheduling with all tasks, not only periodic tasks.

Authors in [24] present an interesting point of view on energy-aware scheduling based on a
hybrid genetic algorithm. Using genetic algorithms is one of the most powerful techniques for solving
optimization problems and they apply their solution as a combinatorial optimization problem.

In [25], the authors exploit modern multi-core and many-core processors with threading
techniques such as OpenMP and Pthreads that are related to linear algebra operations in HPC, and they
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propose a dynamic load-balancing method to reduce the penalty of the NUMA effect in those kinds of
operations. This paper is relevant for our work because it could be combined with our framework, not
to schedule applications but to balance the load between different parallel tasks.

HPC system information, obtained via a monitoring service, plays an important role in scheduling
in order to share resources and provide high-performance computing. A dynamic meta-scheduling
architecture model for large scale distributed systems based on monitoring has been described in [26].
In this work, the MonALISA service is used in combination with ApMON to collect customized
information to provide automated decisions for improving task scheduling. A distributed resource
monitoring and prediction architecture was presented in [27] allowing the detection of the best set
of machines to run an application based on the collected information and the result of a prediction
algorithm, which evaluates the potential performance of a node.

In this work, we present a closer coordination between the monitor and scheduler based on
an interactive refinement of the monitoring that is performed first at a system-wide level and,
if necessary, at application-level. The motivation is to estimate possible performance degradation and
performance hotspots caused by sharing multicore processors when running HPC workloads [28],
and create a system to mitigate poor scaling conditions created by shared-resource contention by using
co-scheduling of HPC applications designed for large multicore systems [29].

Co-scheduling inside the Linux kernel for bulk synchronous parallel applications has been
proposed in [30]. However, this work did not include monitorization information. Co-scheduling of
CPU and memory intensive applications in the same node using monitoring information has been
proposed in [31] to improve energy efficiency and overall throughput of a supercomputer. Monitoring
information was used to provide a detailed characterization of HPC applications for co-scheduling [32].
Different alternatives are Tetris [33] and LoTES [34], which consider constraints in CPU, memory, disk,
and network bandwidth for packing tasks and improving the cluster efficiency. Sedighi et al. present
in [35] the Fairness, Utilization and Dynamicity (FUD) theorem to balance scheduling parameters in
shared computing Environments. Alternatives have also been proposed for distributed systems to
provide resource-aware hybrid scheduling algorithms in heterogeneous distributed computing [36][37].

Malleability is a major topic in Cloud computing and virtualized environments. A framework for
elastic execution of existing MPI programs was proposed in [38] for cloud frameworks. This framework
also monitors the performance looking for loaded resources. If a severe conflict is detected, the MPI
job is terminated and a new program is restarted on a different number of instances. Our approach
is different, as we do not kill the MPI job, but block the process as it is moved. Restarting a new job
could require waiting for a long time in a real-world HPC cluster.

Another proposal for automatic resource elasticity for high performance applications in the
cloud has been presented in [39]. Its differential approach consists of providing elasticity for high
performance applications without user intervention or source code modification applying aging.
The performance increase obtained a range of 26%.

Blagodurov et al. proposed in [40] a methodology to provide contention aware scheduling
in HPC cluster environments when jobs are concurrently executing on the same multicore node.
However, different to our proposal, they assume a virtualized HPC cluster, where applications are
deployed using virtual machines that can be easily migrated from the contended servers of the MPI
cluster. However, the performance penalization is high and they don’t get a performance increase. In
addition, their scheduler does not consider contention effects in its scheduling decisions and it is also
not able to migrate the load across the cluster on-the-fly. This is one of the LIMITLESS’s features.

An idea similar to our proposal is presented in [41], including a mechanism for enabling
shrink/expand capability in the parallel runtime system using task migration and dynamic load
balancing, checkpoint-restart, and Linux shared memory. However, the scheduler proposed is not
contention aware, as they assume dedicated resources for each MPI process.

Our work differs from the previous ones as we introduce a framework that provides
coordination between system-wide and application-level monitoring, scheduling and malleability in
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physical clusters to provide resource-aware scheduling when jobs are commenced and throughout
their execution. Our approach provides better performance than previous approaches and does not
need virtualization. Moreover, we avoid killing the MPI job and starting a new one, which could create
a long waiting time to get resources.

6. Conclusions

This work is aimed to address some of the European research priorities in the area of HPC technology.
In the presented framework, we introduce four different components that work in a coordinated way:
LIMITLESS that provides system-wide monitoring; CLARISSE that performs data-staging coordination
and control; FlexMPI that provides application malleability and monitoring; and the job scheduler. Thanks
to the close coordination of the components, it is possible to obtain a holistic vision of the platform and
take global performance-oriented actions. In this work, we present a technique that permits different
applications to execute in the same compute nodes avoiding any interference between them. Experimental
results show that is is possible to improve application performance as well as overall platform throughput,
and, consequently, to use system resources more efficiently, reducing the consumed energy. Note that, in
this work, we assume that there are only intra-node interference hazards.

As a future work, we plan to extend this work to consider I/O interference, including solutions,
like I/O scheduling [4], in this framework. We also plan to include new performance metrics
(like I/O bandwidth) in the scheduler decisions and to improve the application placement using
a more refined analysis that takes into account the overhead of the reallocation process.
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