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Abstract: In this paper, a novel iterative discrete estimation (IDE) algorithm, which is called the
modified IDE (MIDE), is proposed to reduce the computational complexity in MIMO detection in
uplink massive MIMO systems. MIDE is a revision of the alternating direction method of multipliers
(ADMM)-based algorithm, in which a self-updating method is designed with the damping factor
estimated and updated at each iteration based on the Euclidean distance between the iterative
solutions of the IDE-based algorithm in order to accelerate the algorithm’s convergence. Compared to
the existing ADMM-based detection algorithm, the overall computational complexity of the proposed
MIDE algorithm is reduced from O

(
N3

t
)
+ O

(
Nr N2

t
)

to O
(

N2
t
)
+ O (Nr Nt) in terms of the number

of complex-valued multiplications, where Ntand Nr are the number of users and the number of
receiving antennas at the base station (BS), respectively. Simulation results show that the proposed
MIDE algorithm performs better in terms of the bit error rate (BER) than some recently-proposed
approximation algorithms in MIMO detection of uplink massive MIMO systems.
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1. Introduction

With the development of the mobile Internet and the Internet of Things, much high data rate
communication is required in the new generation of cellular networks like 5G [1]. By equipping
hundreds of antennas at the base station (BS) serving tens of users, the massive multiple-input
multiple-output (MIMO) is deemed one key technology for meeting the 5G requirements due to its
improvements in data throughput, link reliability, higher spectral efficiency, and better communication
quality compared with the traditional MIMO usage [2–4].

However, when applying the massive MIMO, a major computational challenge is the data
detection in uplink MIMO systems due to the large increase in the system dimensions [5].
The maximum likelihood (ML) is the optimal detection approach on data detection, but its
computational complexity grows exponentially with the number of user equipment (UE) and
the modulation order [6,7]. Some suboptimal detection alternatives are proposed to reduce the
computational complexity while obtaining a good bit error rate (BER) performance. For example,
the linear minimum mean squared error (LMMSE) algorithm is one of the widely-used suboptimal
detection algorithms with near-optimal BER performance and reduced computational complexity [8].
However, the LMMSE algorithm still involves the computation of the Gram matrix, as well as matrix
inversion, where their corresponding computational complexity is O

(
Nr N2

t
)

and O
(

N3
t
)
, respectively,

with Nt denoting the number of single-antenna UE and Nr denoting the number of antennas at the BS.
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It is worth noting that some approaches for approximating the matrix inversion have been
proposed to reduce the computational complexity [9–19], among which, for example, the Neumann
series (NS) approximation is used to approximate the matrix inversion by a series of truncated
NS expansions [9,10]. However, only marginal reduction in the computational complexity can
be reached with the increased terms of the NS expansion. Hence, various classical iterative
algorithms have been provided to approximate the inverse matrix in LMMSE detection to achieve
low computational complexity, which include the Richardson (RI) algorithm [11], the Jacobi
algorithm [12–15], the successive over relaxation (SOR) algorithm [16], the symmetric successive
over relaxation (SSOR) algorithm [17], and the Gauss–Seidel (GS) algorithm [18,19]. The computational
complexity of the matrix inverse is reduced by these approximation-based detection algorithms from
O
(

N3
t
)

to O
(

N2
t
)
. It is noted that these algorithms involving the inverse-matrix approximation in

LMMSE detection (also known as the approximated LMMSE) achieve a near-LMMSE performance,
but with lower computational complexity.

It is well known that the approximated LMMSE detection algorithms achieve a substantial
performance loss when Nr > Nt in multiuser massive MIMO systems. Various algorithms have been
proposed to obtain a better BER performance than that of LMMSE detection in multiuser massive
MIMO systems, which include the non-convex and the convex optimization algorithms [20–22].

For example, the alternating minimization (AltMin) algorithm is one of the non-convex
optimization algorithms, which is applied to the data detection in a multiuser massive MIMO
system [20]. Specifically, the AltMin algorithm converts the ML detection problem into a sum of convex
functions by decomposing the received vector into multiple sub-vectors. Hence, the non-convex
problem is transformed into the convex problem in the AltMin algorithm. The AltMin algorithm
shows better BER performance than that of the LMMSE detector in overloaded network scenarios
with relatively low computational complexity. However, it shows near-LMMSE performance with
even higher computational complexity when the ratio of the number of BS antennas to the number of
single-antenna users is larger.

Similarly, some convex optimization algorithms are used to solve the non-convex optimization
problems, which include, for example, the alternating direction method of multipliers (ADMM)
detection algorithm [21,22]. In the multiuser massive MIMO system, ADMM demonstrates better BER
performance than the LMMSE detection algorithm with the relatively low computational complexity
of the iterative procedure. However, the computational complexity of the preprocessing in the ADMM
algorithm includes the calculation complexity of the Gram matrix and LDLdecomposition [23,24],
which results in very high computational complexity for massive MIMO systems.

To make a tradeoff between the performance and the computational complexity with different
antenna configurations, the iterative discrete estimation (IDE) algorithm is integrated into the ADMM
algorithm [25], which presents low computational complexity due to the avoidance of the calculation
of the Gram matrix and LDL decomposition. Motivated by the aforementioned algorithms, we propose
a modified IDE (MIDE) algorithm to present a better BER performance and lower computational
complexity than the ADMM algorithms. To summarize, the main contributions of this work are listed
as follows.

• A novel iterative data detection algorithm for uplink multiuser massive MIMO systems is
designed by exploiting the IDE-based algorithmic framework. The proposed MIDE algorithm refactors
the detection algorithm as a series of simpler subproblems with closed-form solutions.

• A heuristic damping factor is defined based on the Euclidean distance instead of a fixed factor.
Compared with the fixed damping factor, this self-updated damping factor contributes to a faster
convergence in the proposed MIDE algorithm.

• The computational complexity analysis indicates that the proposed algorithm has a lower
computational complexity than the traditional approximated detection approximation algorithms
(LMMSE, AltMin, and ADMM), under the same BER performance. Specifically, the complexity of the
novel MIDE detection algorithm is only O

(
N2

t
)
+ O (Nr Nt).
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• Simulation results reveal that for the typical independent and identically distributed (i.i.d.)
frequency flat Rayleigh fading channel in massive MIMO systems, the proposed MIDE detection
algorithm performs better than the ADMM and AltMin-based detection algorithms and the LMMSE
detection algorithm in terms of BER performance with various system configurations.

The rest of the paper is organized as follows. In Section 2, we briefly introduce the system
model. Section 3 specifies the proposed low-complexity signal detection based on the IDE algorithm
and performs the computational complexity analysis of the algorithms. In Section 4, the numerical
simulation results of the BER performance are presented. Finally, Section 5 concludes the paper.

Notation: Throughout the paper, the lowercase and uppercase boldface type is used for vectors
(e.g., a) and matrices (e.g., A). The superscripts (·)−1 and (·)H denote the matrix inversion and the
conjugate transpose, respectively. The L2 norms of the vectors are represented by ‖·‖2. < and = denote
the real part and the imaginary part of the complex-valued signal, respectively.

The typical uplink massive MIMO system is considered in this work, as shown in Figure 1,
where there are Nt single-transmitting antenna UE devices and Nr receiving antennas at the BS [26].
In general, Nr is larger than Nt for an uplink massive MIMO communication system [27].

Signal

Detector
Modulator

...

...

...

#1

#######

#1

############

Demodulator

...

...

Figure 1. MIMO system signal detection structure diagram.

2. System Model

At the transmitter side, the source information s = [s1, · · · , si, · · · sNt ]
T where each symbol s

is mapped to constellation symbols by taking symbols from a set of the constellation alphabet Ω.
The transmitted signal x = [x1, · · · , xi, · · · xNt ]

T is constructed by the modulated symbol s, where xi
denotes a signal transmitted by the ith UE device. The vector y = [y1, · · · , yi, · · · yNr ]

T represents the
receiving signal at the BS, where yi denotes a signal received by the ith receive antenna, and:

y = Hx + w (1)

where w is the Nr-by-one additive white Gaussian noise (AWGN) vector following CN
(
0, σ2) with σ2

representing the average power of the noise. In Equation (1), the matrix H denotes the Nr-by-Nt flat
fading channel gain, and H can be expressed as:

H =


h11 h12 · · · h1Nt

h21 h22 · · · h2Nt
...

...
. . .

...
hNr1 hNr2 · · · hNr Nt

 (2)

where the element hi,j, i = {1, 2, · · · , Nr},j = {1, 2, · · · , Nt} denotes the channel impulse response
between the receiving antenna j and the user i. It is noted that hij follows an i.i.d. Gaussian distribution
with zero mean and unit variance. In addition, the channel matrix H is assumed to be known perfectly
at the BS [28,29].
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3. Proposed MIDE Algorithm

We first propose a low-complexity signal detection algorithm, which converts the ML problem
into the constrained non-convex problem and utilizes the IDE-based algorithm to solve the problem
iteratively. Then, a self-updating method is proposed to update the damping factor based on the
Euclidean distance, which accelerates the convergence in the proposed MIDE algorithm. Finally,
the computational complexity analysis of the proposed algorithm is provided with the comparison to
the conventional algorithms.

3.1. ML Problem Formulation and IDE-Based Algorithm

Detecting the transmitted symbol vector x at the BS can be done by minimizing the squared
Euclidean distance between the received signal vector y and the hypothesized received signal Hx with
the vector x constrained to the modulation constellation ΩNt , which can be represented as:

x̂ = arg min
x∈ΩNt

‖y−Hx‖2
2 (3)

It is noted that in Equation (3), the finite-alphabet constraint x ∈ ΩNt can be converted into the
indicator function IΩ (x̂), which is given by:

IΩ (x̂) =

{
0, ifx̂ ∈ ΩNt

∞, otherwise
(4)

By combining Equation (3) and (4), the signal detection problem can be converted into the
constrained optimization problem, which is given by:

minimize
z,x̂

‖y−Hz‖2
2 + IΩ (x̂)

s.t. z− x̂ = 0
(5)

where z is the least-squares solution of the least-squares and x̂ is the estimated transmitted symbol.
Since the optimization problem is defined over complex-valued variables, the Lagrangian objective
function for the optimization problem in Equation (5) can be remodeled as:

Lγ (z, x̂, u) = ‖y−Hz‖2
2 + IΩ (x̂) + γ ‖z− x̂‖+ uH (z− x̂) (6)

where γ > 0 is the penalty parameter and u is the dual vector. In order to solve this problem efficiently,
we decompose it into three sub-problems. First, we solve z while holding x̂ and u fixed; then, we solve
x̂ while holding z and u fixed; finally, we solve u while holding x̂ and z fixed. Specifically, the following
procedure is repeated with iterations.

zk = arg min
z

Lγ

(
z, x̂k−1, uk−1

)
(7)

x̂k = arg min
x̂

Lγ

(
zk, x̂k, uk−1

)
(8)

uk = uk−1 + γ
(

zk − x̂k
)

(9)

Note that the z-minimization procedure is convex, but the x̂-update is projected onto a convex set
ΩNt . To make the iterative procedure converge, the IDE-based algorithm is applied to remove the dual
vector u at each iterative and turn the z-update and x̂-update to reach a consensus. After manipulation,
the x̂-update involves solving a linearly-constrained minimum Euclidean-norm problem, and the
z-update in IDE is given by:
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zk = x̂k−1 +
[
diag

(
HHH

)]−1
HH

(
y−Hx̂k−1

)
(10)

Hence, the x̂-update step can be represented as:

x̂k+1=ΠΩ

(
zk+1

)
(11)

where ΠΩ (·) is the projection onto ΩNt , i.e., the elements of zk+1 can be implemented through simple
rounding of each component to the closest element in Ω.

Additionally, to make the iteration converge, a fixed damping factor α is employed in the
IDE-based algorithm to update the iterative solution x̂, i.e.,

x̂k+1
d =

(
1− αk

)
x̂k

d + αkx̂k+1 (12)

where x̂k+1
d denotes the solution after updating. By applying x̂d to the z-update, the IDE-based

algorithm for detection can be expressed as:

zk = x̂k−1
d +

[
diag

(
HHH

)]−1
HH

(
y−Hx̂k−1

d

)
(13)

x̂k = ΠΩ

(
zk
)

(14)

x̂k
d =

(
1− αk

)
x̂k−1

d + αkx̂k (15)

3.2. Modified IDE-Based Detection Algorithm with Self-Update Damping

The performance of the IDE-based detection algorithm is influenced by the choice of the damping
factor. In early studies, this parameter was fixed, e.g., 0.05 in [25]. However, a fixed damping factor is
not applicable for all cases, and an optimal damping factor is not easy to obtain. We propose an MIDE
herein to decide a proper damping factor α, by which the x̂d-update step is analyzed as follows.

x̂1
d =

(
1− α0

)
x̂0

d + α0x̂1,

x̂2
d =

(
1− α1

)
x̂1

d + α1x̂2

=
(

1− α1
) ((

1− α0
)

x̂0
d + α0x̂1

)
+ α1x̂2

=
(

1− α1
) (

1− α0
)

x̂0
d +

(
1− α1

)
α0x̂1 + α1x̂2

...

x̂k+1
d =

(
1− αk

)
x̂k

d + αkx̂k+1

=
(

1− αk−1
)
· · ·
(

1− α0
)

x̂0
d +

(
1− αk−1

)
· · ·
(

1− α1
)

α0x̂1 + · · ·+ αk−1x̂k+1

(16)

Since there is no prior information of the final result x̂d, the initial value of x̂0
d can be set as a

zero vector. Hence, the expression for x̂d in Equation (16) is composed of the solution of x̂ with
different values of the damping factor. Based on the expression in Equation (16), the convergence of the
iterations can be measured by the difference between x̂k

d and x̂k+1. Specifically, the Euclidean distance,
which is one of the widely-used approaches for measuring the distance between two vectors [30],
is defined as:

dk
(

x̂k
d, x̂k+1

)
=

√√√√ Nt

∑
i=1

(
x̂k

d (i, 1)− x̂k+1 (i, 1)
)2 (17)
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We can notice from Equation (17) that the smaller the distance d, the closer the two vectors,
implying the convergence of the IDE iterations. Based on this discussion, the following heuristic
damping factor at the kth iteration is defined as:

αk =
dk

dk + q
(18)

where q is a positive constant. Obviously, a higher value of d leads to a higher α, and vice versa.
In other words, when dk → 0, αk → 0, and when dk → 1, αk → 1. We utilize the first iteration result d1

to obtain the value of p. According to Equation (16), d1 can be calculated as:

d1 =

√√√√ Nt

∑
i=1

(
x̂0

d (i, 1)− x̂1 (i, 1)
)2

=

√√√√ Nt

∑
i=1

(x̂1 (i, 1))2

=

√√√√ Nt

∑
i=1

(< (x̂1 (i, 1)))2
+ (= (x̂1 (i, 1)))2

(19)

It is noticed that the value of d1 is varying and decided based on several factors such as the
modulation method, the noise in the system, etc. For the ease of calculation, the expectation of d1

is computed instead of the direct calculation of d1. Since the real part and the imaginary part of the
vector x̂1 have the same uniform distribution, the expectation for d1 is obtained as:

E
(

d1
)
= 2E


√√√√ Nt

∑
i=1

(< (x̂1 (i, 1)))2

 (20)

The expectation of d1 is based on the constellation points of the modulation scheme. With 16-QAM,
for example, <

(
x̂1 (i, 1)

)
can be {−3,−1,+1,+3}, and the probability p of each possible value of the

point is the same without the prior information, i.e., p = 0.25 in this case. Hence, Equation (19) can be
rewritten as:

E
(

d1
)
= 2E


√√√√ Nt

∑
i=1

(< (x̂1 (i, 1)))2

 = 2Nt

√
∑ cand2
√

M
(21)

where cand represents the candidate value set of <
(
x̂1 (i, 1)

)
and M represents the modulation

cardinality. For the ease of description, we still take the 16-QAM as an example. Then, cand is denoted
as the candidate values {−3,−1,+1,+3} and ∑ cand2 = (−3)2 + (−1)2 + 12 + 32. M represents the
modulation cardinality. Based on experience, the value of α1 = 0.8 is set as 0.8. Then, substituting
Equation (22) into Equation (18) yields the estimation of q as:

q =
E
(
d1)
4

=
Nt

2

√
∑ cand2
√

M
(22)

The simulation results in Section 4 show that the proposed MIDE algorithm can improve the BER
performance significantly compared to the IDE-based algorithm, which employs the fixed damping
factor. The procedure of the proposed MIDE detection algorithm is illustrated in Algorithm 1.
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Algorithm 1: The pseudocode of the MIDE detection algorithm.

1 Input: 1) H, the channel matrix
2 2) y, the received signal matrix
3 3) K, the number of iterations

4 Output: the detected signal x̃← x̂K

5 Preprocessing
1: D←

[
diag

(
HHH

)]−1;

2: W← DHH ;

3: q← Nt
2

√
∑ cand2
√

M
;

6 Initialization
4: x̂0

d = 0;
Iterative process (repeat K times)

5: for k = 1–K (iteration times) do
6: zk ← x̂k−1

d + W
(

y−Hx̂k−1
d

)
7: x̂k←ΠΩ

(
zk
)

8: rk ← x̂k−1
d − x̂k

9: dk ←

√
Nt
∑

i=1

(
<
(
rk (i, 1)

))2
+
(
=
(
rk (i, 1)

))2

10: αk ← dk

dk+q ;

11: x̂k
d ←

(
1− αk

)
x̂k−1

d + αkx̂k;

12: end for

3.3. Analysis of the Complexity of the Algorithm

In this subsection, we analyze the computational complexity of the proposed MIDE algorithm,
which is dominated by the multiplications operations. Hence, we compute the number of
complex-valued multiplications as the measurement of the computational complexity of the
algorithm [31].

It can be found in Algorithm 1 that the computational complexity is composed of three parts
including (1) preprocess, (2) the x-update procedure, and (3) the xd-update procedure.

(1) Preprocess: The first part comes from the related computation before the iterative process.
The main factors affecting the computational complexity of the preprocess are the computation
of D and the multiplication of the Nt × Nt diagonal matrix and the Nt × Nr matrix. Let hi be
the ith column of the complex-valued channel matrix H. Then, the diagonal calculation can be
presented as:

Dij=

{ 1
hH

i hj
, i = j

0, i 6= j
(23)

Therefore, the complexity of the preprocessing is counted as N2
t + Nr Nt.

(2) x-update procedure: The second part comes from the x-update procedure, which involves the
computation of two multiplications of the Nt × Nt matrix and the Nt × 1 vector. Thus, the
complexity is counted as 2Nr Nt.

(3) xd-update procedure: The third part originates from updating the value of xd. As can be seen in
the expression of xk

d, the computation of this part includes the update of the Euclidean distance dk
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and two scalar multiplications with Nt × 1 vectors. Then, the complexity in this part is counted
as 3Nt.

Therefore, the overall required number of complex multiplications by the MIDE algorithm is
NtNr + N2

t +K (2Nr Nt + 3Nt). For comparison, the similar calculations of the complexity of the typical
detection algorithms (e.g., LMMSE with full matrix inversion, AltMin, ADMM) are given, as well as
the one of the proposed MIDE in Table 1.

Table 1. Complexity comparison in terms of complex multiplication operations. LMMSE, linear
minimum mean squared error; AltMin, alternating minimization; ADMM, alternating direction method
of multipliers; MIDE, modified iterative discrete estimation.

Algorithm Complexity

LMMSE [8] 5
6 N3

t + 3
4 N2

t + 4
3 Nt + Nr N2

t + Nr Nt
AltMin [18] (4K + 2) Nr Nt
ADMM [20] 1

2 N3
t +N2

t +Nr N2
t + Nr Nt + K

(
N2

t + Nr Nt
)

MIDE Nt Nr + N2
t + K (2Nr Nt + 3Nt)

Note that all these algorithms utilize the approximation approaches to solve the ML problem.
It is obvious that the proposed MIDE algorithm and AltMin algorithm have lower computational
complexity at each iteration among the compared iterative approaches. The numerical analysis will
be provided for further analysis of the computational complexity, which depends on the number of
iterations K and is presented in Section 4.

4. Simulation Results

4.1. BER Performance Evaluation

The BER performance of the proposed algorithm was evaluated and compared with the ones of
other detection algorithms by numerical simulations. The simulation parameters are listed in Table 2.
Several typical detection algorithms were selected for comparison, which were introduced in Section 1
and listed as LMMSE, AltMin, and ADMM.

We first considered the number of iterations for the antenna configurations of Nt × Nr = 16× 128,
32× 128 and 64× 128. Figure 2 illustrates the BER performance of the proposed MIDE detection
algorithm against the number of iterations, where the SNR was set as 3 dB. It is observed that with
the increase of Nr/Nt, the convergence number of the iterations required by the proposed MIDE was
almost the same and a very small one, e.g., 10 in all simulations. This demonstrated a reliable BER
performance and a fast detection convergence in our proposed MIDE algorithm. Moreover, with the
increase of the transmitting antennas, the diversity gain of the MIMO system decreased, leading to a
degradation of the BER performance of the proposed algorithm and the compared MIMO detectors.

Table 2. Simulation parameters.

Channel Model Uncorrelated Rayleigh Flat Fading

Modulation scheme 16-QAM
Number of transmitting antennas (Nt) 16, 32, 64

Number of receiving antennas (Nr) 128
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2 4 6 8 10 12 14 16 18 20

T iteration

10-5

10-4

10-3

10-2

10-1

100

B
E

R

MIDE 16x128
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Figure 2. BER performance versus proposed iterations with SNR = 3 dB.

Figure 3 depicts the BER performance comparison of the IDE-based detection algorithm with the
fixed damping factor α = 0.05 and the proposed MIDE detection with the self-updated damping factor.
It is clear that the proposed MIDE-based detection with the self-updated damping factor showed better
BER performance than the conventional IDE-based detection algorithm with all antenna configurations.

-6 -4 -2 0 2 4 6 8 10

SNR(dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

B
E

R

IDE 16x128
MIDE 16x128
IDE 32x128
MIDE 32x128
IDE 64x128
MIDE 64x128

Figure 3. BER performance of the conventional damping factor and the proposed damping factor.

Moreover, Figure 4 compares the BER performances of the proposed MIDE algorithm and the
conventional ADMM algorithm. From the figure, it is clear that the BER performance of both algorithms
degraded when the number of users increased. However, it is observed that the proposed MIDE-based
detection performed better than the conventional ADMM detection in terms of BER performance with
all antenna configurations. Furthermore, we can observe from Figure 4 that when the target of BER
was set as 10−3, the SNR required by the proposed algorithm was at least 0.5 dB less than the one of
the conventional ADMM algorithm.
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MIDE 16x128
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MIDE 32x128
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Figure 4. BER performance comparison of the conventional ADMM and the proposed algorithm.

Finally, we show the BER performance comparison of the conventional AltMin algorithm,
the LMMSE algorithm, and the proposed MIDE algorithm in Figure 5.

-6 -4 -2 0 2 4 6 8 10

SNR(dB)

10-6

10-5
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100

B
E
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MIDE 32x128
AltMin[18] 32x128
LMMSE[8] 32x128
MIDE 64x128
AltMin[18] 64x128
LMMSE[8] 64x128

Figure 5. BER performance comparison of the AltMin algorithm, the LMMSE algorithm, and the
proposed algorithm.

It is clear that with any ratio of Nr/Nt, the proposed MIDE algorithm performed better than all
the compared algorithms in terms of BER performance.

4.2. Computational Complexity Comparison

The computational complexity of ADMM, AltMin, and the proposed MIDE algorithms depends
on the number of iterations K. The compared algorithms had a different number of iterations to reach
convergence with different antenna configurations. We fixed the number of receiving antennas to
Nr = 128, and the number of transmitting antennas Nt was increased from 16 to 84. Further, we set
K = 5, 14, and 10 for the conventional ADMM algorithm, the AltMin algorithm [20], and the proposed
MIDE algorithm, respectively, based on the convergence simulations. Figure 6 illustrates the total
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number of multiplications vs. the number of transmitting antennas, which was based on the analysis
of the computational complexity of the algorithms in Section 3.3.
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Figure 6. Computational complexity comparison against the number of users.

From Figure 6, we can see that the computational complexity increased with the number of
users in all compared algorithms. However, the proposed MIDE algorithm achieved the lowest
computational complexity among all compared algorithms under various antenna configurations.
Specifically, the MIDE algorithm showed a relatively lower computational complexity than the AltMin
algorithm, which was proven to have a low complexity detection for uplink massive systems in [20].
In addition, from Figure 6, the proposed MIDE algorithm achieved much lower computational
complexity than the LMMSE and ADMM detection algorithms when the dimension of the MIMO
system became larger. As a consequence, the proposed MIDE detection is much more applicable for
massive MIMO systems with its low computational complexity.

5. Conclusions

In this paper, we proposed a low-complexity, IDE-based detection algorithm in uplink massive
MIMO systems. The proposed MIDE algorithm avoided the calculation of the Gram matrix,
the matrix inversion, and LDL decomposition to reach a low computational complexity. In addition,
a self-updating damping method was provided with the damping factor estimated and updated at
each iteration based on the Euclidean distance between the latest two detection solutions, which
accelerated the convergence of the IDE-based detection algorithms. Simulation results showed that
the proposed MIDE algorithm performed better than the conventional LMMSE, AltMin, and ADMM
detection algorithms in terms of the BER performance and the computational complexity.
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