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Abstract: Irregular text has widespread applications in multiple areas. Different from regular text,
irregular text is difficult to recognize because of its various shapes and distorted patterns. In this paper,
we develop a multidirectional convolutional neural network (MCN) to extract four direction features
to fully describe the textual information. Meanwhile, the character placement possibility is extracted
as the weight of the four direction features. Based on these works, we propose the encoder to fuse the
four direction features for the generation of feature code to predict the character sequence. The whole
network is end-to-end trainable due to using images and word-level labels. The experiments on
standard benchmarks, including the IIIT-5K, SVT, CUTE80, and ICDAR datasets, demonstrate the
superiority of the proposed method on both regular and irregular datasets. The developed method
shows an increase of 1.2% in the CUTE80 dataset and 1.5% in the SVT dataset, and has fewer
parameters than most existing methods.

Keywords: text recognition; convolutional neural network; long short-term memory

1. Introduction

In a natural image, text may appear on various objects, such as advertising boards, road signs,
etc. By recognizing the text, people can acquire the context and semantic information for image
understanding. Therefore, scene text recognition attracts great interest in the field of computer
vision. Although the optical character recognition (OCR) [1], which is widely studied for decades, can
successfully deal with the text in documents, it is still a challenge to identify the text in natural images.

In recent years, with the development of artificial intelligent technology, there emerge a large
number of text recognition methods [2–6] based on neural network. These methods can achieve good
performance when dealing with the regular text. However, in practical applications, the scene text is
usually irregular (such as slant, curved, perspective, multiple lines, etc.), as shown in Figure 1, and the
performance of the above methods is not satisfying.
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All of the mentioned methods can be divided into two categories: one for predicting irregular
text, and another for predicting regular text. In practical applications, the scene text is usually irregular
(such as slant, curved, perspective, multiple lines, etc.), as shown in Figure 1, and the performance of
the above methods is not satisfying. At present, there are many methods [7–12] to predict irregular
text, which can be divided into two types. A common method [7–9] is to correct and then identify;
for example, Shi et al. [7] propose a robust text recognizer with automatic rectification (RARE) consisting
of a spatial transformer network (STN) [13] and a sequence recognition network (SRN). The irregular
text is corrected into approximately regular text by using STN, and after that SRN recognizes the
corrected text through a sequence recognition technique from left to right. RARE can recognize some
natural images, but fails to recognize the vertical text. In addition, it is difficult to optimize STN to fit
various kinds of irregular text in natural images, such as curved or arbitrarily oriented text. Another
method [10,11] predicts final results directly, such as when Yang et al. [10] introduce an auxiliary
dense character detection task that uses a fully convolutional network (FCN) [14] to learn text visual
representations and an alignment loss to guide the training of an attention model. This method
recognizes two-dimensional text images effectively, but the text must be presented from left to right.
Moreover, character-level bounding box annotations are required during training for utilization of the
attention block.

Usually, most text recognition methods treat the text in natural images as a one-dimensional
sequence and recognize it from left to right, such as [6–8]. However, in reality the text can proceed in
any direction, often leading to unsatisfactory recognition results. In this paper, we propose a robust
end-to-end method that utilizes four direction features to predict scene text. To represent a character in
any direction, the method learns the four direction features and combines them together. Moreover,
the structure of the four direction features shares the neural network weights, which provides the
whole network with high accuracy without an increase in the amount of data.

As shown in Figure 2, first, we use a basic convolutional neural network (BCN) to extract the
low-level features. Then, we obtain the four direction feature sequences and the character placement
possibility through a multidirectional convolutional neural network (MCN). The four direction feature

sequences work in four directions: horizontal vectors
→

l (left→ right) and
→
r (right→ left), vertical

vectors
→

t (top→ bottom) and
→

b (bottom→ top). Horizontal and vertical features are extracted by
sampling the height and width of the feature map down to 1. Then, characters in the natural images
can be represented as a sequence named feature code through the encoder, which combines the four
direction feature sequences and corresponding placement possibility. Finally, the decoder predicts the
result of the text from the feature code. In this paper, our method is not only effective at recognizing
regular text, but also succeeds at predicting irregular text in complex natural images.
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The rest of the paper is organized as follows: In Section 2, theories related to the proposed
algorithm are introduced. The details of our method are described in Section 3, and the experimental
results are given in Section 4. In Section 5, overall conclusions are given.

2. Related Works

2.1. Text Recognition

In recent years, a large number of papers related to text recognition have been published. Ye and
Doermann’s survey [15] analyzes and compares the technical challenges, methods, and performance
of text recognition research in color imagery. Most traditional methods follow a bottom-up pipeline
and the others work in the top-down style. The methods based on bottom-up [1,5,6,16–18] first detect
and recognize single characters, then integrate them into words based on a language model. However,
these methods require character-level labeling, and consume a large amount of resources.

The top-down pipeline approach directly predicts the whole text from the images without
additional character-level labels. The method used in [19] can recognize 90k words, where each word
corresponds to one classification in the CNN output layer. Therefore, the model can only recognize
90k words. Many recent works, such as [2,4,6,7,10,20] make use of a recurrent neural network (RNN).
The authors of [6,20] proposed an end-to-end neural network, and regarded the natural images
recognition as a sequence labeling problem. The network uses CNN for sequence feature extraction,
RNN for per-frame prediction, and CTC [21] loss for final label sequence prediction. The method in [4]
presents a recursive recurrent neural network with attention modeling (R2AM). The model consists of
two blocks: recursive CNN for image feature extraction, and RNN with attention-based mechanism
for recognition. The method in [2] develops a focusing network (FN) to eliminate the attention drift of
the attention network (AN). However, these methods transform the image into a feature sequence
from left to right and cannot recognize irregular text (e.g., curved text) in natural images. In order to
tackle this problem, the authors of [7] proposed a solution named a space transformer network (STN),
which can transform the input image into a rectified image for a sequence recognition network (SRN)
to recognize. The method in [10] uses a FCN [14] to learn text visual patterns and recognizes the text
through the attention-based RNN.

In this paper, our method uses a top-bottom pipeline approach, which does not need to detect
individual characters. Different from existing top-down methods, our method first uses BCN and
MCN to extract the four feature sequences and their character placement possibility, then encodes
them by RNN, and finally predicts the results. At the same time, we can only use word-level labels to
train the whole network end-to-end.

2.2. BiLSTM

RNN, used in the top-down methods, is most probably a bidirectional long short-term memory
neural network (BiLSTM) [2,6,20]. RNN can distinguish ambiguous characters easily by utilizing the
context within the sequence. In addition, RNN can handle any length of sequence, which is very
helpful in text recognition. Meanwhile, RNN can return the back propagation error to the previous
layer and make it possible to train the whole network end-to-end.

The RNN layer consists of multiple RNN units with the same parameters. These units are arranged
in sequence. For the i th (i = 1, . . . T) unit, its input data contain the i th element of the sequence
[x1, · · · , xi, · · · , xT] and the output of the (i-1) th unit hi−1. Based on the input data, the i th unit outputs
the result hi = f (xi, hi−1). In that way, RNN units can obtain past information for prediction. However,
RNN often suffers from the vanishing gradient problem [22], which makes it difficult to transmit the
gradient information consistently over a long time.

LSTM [23,24], as a special RNN, consists of a memory cell and three multiplicative gates: the
input gate, forget gate, and output gate. The memory cell allows the LSTM to store past contexts, while
the input and output gates allow LSTM to store contexts for the future. However, in the prediction
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of natural images, both types of context are important. Therefore, we refer to [25] and combine two
LSTMs into BiLSTM. As shown in Figure 3, one of the LSTMs utilizes past context and another utilizes
future context, and after that the final prediction sequence is obtained.
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LSTMs, one for past context (left to right) and one for future context (right to left).

3. Framework

In order to recognize irregular text, we identify the four direction features separately, and then fuse
the four direction features to get the final recognition result. Each direction feature is acquired using
the method developed in [6], which is proven to be effective for regular text recognition. As shown in
Figure 4, the four direction features can be defined as follows:

the left-to-right direction feature :
→

t ,
→

t′

the bottom-to-top direction feature :
→

b ,
→

b′

the right-to-left direction feature :
→
r ,
→

r′

the top-to-bottom direction feature :
→

t ,
→

t′ ,

(1)

where the feature sequences
→

l ,
→

b ,
→
r ,
→

t are the outputs of MCN, and the feature vectors
→

l′ ,
→

b′,
→

r′ ,
→

t′ are
the outputs of the first BiLSTM. Specifically, our method includes four parts: (1) BCN for low-level
features extraction; (2) MCN for extracting four direction feature sequences and character placement
possibility; (3) encoder for combing four direction feature sequences with the character placement
possibility; (4) decoder for predicting the final character sequence.
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3.1. BCN and MCN

In our model, feature extraction is performed by a basic convolutional neural network (BCN) and
a multidirectional convolutional neural network (MCN).

BCN is evolved from the standard CNN model. As shown in Figure 4, the convolutional layers
and max-pooling layers are used to extract the low-level features of the image. Before inputting into
the network, all natural images should be scaled to 100 × 100 pixels. Since the input image is a square,
the feature graph obtained after convolution and pooling is also a square. On the one hand, using BCN
can obtain the low-level features of the image quickly. On the other hand, by reducing the size of the
feature map through pooling, the computational cost can be reduced effectively.

In this work, characters in natural images are represented by multiple perspectives, just like
vectors represented by the cross coordinate. Therefore, we use MCN to extract features from multiple
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perspectives of a BCN feature graph. The MCN network consists of five convolutional layers, and
represents the feature graph as a sequential feature. We use the rotator to rotate the feature maps of
BCN 90◦, 180◦ and 270◦, respectively. MCN and BCN are connected by the rotator, and MCN can
get the four direction feature sequences. As shown in Figure 5, the four direction feature sequences
represent four directions: left→ right, bottom→ top, right→ left, and top→ bottom. Multidirectional
feature sequences can be represented as follows:

→

l : (l1, l2, · · · , lL), le f t→ right
→

b : (b1, b2, · · · , bL), bottom→ top
→
r : (r1, r2, · · · , rL), right→ le f t
→

t : (t1, t2, · · · , tL), top→ bottom.

(2)
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The four direction feature sequences
→

l ,
→

b ,
→
r ,
→

t have a size of L×D, where L and D represent the
length of the four feature sequences and the channel number, respectively. By using MCN to extract
sequential features in multiple directions, the network can not only reduce computational resources,
but also achieve high accuracy with a small amount of training data.

3.2. Encoder

Encoder is the process of combining four direction feature sequences into one. By using BiLSTM,

we can encode the output feature sequences
→

l ,
→

b ,
→
r ,
→

t of MCN into the four direction feature vectors
→

l′ ,
→

b′,
→

r′ ,
→

t′ . By this means, the four direction feature vectors contain the contextual information, which
also represents the four directions’ features. Each character in a natural image can be described by
→

l′ ,
→

b′,
→

r′ ,
→

t′ ; therefore, we use MCN to calculate the possibility of corresponding characters in each
direction, which is termed the character placement possibility p. For each text image, the character

placement possibility is used as the weight of each feature vector, and
4∑

j=1
pi j = 1 with a size of p equal

to L× 4. As shown in Figure 6, we use the corresponding p to combine the four direction feature vectors
as follows:

→

h′i =
[→
l′ ,
→

b′,
→

r′ ,
→

t′
]
pi (3)
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The combination of four direction feature sequences is the feature code
→

h′ =
(
→

h′1,
→

h′2, · · · ,
→

h′L

)
.

3.3. Decoder

Decoder is the process of converting feature code into character sequence. In the decoder block,

we use BiLSTM to handle the feature code
→

h′ by taking the contextual information into consideration,

and the feature sequence
→

h is obtained. The probability of each area in the text image is calculated by

the formula yi = so f tmax
(
→

hi

)
, and then the probabilities obtained are input to the connectionist time

classification (CTC) layer proposed by Graves et al. [21]; finally, the character sequence is achieved.
The probability y has the size of L×C, where L is the length of the prediction sequence and C is the

classification of characters. We use the probability y to predict the character sequence, but the length of
text in images is not equal to L. The CTC is specifically designed for tasks in which the lengths of the
input sequence and target sequence are unequal and it is difficult to segment the input sequence to
match the target sequence. Therefore, the CTC introduces the sequence-to-sequence mapping function
B as follows:

B
(
argmax

π
P(π

∣∣∣p)) (4)

where B removes the repeated labels and non-character labels. The CTC looks for an optimized path (π)

with maximum probability through the input sequence. For example, B(−hh− e− l− ll− oo−) = hello,
where ‘-’ represents the non-character label.

4. Experiments

4.1. Datasets

The regular and irregular benchmarks are as follows:
CUTE80 (CT80 for short) [26] is collected for evaluating curved text recognition. It contains

288 cropped natural images for testing. No lexicon is associated.
ICDAR 2015 (IC15 for short) [27] contains 2077 cropped images, of which more than 200 are

irregular (arbitrarily-oriented, perspective, or curved). No lexicon is associated.
IIIT5K-Words (IIIT5K for short) [28] is collected from the Internet, containing 3000 cropped word

images in its test set. Each image specifies a 50-word lexicon and a 1k-word lexicon, both of which
contain the ground truth words as well as other randomly picked words.
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Street View Text (SVT for short) [17] is collected from Google Street View, and consists of 647 word
images in its test set. Many images are severely corrupted by noise and blur, or have very low
resolutions. Each image is associated with a 50-word lexicon.

ICDAR 2003 (IC03 for short) [29] contains 251 scene images, labeled with text bounding boxes.
Each image is associated with a 50-word lexicon defined by Wang et al. [17]. For fair comparison,
we discard images that contain non-alphanumeric characters or have fewer than three characters [17].
The resulting dataset contains 867 cropped images. The lexicons include the 50-word lexicons and the
full lexicon that combines all lexicon words.

ICDAR 2013 (IC13 for short) [16] is the successor to IC03, from which most of its data are inherited.
It contains 1015 cropped text images. No lexicon is associated.

4.2. Details

Network: In order to ensure that the network can recognize regular and irregular text, we input
100× 100 pixel images, a size that mostly ensures we retain the character of the images. All convolutional
layers have 3 × 3 size of kernels, and the pooling layers have 2 × 2 size kernels. We use batch
normalization (BN) [30] and RELU activation behind each convolution layer. In the decoding process,
we designed the BiLSTM and 37 outputs (including 26 letters, 10 digits, and an EOS symbol).

Training: We trained our model using synthetic data [3] and real-world training datasets [17,27–29]
by the ADADELTA [31] optimization method. Meanwhile, we conducted data augmentation by
randomly rotating each image range from 0◦ to 360◦ once. Our method was implemented under the
Tensorflow framework [32], running on a computer with an 8-core CPU, 32G RAM, TitianXP GPU, and
Ubuntu 16.04.

4.3. Comparative Evaluation

As shown in Table 1, we compared the recognition results of our method with 17 related methods
in each regular dataset. Our method had the advantages of SVT and achieved a similar performance to
other top algorithms in the IIIT5K, IC03, and IC13 datasets. The proposed method had 0.2% accuracy
improvement over SVT-50 and 1.5% accuracy improvement over SVT-None compared to the most
effective method [2]. Compared with [2] and [19], we achieved a simpler structure. The method in [2]
is composed of two main structures: one is an attention network (AN) for recognizing characters, and
the other is a focusing network (FN) for adjusting attention by evaluating whether AN properly pays
attention to the target areas in the image. Additional position correction can make the network achieve
better results on the basis of recognition, but this step needs to obtain the position information of each
character during training. However, our network does not need additional character-level labeling in
the training stage, and using word-level labeling can train the network end-to-end. Our method is
more accurate than Cheng’s baseline [2], which removes FN that requires additional character-level
labeling. The output of the method in [19] is the whole word, so text beyond the scope of its vocabulary
cannot be recognized. The proposed algorithm, which can handle strings of arbitrary length and
random arrangement, is more suitable for natural scenes.

Table 2 shows that our method outperforms the other methods in the CT80 and IC15 datasets.
For example, our method can achieve 0.5% accuracy improvement in the IC15 dataset and 1.2% accuracy
improvement in the CT80 dataset compared with the most effective method [2]. Figure 7 shows some
pictures of dataset IC15 and CT80, which represent the problems of slant, curved, perspective, multiple
lines, and so on. Since the MCN can effectively obtain multidirectional text information, the proposed
method can well identify slant and perspective text. The encoding algorithm enables the network to
process curved text. Moreover, our network has strong robustness against noise and can recognize a
whole line of text accurately. In conclusion, this work achieves better results on irregular datasets and
higher robustness on regular datasets with less loss of accuracy.
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Table 1. Results in regular datasets. ’50’, ‘1k’ and ‘Full’ in the second row refer to the lexicon used,
while ‘None’ means recognition without a lexicon.

Method
IIIT5K SVT IC03 IC13

50 1k None 50 None 50 Full None None

ABBYY [17] 24.3 - - 35.0 - 56.0 55.0 - -
Wang et al. [17] - - - 57.0 - 76.0 62.0 - -

Mishra et al. [25] 64.1 57.5 - 73.0 - 81.8 67.8 - -
Wang et al. [33] - - - 70.0 - 90.0 84.0 - -
Goel et al. [34] - - - 77.3 - 89.7 - - 87.6

Bissacco et al. [1] - - - 90.4 78.0 - - - -
Alsharif [35] - - - 74.3 - 93.1 88.6 - -

Almazan et al. [36] 91.2 82.1 - 89.2 - - -
Yao et al. [37] 80.2 69.3 - 75.9 - 88.5 80.3 - -

Jaderberg et al. [16] - - - 86.1 - 96.2 91.5 - -
Su and Lu [38] - - - 93.0 - 92.0 82.0 - -

Gordo [39] 93.3 86.6 - 91.8 - - - - -
Jaderberg et al. [19] 97.1 92.7 - 95.4 80.7 98.7 98.6 93.1 90.8
Jaderberg et al. [16] 95.5 89.6 - 93.2 71.7 97.8 97.0 89.6 81.8

Shi et al. [6] 97.6 94.4 78.2 96.4 80.8 98.7 97.6 89.4 86.7
Shi et al. [7] 96.2 93.8 81.9 95.5 81.9 98.3 96.2 90.1 88.6

Cheng’s baseline [2] 98.9 96.8 83.7 95.7 82.2 98.5 96.7 91.5 89.4
Cheng et al. [2] 99.3 97.5 87.4 97.1 85.9 99.2 97.3 94.2 93.3

Ours 99.0 96.9 87.2 97.3 87.4 97.8 96.4 91.0 90.1

Table 2. Results in irregular datasets. ‘None’ means recognition without a lexicon.

Method
CT80 IC15

None None

Shi et al. [6] 54.9 -
Shi et al. [7] 59.2 -

Cheng et al. [2] 63.9 63.3

ours 65.1 63.5
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To better illustrate the advantages of our structure, we provide Table 3, which includes properties
named end-to-end, CharGT, dictionary, and model size. End-to-end: this column is to show whether
the model can deal with the image directly without any handcrafted features. As can be observed
from Table 3, only the model in [6,16,19] and ours can be trained end-to-end. CharGT: this column
is to indicate whether the model needs character-level annotations in training. The output of ours
is a sequence, and our method only uses word-level labeling. Dictionary: this column is to indicate
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whether the model depends on a special dictionary and so is unable to handle out-of-dictionary words
or random sequences. Our algorithm can handle strings of arbitrary length and random arrangement.
Model size: this column is to report the storage space of the model. As shown in Table 3, there are fewer
parameters in our model than in the models in [16,19], which means our model is smaller. Ours has
only 15.4 million parameters, slightly more than the model in [6], which can only recognize regular
text. Table 3 clearly shows that our model is more practical.

Table 3. Comparison of various methods. Attributes for comparison include: (1) End-to-end: the
model being end-to-end trainable; (2) CharGT: the model needs character-level annotation beyond
training; (3) dictionary: the model can only recognize words belonging to a special dictionary; (4) model
size: the number of model parameters. M stands for millions.

Method End-to-End CharGT Dictionary Model Size

Wang et al. [17] × NEEDED NOT NEED -
Mishra et al. [25] × NEEDED NEEDED -
Wang et al. [33] × NEEDED NOT NEED -
Goel et al. [34] × NOT NEED NEEDED -

Bissacco et al. [1] × NEEDED NOT NEED -
Alsharif [35] × NEEDED NOT NEED -

Almazan et al. [36] × NOT NEED NEEDED -
Yao et al. [37] × NEEDED NOT NEED -

Jaderberg et al. [16] × NEEDED NOT NEED -
Su and Lu [38] × NOT NEED NOT NEED -

Gordo [39] × NEEDED NEEDED -
Jaderberg et al. [19]

√
NOT NEED NEEDED 490 M

Jaderberg et al. [16]
√

NOT NEED NOT NEED 304 M
Shi et al. [6]

√
NOT NEED NOT NEED 8.3 M

ours
√

NOT NEED NOT NEED 15.4 M

4.4. Comparison with Baseline Models

To evaluate the efficiency of the proposed method, we also trained two baseline models: Without_4
and Without_P. Without_4 combines the four direction feature maps of the rotator rotation into one
through a convolutional layer. Without_P combines these features through a dense layer. We conducted
experiments on both regular and irregular text recognition datasets.

From Table 4, we can see that the baseline models do not recognize regular or irregular text
well. Unlike the proposed model and the Without_P model, the Without_4 model achieves only
39.8% accuracy in the CT80 dataset containing curved text. These comparison results indicate that the
four direction features are necessary for recognizing curved text. In both regular and irregular text
datasets, the accuracy of the Without_P model is lower than that of the proposed model. These results
demonstrate the necessity of an encoder, which can effectively combine the four direction features with
character placement possibility.

Table 4. Results from regular and irregular datasets.

Method
Regular Dataset Irregular Dataset

IIIT5K SVT IC03 IC13 CT80 IC15

Without_4 73.3 77.4 82.4 78.9 39.8 50.4

Without_P 79.6 81.2 85.7 82.5 54.5 54.6

ours 87.2 87.4 91.0 90.1 65.1 63.5
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5. Conclusions

In this paper, we present a novel neural network for scene text recognition by (1) designing BCN
and MCN to extract four direction features and the corresponding character placement possibility,
(2) using an encoder to integrate the four direction features and their placement possibility and thus
gain a feature code, and (3) applying a decoder to recognize the character sequence. Different from
most existing methods, our method can recognize both regular and irregular text from scene images.
The proposed algorithm outperforms other methods in irregular datasets and achieves a similar
performance to the top methods in regular datasets. Our method can achieve 87.4% accuracy in the
SVT dataset, 65.1% in the CT80 dataset, and 63.5% in the IC15 dataset. The experiments on regular and
irregular datasets demonstrate that our method achieves superior or highly competitive performance.
Moreover, we trained two baseline models, and the results prove that the proposed method with four
direction features and character placement possibility is effective. In the future, we plan to make it
more practical for real-world applications.
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