
electronics

Article

Design and Implementation Procedure for an
Advanced Driver Assistance System Based on an
Open Source AUTOSAR

Jaeho Park and Byoung Wook Choi *

Department of Electrical and Information Engineering, Seoul National University of Science and Technology,
Seoul 01811, Korea; jaeho@seoultech.ac.kr
* Correspondence: bwchoi@seoultech.ac.kr; Tel.: +82-2-970-6412

Received: 9 August 2019; Accepted: 11 September 2019; Published: 12 September 2019
����������
�������

Abstract: In this paper, we present the detailed design and implementation procedures for an
advanced driver assistance system (ADAS) based on an open source automotive open system
architecture (AUTOSAR). Due to the increasing software complexity of ADAS, portability, component
interoperability, and maintenance are becoming essential development factors. AUTOSAR satisfies
these demands by defining system architecture standards. Although commercial distributions of
AUTOSAR are well established, accessibility is a huge concern as they come with very expensive
licensing fees. Open source AUTOSAR addresses this issue and can also minimize the overall cost
of development. However, the development procedure has not been well established and could
be difficult for engineers. The contribution of this paper is divided into two main parts: First,
we provide the complete details on developing a collision warning system using an open source
AUTOSAR. This includes the simplified basic concepts of AUTOSAR, which we have organized for
easier understanding. Also, we present an improvement of the existing AUTOSAR development
methodology focusing on defining the underlying tools at each development stage with clarity.
Second, as the performance of open source software has not been proven and requires benchmarking
to ensure the stability of the system, we propose various evaluation methods measuring the real-time
performance of tasks and the overall latency of the communication stack. These performance metrics
are relevant to confirm whether the entire system has deterministic behavior and responsiveness.
The evaluation results can help developers to improve the overall safety of the vehicular system.
Experiments are conducted on an AUTOSAR evaluation kit integrated with our self-developed
collision warning system. The procedures and evaluation methods are applicable not only on detecting
obstacles but other variants of ADAS and are very useful in integrating open source AUTOSAR to
various vehicular applications.

Keywords: AUTOSAR; ADAS; open source; design methodology; performance evaluation

1. Introduction

Recently, as traffic volumes have become increasingly complex, the need for an advanced driver
assistance system (ADAS) has emerged to reduce life-threatening situations caused by traffic accidents.
ADAS uses sensors and electronics to help drivers make better decisions [1]. With the remarkable
advances of sensors and electronics in recent years, the expectations for ADAS have significantly
increased. In such, various studies have been conducted related to tracking a vehicle using a
camera [2], measurement of the driver’s heart rate using sensors mounted on the seat of the vehicle [3],
notification of the recommended vehicle speed based on weather, road, and vehicle condition [4], and
communication between autonomous vehicles [5]. With the advancements in ADAS, the underlying

Electronics 2019, 8, 1025; doi:10.3390/electronics8091025 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-2404-7415
http://dx.doi.org/10.3390/electronics8091025
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/8/9/1025?type=check_update&version=2

Electronics 2019, 8, 1025 2 of 18

software has become more complex; where interoperability, portability, and maintainability became
crucial requirements. These requirements are addressed by automotive software platforms such as
Open Systems and their Interfaces for the Electronics in Motor Vehicles (OSEK) [6] and AUTOSAR [7–9].

Traditional original equipment manufacturers (OEMs) and electronic control unit (ECU)
manufacturers use a variety of hardware and software without a uniform standard to develop
the ECU of vehicles. Without a uniform standard, ECUs are developed in a hardware-dependent
structure that requires new software to be created when the hardware is changed. In this way,
the developed ECU reduces the reusability and reliability of software and increases development
costs. To address such problem, German automotive companies jointly started OSEK with the aim
to develop “an industry standard for an open-ended architecture for distributed electronic control
units in automobiles.” It provides standard interfaces incorporating hardware and software for easier
development and reusability. However, the constant increase in system complexity of automobiles
leads to the current development of automotive open system architecture (AUTOSAR). AUTOSAR
aims to develop the software independent of the hardware and can be distributed or reused in different
components of ECUs [10,11]. AUTOSAR separates hardware-independent application software from
the hardware-oriented software through the runtime environment layer. In this study, we focus on the
development of a collision warning system based on AUTOSAR.

Solutions for AUTOSAR development are divided into commercial [12] and open source
distributions [13]. In a commercial AUTOSAR solution, the vendor provides a well-established
development methodology from the development environment to the implementation in accordance
with the development tool. Thus, it is relatively easier to use in project development but with higher
licensing costs. Conversely, open source solutions can decrease development costs as the licenses are
free and can easily be acquired. However, documentation and implementation procedures are not
well-defined. For example, Sun et al. [14] built a software framework based on controller area network
(CAN) bus following the AUTOSAR acceptance test. Similarly, Jansson et al. [15], implemented FlexRay
communication using the AUTOSAR communication stack. Both researchers offered performance
evaluation of the communication stack and the required implementation mechanisms. However, these
studies did not offer actual automotive application. A vehicle seat heating system based on the open
source AUTOSAR is presented by Melin et al. [13] and the application of the message authenticated
controller area network (MaCAN) protocol for vehicular applications Kulaty et al. [16] is proposed.
However, all of these studies focus only on the implementation of the communication stack or the
specific application. Design and implementation procedures were not considered. For this reason,
engineers and practitioners mentioned complexity, learning curve, and bad documentation as the
recognizable drawbacks of AUTOSAR [10].

To address these shortcomings, this paper aims to provide a comprehensive reference for
practitioners, especially beginners, on the design and implementation of open source AUTOSAR for
automotive applications. To begin, we organized the basic concepts of AUTOSAR to make it easier to
understand the architecture and each fundamental component. Although the AUTOSAR manual [17]
describes most of the parts, this study offers a simplified explanation based on the first-hand experience
which is very helpful especially in practical implementation. Also, we propose an improvement of
the existing development methodology [18–21] based on an open source AUTOSAR. This focuses on
defining the underlying tools required at each development stage which is very necessary for designing
flexible and reusable software modules for a complex system such as an ADAS.

In order to validate the methodology, we developed a collision warning system with actual
ultrasonic sensors and light-emitting diodes (LEDs) connected to an AUTOSAR evaluation kit, NXP
MPC574XG-324DS [22], including the complete details and implementation procedures. Visualization
of the sensor data was performed in a virtual robot experience platform (V-REP) [23,24]. Because an
ADAS such as the collision warning system is composed of complex software and electronic hardware
devices, precise control period and minimal computational delay should be ensured for proper device
handling. Thus, the entire system should display deterministic behavior and responsiveness, i.e.

Electronics 2019, 8, 1025 3 of 18

real-time performance. Due to the lack of documentation and established methods in determining the
performance of open source AUTSOAR, this study also provides various evaluation methods aiming
to measure the real-time performance of the tasks running in the runtime environment of AUTOSAR.
These include the task periodicity test to ensure that the system meets real-time constraints and latency
tests on each layer of the AUTOSAR communication stack. The results of these evaluation methods
can help developers in improving the overall safety of their developed vehicular system. Although we
have implemented the proposed procedures and evaluation methods in a collision warning system,
these are applicable to any other types of ADAS applications and is very useful as a guideline for
integration open source AUTOSAR to more complex vehicular projects.

In summary, the contribution of this study is twofold: First, we provide the complete details on
developing a collision warning system using an open source AUTOSAR; including the simplified basic
concepts of AUTOSAR and improvement of the existing AUTOSAR development methodology. Second,
we propose various evaluation methods measuring the real-time performance of the tasks in the runtime
environment and the overall latency of the communication stack. This paper is organized as follows: The
second section presents the simplified basic concepts of AUTOSAR. The proposed ADAS development
process using an open source AUTOSAR is described in Section 3. Experiment procedures and results are
shown in Section 4. Evaluation of the implemented system using the proposed evaluation methods are
performed in Section 5 and the last section summarizes the concluding remarks.

2. AUTOSAR Basic Concept

AUTOSAR is a standard software consisting of three major layers: the application software
component (ASW), runtime environment (RTE), and basic software (BSW). Each layer is modularized
into various software components, connected with each other over a virtual network called the virtual
functional bus (VFB) [25]. Figure 1 shows the basic software architecture of AUTOSAR [26].

Electronics 2019, 8, 1025 3 of 18

and responsiveness, i.e. real-time performance. Due to the lack of documentation and established
methods in determining the performance of open source AUTSOAR, this study also provides various
evaluation methods aiming to measure the real-time performance of the tasks running in the runtime
environment of AUTOSAR. These include the task periodicity test to ensure that the system meets
real-time constraints and latency tests on each layer of the AUTOSAR communication stack. The
results of these evaluation methods can help developers in improving the overall safety of their
developed vehicular system. Although we have implemented the proposed procedures and
evaluation methods in a collision warning system, these are applicable to any other types of ADAS
applications and is very useful as a guideline for integration open source AUTOSAR to more complex
vehicular projects.

In summary, the contribution of this study is twofold: First, we provide the complete details on
developing a collision warning system using an open source AUTOSAR; including the simplified
basic concepts of AUTOSAR and improvement of the existing AUTOSAR development
methodology. Second, we propose various evaluation methods measuring the real-time performance
of the tasks in the runtime environment and the overall latency of the communication stack. This
paper is organized as follows: The second section presents the simplified basic concepts of
AUTOSAR. The proposed ADAS development process using an open source AUTOSAR is described
in Section 3. Experiment procedures and results are shown in Section 4. Evaluation of the
implemented system using the proposed evaluation methods are performed in Section 5 and the last
section summarizes the concluding remarks.

2. AUTOSAR Basic Concept

AUTOSAR is a standard software consisting of three major layers: the application software
component (ASW), runtime environment (RTE), and basic software (BSW). Each layer is modularized
into various software components, connected with each other over a virtual network called the virtual
functional bus (VFB) [25]. Figure 1 shows the basic software architecture of AUTOSAR [26].

Figure 1. Simplified AUTOSAR software architecture.

The ASW layer consists of the AUTOSAR software component (SWC) mapped into a specific
ECU. The SWC is separated into minimum units that can be reused based on the function of the
AUTOSAR application, in terms of information hiding and encapsulation and is independent of the

Figure 1. Simplified AUTOSAR software architecture.

The ASW layer consists of the AUTOSAR software component (SWC) mapped into a specific ECU.
The SWC is separated into minimum units that can be reused based on the function of the AUTOSAR
application, in terms of information hiding and encapsulation and is independent of the hardware and
network bus. Communication between different SWCs or between an SWC and BSW is performed
through a VFB. It defines an interface for an access point that can be input and output data to the

Electronics 2019, 8, 1025 4 of 18

SWC, and a communication method to communicate with other SWCs or BSWs. The SWC can send
and receive necessary data through the port and the interface regardless of the ECU in which the
communication object is located. The communication interface includes a sender-receiver interface and
a client-server Interface. In the case of the sender-receiver interface, data is transmitted from the sender
to the receiver by the signal passing method. The data type of the transmitted data from the sender
must match the data type specified by the receiver. In the case of the client-server interface, the function
of the server is called by the client in the function call method. The data type of the parameter to be
used when calling the server function in the client should match the data type specified in the server.

The RTE layer serves as a middleware for managing communication between the ASW layer
and the BSW layer of the same ECU. The RTE provides the same abstracted interface regardless of
whether the communication is within the ECU or through the external communication network, so
the SWCs of the ASW layer are independent of those of the BSW layer. The VFB of the RTE layer
provides the AUTOSAR communication mechanism for the client-server and sender-receiver interfaces
and provides communication service to the SWC. The VFB is a technical concept that enables the
development of the functional architecture of the entire system, independent of the actual hardware
topology of the ECUs and the network [25]. In Figure 1, SWC-1 and SWC-2 communicate within ECU
1, but in the case of SWC-3 to SWC-6, communication is performed between the SWCs of ECU 1 and
ECU 2. Since all SWCs are designed to communicate in one VFB, they are designed the same as SWC-1
and SWC-2 when developing SWC-3 to SWC-6, regardless of the position of the mapped ECU. After
the SWCs are mapped to the ECU, the VFB is implemented as RTE-1 and RTE-2 in each ECU as shown
in Figure 1. As a result, RTE-1 and RTE-2 play an individual role in VFB.

Figure 2 shows the detailed software architecture of AUTOSAR, which was unified based on our
own first-hand experience and interpretation of the AUTOSAR manual [26]. BSW, which was simply
presented in Figure 1, is detailed in Figure 2.

Electronics 2019, 8, 1025 4 of 18

hardware and network bus. Communication between different SWCs or between an SWC and BSW
is performed through a VFB. It defines an interface for an access point that can be input and output
data to the SWC, and a communication method to communicate with other SWCs or BSWs. The SWC
can send and receive necessary data through the port and the interface regardless of the ECU in which
the communication object is located. The communication interface includes a sender-receiver
interface and a client-server Interface. In the case of the sender-receiver interface, data is transmitted
from the sender to the receiver by the signal passing method. The data type of the transmitted data
from the sender must match the data type specified by the receiver. In the case of the client-server
interface, the function of the server is called by the client in the function call method. The data type
of the parameter to be used when calling the server function in the client should match the data type
specified in the server.

The RTE layer serves as a middleware for managing communication between the ASW layer
and the BSW layer of the same ECU. The RTE provides the same abstracted interface regardless of
whether the communication is within the ECU or through the external communication network, so
the SWCs of the ASW layer are independent of those of the BSW layer. The VFB of the RTE layer
provides the AUTOSAR communication mechanism for the client-server and sender-receiver
interfaces and provides communication service to the SWC. The VFB is a technical concept that
enables the development of the functional architecture of the entire system, independent of the actual
hardware topology of the ECUs and the network [25]. In Figure 1, SWC-1 and SWC-2 communicate
within ECU 1, but in the case of SWC-3 to SWC-6, communication is performed between the SWCs
of ECU 1 and ECU 2. Since all SWCs are designed to communicate in one VFB, they are designed the
same as SWC-1 and SWC-2 when developing SWC-3 to SWC-6, regardless of the position of the
mapped ECU. After the SWCs are mapped to the ECU, the VFB is implemented as RTE-1 and RTE-2
in each ECU as shown in Figure 1. As a result, RTE-1 and RTE-2 play an individual role in VFB.

Figure 2. Detailed AUTOSAR software architecture. Figure 2. Detailed AUTOSAR software architecture.

Electronics 2019, 8, 1025 5 of 18

The BSW is also a standard software layer that provides the services required for the ASW layer
and the SWCs to perform specified tasks. The BSW consists of a service layer, an ECU abstraction layer,
and a microcontroller abstraction layer (MCAL). The service layer is divided into system services,
memory services, and communication services depending on the functions to be provided. System
services are a group of modules and functions that can be used in all layers of the module. System
services provide a real-time operating system, vehicle network communication and management, the
ECU status management function, WatchDog, and the diagnostic service function. In Figure 2, the OS
module group, mode management module group, and diagnostics module group correspond to system
services. Memory services consist of a group of modules responsible for nonvolatile data management.
The standard AUTOSAR interface provides nonvolatile data to the ASW layer; memory location
and attribute abstraction; a nonvolatile data management mechanism for storage, load, checksum
protection, and verification; and stable storage. In Figure 2, the memory module group is provided by
the memory service.

Communication services are a group of modules that perform functions such as CAN, local
interconnect network (LIN), and FlexRay to provide communication to higher layers through a unified
interface. Communication services provide a service for communication network management and
a unified interface that eliminates the dependency of the lower layers. Additionally, it accesses
the communication driver through the abstracted communication driver and has a structure that is
independent of the communication driver of the MCAL layer. Communication services provide a
unified interface that eliminates the dependency of the lower layers on diverse applications and vehicle
network diagnostic communications, allowing applications to be developed without consideration of
protocol and message attributes. Internally, there is a network manager (NM), state manager (SM), and
transport protocol (TP) for communication networks, such as CAN, LIN, and FlexRay. Furthermore,
modules such as communication (Com) and protocol data unit router (PduR) exist. In Figure 2, the
service module groups CAN state manager (CanSm), CAN network manager (CanNm), CAN transport
protocol (CanTp), FlexRay state manager (FrSm), FlexRay network manager (FrNm), FlexRay transport
protocol (FrTp), LIN state manager (LinSm), and LIN transport protocol (LinTp) are provided in the
communication services [27,28].

The ECU abstraction layer serves as an interface and driver for creating an upper layer of software,
independent of hardware so that MCAL can be used. The ECU abstraction layer is independent
of the microcontroller, but it is dependent on the ECU board used. The ECU abstraction layer is
divided into onboard device abstraction, memory hardware abstraction, communication hardware
abstraction, and input/output (I/O) hardware abstraction depending on the functions to be provided.
Onboard device abstraction contains drivers for the ECU onboard devices not visible as sensors or
actuators, such as internal or external watchdogs. The function of this module group is to abstract
from ECU specific onboard devices. In Figure 2, the watchdog interface (WdgIf) module is included
in the onboard device abstract. Memory hardware abstraction is a group of modules that abstracts
internal or external memory devices. It provides a mechanism for accessing internal or external
memory devices, allowing access through the same interface regardless of the type of memory, such as
electrically erasable programmable read-only memory (EEPROM) or Flash. In Figure 2, the memory
abstraction interface (MemIf), electrically erasable programmable read-only memory abstraction (Ea),
and flash electrically erasable programmable read-only memory emulation (Fee) modules are included
in the onboard device abstraction. Communication hardware abstraction is a group of modules that
abstract communication hardware. To use a specific communication protocol, you must implement
the communication hardware abstraction module for that protocol. In Figure 2, the CanIf, FrIf, and
LinIf modules are included in the communication hardware abstraction. I/O hardware abstraction is a
group of modules that abstract the I/O hardware. The main purpose of I/O hardware abstraction is to
provide I/O access to the ASW layer and the SWCs. It can be accessed from the upper layer through
the I/O signal interface without going through the service layer. In Figure 2, the Port, Dio for digital

Electronics 2019, 8, 1025 6 of 18

input/output (DIO), Pwm for pulse width modulation (PWM), and Adc for analog to digital converter
(ADC) modules are included in the I/O hardware abstraction.

The microcontroller abstraction layer (MCAL) is the lowest software layer of a BSW. In order to
avoid direct access to the microcontroller register in the high layer software, access to the hardware
is done through the MCAL device driver, which includes hardware-dependent drivers such as
ADC, PWM, DIO, EEPROM, and Flash. Access to the microcontroller’s registers is routed through
MCAL, which makes the upper software layer independent of the microcontroller. Depending on
the function, the microcontroller driver, memory driver, communication driver, and I/O driver are
categorized. This provides an application programming interface (API) for devices and their connection
to the microcontroller.

3. Collision Warning ADAS based on an Open Source AUTOSAR

In this section, we describe the design and implementation procedures of a simple collision
warning system comprised of ultrasonic sensors and LEDs, with the aim to provide an in-depth
reference for an open source AUTOSAR. We present the improved design methodology of developing
AUTOSAR applications, which focuses on defining the underlying tools required at each development
stage. We also describe the complete design and implementation procedures of a collision warning
system including the step-by-step process from configuring both the SWC and BSW. This includes RTE
and SWC runnable implementations for developing ADAS applications.

3.1. Design Methodology

The existing AUTOSAR development methodology [18–21] has difficulty in clarifying the
development process because determining the underlying tools at each development stage is not clearly
defined. For commercial AUTOSAR, it is not a problem because the vendor providing the solution
provides detailed manuals, but because the open source AUTOSAR does not have a clear methodology
for development, there are many challenges for the developers. In this paper, a specialized procedure
is proposed for development using open source AUTOSAR. The existing AUTOSAR development
process has been reconfigured in five stages. The proposed procedure using ARCCORE’s open source
AUTOSAR development solution is shown in Figure 3.

Electronics 2019, 8, 1025 6 of 18

Figure 2, the Port, Dio for digital input/output (DIO), Pwm for pulse width modulation (PWM), and
Adc for analog to digital converter (ADC) modules are included in the I/O hardware abstraction.

The microcontroller abstraction layer (MCAL) is the lowest software layer of a BSW. In order to
avoid direct access to the microcontroller register in the high layer software, access to the hardware
is done through the MCAL device driver, which includes hardware-dependent drivers such as ADC,
PWM, DIO, EEPROM, and Flash. Access to the microcontroller’s registers is routed through MCAL,
which makes the upper software layer independent of the microcontroller. Depending on the
function, the microcontroller driver, memory driver, communication driver, and I/O driver are
categorized. This provides an application programming interface (API) for devices and their
connection to the microcontroller.

3. Collision Warning ADAS based on an Open Source AUTOSAR

In this section, we describe the design and implementation procedures of a simple collision
warning system comprised of ultrasonic sensors and LEDs, with the aim to provide an in-depth
reference for an open source AUTOSAR. We present the improved design methodology of
developing AUTOSAR applications, which focuses on defining the underlying tools required at each
development stage. We also describe the complete design and implementation procedures of a
collision warning system including the step-by-step process from configuring both the SWC and
BSW. This includes RTE and SWC runnable implementations for developing ADAS applications.

3.1. Design Methodology

The existing AUTOSAR development methodology [18–21] has difficulty in clarifying the
development process because determining the underlying tools at each development stage is not
clearly defined. For commercial AUTOSAR, it is not a problem because the vendor providing the
solution provides detailed manuals, but because the open source AUTOSAR does not have a clear
methodology for development, there are many challenges for the developers. In this paper, a
specialized procedure is proposed for development using open source AUTOSAR. The existing
AUTOSAR development process has been reconfigured in five stages. The proposed procedure using
ARCCORE's open source AUTOSAR development solution is shown in Figure 3.

Figure 3. Open source AUTOSAR procedure.

Step 1: This step is performed in the SWCD Editor of Arctic Studio. The SWC description and
system description should be defined for the applications in each software component of .arxml files.
We classify the SWCs according to the function of the AUTOSAR software to be implemented and
define the communication interface, port, and data type in each SWC. After defining the SWCs, the
defined SWCs are used to create prototypes that are objects of the SWC. Then, the communication
ports of the prototypes are connected for communication and the signals to the external ports for
outside the ECU are mapped.

Figure 3. Open source AUTOSAR procedure.

Step 1: This step is performed in the SWCD Editor of Arctic Studio. The SWC description and
system description should be defined for the applications in each software component of .arxml files.
We classify the SWCs according to the function of the AUTOSAR software to be implemented and
define the communication interface, port, and data type in each SWC. After defining the SWCs, the
defined SWCs are used to create prototypes that are objects of the SWC. Then, the communication ports
of the prototypes are connected for communication and the signals to the external ports for outside the
ECU are mapped.

Electronics 2019, 8, 1025 7 of 18

Step 2: This step is performed in the BSW Editor of Arctic Studio. The BSW module for providing
the service required by the SWC is defined and configured in an export.arxml. Modules that should
be configured by default at this stage are OS modules for task scheduling, EcuM modules for ECU
management and BswM modules for BSW management. Other modules are added to perform their
functions according to the functions required by the AUTOSAR SWC. If GPIO is to be used, add the
I/O modules. To implement communication between other ECU, add the communication modules.
You can configure the detailed features of each module for all added modules. For OS modules, task
creation, Priority and Period can be configured. The addition and configuration of modules performed
at this stage are all made in the GUI environment. Finally, the ECU extract method is conducted to
create an extract.arxml file.

Step 3: This step is the RTE configuration step performed in the RTE Editor and BSW Editor of
Arctic Studio. RTE configuration is based on the extract.arxml files created in Step 1 and 2. As a result
of this step, source code and header file for the RTE and BSW are generated. The RTE configuration
process instantiates the SWC prototype created in Step 1 and maps the tasks and events created in the
OS module configuration of Step 2 to the runnable of the instantiated SWC. Through this process, the
runnable of the SWC is scheduled and executed in the AUTOSAR OS. After the RTE configuration
is completed, RTE and RTE contract files are generated to connect the BSW and the ASW using the
generate function provided by the RTE editor. In the RTE contract file, an API for calling the service
provided by the BSW layer in the application of the ASW layer is defined. Finally, generate the BSW
code using the generate function provided by BSW editor.

Step 4: The runnable, which is a function that defines the SWC, is created in C language. The
runnable refers to the RTE contract file which defines the API for communication through the RTE
which is generated as a result of the execution of Step 3.

Step 5: The source code and header files generated as a result of Steps 3 and 4 are built and used
to generate executable files that will run on the ECU. The tool chain and environment variables of the
MCU are specified and used in the ECU. These are performed in Arctic Studio.

3.2. Designing a Collision Warning System

A collision warning system is a system that allows the driver to recognize and avoid an obstacle
by generating a warning to the driver according to the distance between the obstacle and vehicle when
the obstacle exists in a blind spot that the driver cannot recognize. In this paper, the distance from
an ultrasonic sensor to the obstacle is measured and transmitted to the ECU. The ECU determines
the warning level according to the distance data. As a demonstration system, V-REP is used to show
the visualization of sensor data, which is transferred through the CAN bus. The control signal is also
displayed with an LED indicator. The following sections provide a detailed design procedure of a
collision warning system described in the previous section.

3.2.1. SWC Configuration

The Communication interface at SWC is classified into standardized interface and AUTOSAR
interface according to the communication target module as shown in Figure 4. The standardized
interface is used with the BSW, and the AUTOSAR Interface is used with the SWC. Standardized
interface is provided by the AUTOSAR framework and does not need to be defined. AUTOSAR
Interface design is classified according to the size and type of data. Three interfaces are defined in
this paper: The sonar data interface (SonarDataInterface) is used to transmit the measured ultrasonic
sensor data, the data interface (DataInterface) is used for CAN data transmission, and the LED request
interface (LedRequestInterface) is used for LED control request. When communicating using the
SonarDataInterface and DataInterface, data represented distances and four bytes of an unsigned int
data type are used. When communicating using LedRequestInterface, the data only needed to indicate
whether to turn on/off the LED for control, so a one byte Boolean data type is used. In Figure 4, those
are used to connect the communication ports of SWC Prototypes.

Electronics 2019, 8, 1025 8 of 18

Electronics 2019, 8, 1025 8 of 18

Figure 4. Collision warning application layer overview.

3.2.1. SWC Configuration

The Communication interface at SWC is classified into standardized interface and AUTOSAR
interface according to the communication target module as shown in Figure 4. The standardized
interface is used with the BSW, and the AUTOSAR Interface is used with the SWC. Standardized
interface is provided by the AUTOSAR framework and does not need to be defined. AUTOSAR
Interface design is classified according to the size and type of data. Three interfaces are defined in
this paper: The sonar data interface (SonarDataInterface) is used to transmit the measured ultrasonic
sensor data, the data interface (DataInterface) is used for CAN data transmission, and the LED
request interface (LedRequestInterface) is used for LED control request. When communicating using
the SonarDataInterface and DataInterface, data represented distances and four bytes of an unsigned
int data type are used. When communicating using LedRequestInterface, the data only needed to
indicate whether to turn on/off the LED for control, so a one byte Boolean data type is used. In Figure
4, those are used to connect the communication ports of SWC Prototypes.

The SWCs that constitute the communication port and internal behavior are designed by
classifying the operations performed in the ECU into five functions: the distance measurements to
the obstacle, data transmission with the CAN bus, warning level judgment, LED control for the
warning, and ECU initialization. Additionally, the runnable (executable file) is configured for each
SWC. Designed SWCs provide a structure for instantiating SWC prototypes. The application layer
with the detailed operation and connection of each SWC prototype is shown in Figure 4. In the
developed collision warning system, the SWCs are divided as the UltraSonic, CanTranslate,
ObstacleDetection, LEDActuator, and. The UltraSonic converts the measured data from the
ultrasonic sensor into distance data in meters. The calculated distance data is then transmitted to the
CanTranslate and ObstacleDetection for further processing. After receiving the distance data, the
CanTranslate relays them to the CAN bus through the CAN communication stack. On the other hand,
the ObstacleDetection determines the color of the LED to be controlled according to the same distance
data received from the UltraSonic and signals the LEDActuator. The LEDActuator performs the
actual control of the connected LEDs, whether YellowLED or RedLED. The ModeManagerInit
transmits the ECU control signals to the ecuM and bswM, and lets the BSW perform Ecu, Gpt (general
purpose timer), and communication initialization functions. Through these operations .swcd and
.sysd files are finally created for SWC description and an .arxml file is also generated through ECU
Export.

Figure 4. Collision warning application layer overview.

The SWCs that constitute the communication port and internal behavior are designed by classifying
the operations performed in the ECU into five functions: the distance measurements to the obstacle,
data transmission with the CAN bus, warning level judgment, LED control for the warning, and ECU
initialization. Additionally, the runnable (executable file) is configured for each SWC. Designed SWCs
provide a structure for instantiating SWC prototypes. The application layer with the detailed operation
and connection of each SWC prototype is shown in Figure 4. In the developed collision warning
system, the SWCs are divided as the UltraSonic, CanTranslate, ObstacleDetection, LEDActuator, and.
The UltraSonic converts the measured data from the ultrasonic sensor into distance data in meters.
The calculated distance data is then transmitted to the CanTranslate and ObstacleDetection for further
processing. After receiving the distance data, the CanTranslate relays them to the CAN bus through
the CAN communication stack. On the other hand, the ObstacleDetection determines the color of the
LED to be controlled according to the same distance data received from the UltraSonic and signals
the LEDActuator. The LEDActuator performs the actual control of the connected LEDs, whether
YellowLED or RedLED. The ModeManagerInit transmits the ECU control signals to the ecuM and
bswM, and lets the BSW perform Ecu, Gpt (general purpose timer), and communication initialization
functions. Through these operations .swcd and .sysd files are finally created for SWC description and
an .arxml file is also generated through ECU Export.

3.2.2. BSW Configuration

In order to provide the services that the SWC needs to perform specific functions, the modules
utilized in the BSW are defined and configured. In such, the UltraSonic SWC requires timer services
for measuring the return time of the Digital I/O and ultrasonic waves. CanTranslate needs the CAN
communication services. As the ObstacleDetection SWC does not request any hardware resources,
a BSW service is not necessary. On the other hand, hardware-related SWCs such as the YellowLED
and RedLED require the Digital I/O service. The service required by ModeManagerInit is an ECU
management function to perform the initialization of the ECU, timers, and communication. In addition,
OS service is required for task creation and scheduling. The Com, PduR, CanIf, and Can modules are
used to implement the CAN communication stack [14,28]. The CanSM module is used to implement
the control flow of the CAN BUS. The Dio, Port, and IoHwAb modules for Digital I/O control are used;

Electronics 2019, 8, 1025 9 of 18

the Gpt module for timer control is used; the EcuM, BswM, Mcu, and EcuC modules are used for
system management; and the Os module is used to manage the creation and scheduling of AUTOSAR
tasks. Figure 5 shows the layered structure of the collision warning system after performing SWC and
BSW configurations.

Electronics 2019, 8, 1025 9 of 18

3.2.2. BSW Configuration

In order to provide the services that the SWC needs to perform specific functions, the modules
utilized in the BSW are defined and configured. In such, the UltraSonic SWC requires timer services
for measuring the return time of the Digital I/O and ultrasonic waves. CanTranslate needs the CAN
communication services. As the ObstacleDetection SWC does not request any hardware resources, a
BSW service is not necessary. On the other hand, hardware-related SWCs such as the YellowLED and
RedLED require the Digital I/O service. The service required by ModeManagerInit is an ECU
management function to perform the initialization of the ECU, timers, and communication. In
addition, OS service is required for task creation and scheduling. The Com, PduR, CanIf, and Can
modules are used to implement the CAN communication stack [14,28]. The CanSM module is used
to implement the control flow of the CAN BUS. The Dio, Port, and IoHwAb modules for Digital I/O
control are used; the Gpt module for timer control is used; the EcuM, BswM, Mcu, and EcuC modules
are used for system management; and the Os module is used to manage the creation and scheduling
of AUTOSAR tasks. Figure 5 shows the layered structure of the collision warning system after
performing SWC and BSW configurations.

Figure 5. Layered collision warning system architecture.

3.2.3. BSW and RTE Generation

The next procedure is to generate the RTE and BSW codes. RTE is configured by the .arxml file
from the SWC and BSW configuration mentioned in the previous subsections. The RTE configuration
process instantiates the SWC prototype configured during the SWC configuration process, such that
the RTE can recognize the SWC as part of the ASW layer. After instantiating the SWC prototype, the
runnable is mapped to the Task and Event configured in the Os module in the BSW configuration.
Through this process, the SWC runnable is mapped to a task managed by the OS scheduler and is
scheduled in a task unit.

The tasks mapped to SWCs in the collision warning system are displayed as a dotted line in
Figure 4. Those are OsObstacleDetectionTask, OsLEDTask, and OsSonarTask, OsComTask. The
OsStartupTask initializes the BSW module by calling EcuM_StartupTwo as the first task to be
executed. This task is not mapped and runs only once when the OS is executed. OsBswServiceTask,
which is also not mapped, calls the MainFunction of the ComM, Com, EcuM, CanSM, Can, and BswM
modules, which are BSW modules that should be called periodically to provide services. This task is
also not mapped and is scheduled by the BSW Scheduler to run in polling method every 10 ms. The
OsObstacleDetectionTask is triggered every 20 ms and the runnable in the ObstacleDetection SWC
Prototype is mapped. The OsLEDTask is triggered every 10 ms and the runnables in the YellowLED
and RedLED SWC Prototypes are mapped. The OsSonarTask is triggered every 40 ms and the
runnable in the Ultrasonic SWC Prototype are mapped. The OsComTask is triggered at data is
received at SonarRecv port, and the runnable in the CanTranslate SWC Prototype are mapped.

Figure 5. Layered collision warning system architecture.

3.2.3. BSW and RTE Generation

The next procedure is to generate the RTE and BSW codes. RTE is configured by the .arxml file
from the SWC and BSW configuration mentioned in the previous subsections. The RTE configuration
process instantiates the SWC prototype configured during the SWC configuration process, such that
the RTE can recognize the SWC as part of the ASW layer. After instantiating the SWC prototype, the
runnable is mapped to the Task and Event configured in the Os module in the BSW configuration.
Through this process, the SWC runnable is mapped to a task managed by the OS scheduler and is
scheduled in a task unit.

The tasks mapped to SWCs in the collision warning system are displayed as a dotted line in
Figure 4. Those are OsObstacleDetectionTask, OsLEDTask, and OsSonarTask, OsComTask. The
OsStartupTask initializes the BSW module by calling EcuM_StartupTwo as the first task to be executed.
This task is not mapped and runs only once when the OS is executed. OsBswServiceTask, which
is also not mapped, calls the MainFunction of the ComM, Com, EcuM, CanSM, Can, and BswM
modules, which are BSW modules that should be called periodically to provide services. This task is
also not mapped and is scheduled by the BSW Scheduler to run in polling method every 10 ms. The
OsObstacleDetectionTask is triggered every 20 ms and the runnable in the ObstacleDetection SWC
Prototype is mapped. The OsLEDTask is triggered every 10 ms and the runnables in the YellowLED
and RedLED SWC Prototypes are mapped. The OsSonarTask is triggered every 40 ms and the runnable
in the Ultrasonic SWC Prototype are mapped. The OsComTask is triggered at data is received at
SonarRecv port, and the runnable in the CanTranslate SWC Prototype are mapped.

3.2.4. SWC Runnable Implementation

The algorithm of the SWCs are designed in the SWC configuration process; a .c file is implemented
for each SWC and the runnable is implemented as a function inside the .c file. This implemented the
communication between an SWC and other SWCs or communication between the SWC and BSW, by
referring to the API defined in the RTE contract file generated as a result of RTE generation.

4. Experiment Results

Experiments were conducted to verify the operation of the developed collision warning system
based on the proposed methodology in the previous section. The collision warning system operates
by acquiring the distance from ultrasonic sensors, and depending on the measured distance of the

Electronics 2019, 8, 1025 10 of 18

obstacle, the state of the corresponding LED changes. In this section, we specify the hardware and
software environment of the experimental testbed, verified the operation of the developed system on
top of a mobile platform, and visualized the sensor data using the visualization software, V-REP.

4.1. Hardware Environment

In our developed system, we used the MPC574XG-324DS board with MPC5748G MCU as the
ECU. The USB Multilink Universal debug probe is used for debugging and software upload. The USB
to CAN converter is used for communication between a PC and the ECU through CAN protocol. The
data transferred to the PC are visualized using the tool, V-REP [23,24]. Ultrasonic sensors are used to
measure the distances from obstacles in the collision warning system. Red and yellow LEDs inform
the user about the risk of the obstacles. An oscilloscope is used to identify the CAN message frames.
The complete hardware environment is shown in Figure 6.

Electronics 2019, 8, 1025 10 of 18

3.2.4. SWC Runnable Implementation

The algorithm of the SWCs are designed in the SWC configuration process; a .c file is
implemented for each SWC and the runnable is implemented as a function inside the .c file. This
implemented the communication between an SWC and other SWCs or communication between the
SWC and BSW, by referring to the API defined in the RTE contract file generated as a result of RTE
generation.

4. Experiment Results

Experiments were conducted to verify the operation of the developed collision warning system
based on the proposed methodology in the previous section. The collision warning system operates
by acquiring the distance from ultrasonic sensors, and depending on the measured distance of the
obstacle, the state of the corresponding LED changes. In this section, we specify the hardware and
software environment of the experimental testbed, verified the operation of the developed system on
top of a mobile platform, and visualized the sensor data using the visualization software, V-REP.

4.1. Hardware Environment

In our developed system, we used the MPC574XG-324DS board with MPC5748G MCU as the
ECU. The USB Multilink Universal debug probe is used for debugging and software upload. The USB
to CAN converter is used for communication between a PC and the ECU through CAN protocol. The
data transferred to the PC are visualized using the tool, V-REP [23,24]. Ultrasonic sensors are used to
measure the distances from obstacles in the collision warning system. Red and yellow LEDs inform
the user about the risk of the obstacles. An oscilloscope is used to identify the CAN message frames.
The complete hardware environment is shown in Figure 6.

Figure 6. Hardware environment.

4.2. Software Environment

In this study, the open-source AUTOSAR design is based on the Arctic Core 21.0.0 from
ARCCORE along with the integrated development environment (IDE), Arctic Studio 21.0.0, running
under Eclipse. To develop AUTOSAR software for the MPC5748G MCU, a toolchain of the PowerPC
architecture supported by the IDE is required. Currently, supported toolchains are CodeWarrior,
Diab, and Greenhills. However, CodeWarrior (the toolchain for NXP boards) does not support the
MPC57xx series of MCUs. Therefore, we used the toolchain provided by the “S32 Design Studio for
Power Architecture” IDE provided by NXP for the PowerPC architecture.

Figure 6. Hardware environment.

4.2. Software Environment

In this study, the open-source AUTOSAR design is based on the Arctic Core 21.0.0 from ARCCORE
along with the integrated development environment (IDE), Arctic Studio 21.0.0, running under Eclipse.
To develop AUTOSAR software for the MPC5748G MCU, a toolchain of the PowerPC architecture
supported by the IDE is required. Currently, supported toolchains are CodeWarrior, Diab, and
Greenhills. However, CodeWarrior (the toolchain for NXP boards) does not support the MPC57xx
series of MCUs. Therefore, we used the toolchain provided by the “S32 Design Studio for Power
Architecture” IDE provided by NXP for the PowerPC architecture.

After installing the toolchain, the environment variables to build the AUTOSAR project is
configured in Arctic Studio. These include BOARDDIR, COMPILER, and CROSS_COMPILE.
BOARDDIR, for example. COMPILER is set to “gcc” to enable the usage of the gcc cross compiler and
CROSS_COMPILE defines the directory where the toolchain is installed. In order to generate the code
for the BSW that can be operated on the target board, the MCAL item, found in the ECU information
and options of the BSW Editor of Arctic Studio, were set to MPC5748G, the MCU of the target board.
Finally, a robot simulator, V-REP PRO EDU, is installed to visualize the behavior of the ECU on the PC.

Electronics 2019, 8, 1025 11 of 18

4.3. Collision Warning System Operation Test

In order to verify the operation of the collision warning system in a real environment, the change
of the LED was observed while moving the distance of an obstacle from 0.5 to 2.0 m. The red LED
turns on when the distance from the obstacle is less than 1.0 m, the yellow LED lights up when it is
between 1.0 m and less than 2.0 m, and both LEDs remain off if the obstacle is more than 2.0 m away.
The test results are shown in Figure 7, showing the distance of the obstacle from the collision warning
system in 0.5 m increments. The size of one block of the tile is 0.5 m in width and 0.5 m in height.
Through these results, we have verified the normal operation of the collision warning system.

Electronics 2019, 8, 1025 11 of 18

After installing the toolchain, the environment variables to build the AUTOSAR project is
configured in Arctic Studio. These include BOARDDIR, COMPILER, and CROSS_COMPILE.
BOARDDIR, for example. COMPILER is set to “gcc” to enable the usage of the gcc cross compiler
and CROSS_COMPILE defines the directory where the toolchain is installed. In order to generate the
code for the BSW that can be operated on the target board, the MCAL item, found in the ECU
information and options of the BSW Editor of Arctic Studio, were set to MPC5748G, the MCU of the
target board. Finally, a robot simulator, V-REP PRO EDU, is installed to visualize the behavior of the
ECU on the PC.

4.3. Collision Warning System Operation Test

In order to verify the operation of the collision warning system in a real environment, the change
of the LED was observed while moving the distance of an obstacle from 0.5 to 2.0 m. The red LED
turns on when the distance from the obstacle is less than 1.0 m, the yellow LED lights up when it is
between 1.0 m and less than 2.0 m, and both LEDs remain off if the obstacle is more than 2.0 m away.
The test results are shown in Figure 7, showing the distance of the obstacle from the collision warning
system in 0.5 m increments. The size of one block of the tile is 0.5 m in width and 0.5 m in height.
Through these results, we have verified the normal operation of the collision warning system.

Figure 7. State when detecting the distance.

4.4. Sensor Data Visualization Using V-REP

In this section, V-REP visualization is performed to visually confirm the operation of the collision
warning system and the data of the ultrasonic sensor as described in the previous subsection. Figure
8 shows the result of the visualization of ultrasonic sensor data sent from ECU to CAN bus using V-
REP of host PC using USB to CAN Converter. To maintain consistency with the actual experiment
environment, the size of one block of tile was set to 0.5 m for both width and height. The ultrasonic
sensor was attached to the front part of the vehicle, and the position of the obstacle is indicated by a

Figure 7. State when detecting the distance.

4.4. Sensor Data Visualization Using V-REP

In this section, V-REP visualization is performed to visually confirm the operation of the collision
warning system and the data of the ultrasonic sensor as described in the previous subsection. Figure 8
shows the result of the visualization of ultrasonic sensor data sent from ECU to CAN bus using
V-REP of host PC using USB to CAN Converter. To maintain consistency with the actual experiment
environment, the size of one block of tile was set to 0.5 m for both width and height. The ultrasonic
sensor was attached to the front part of the vehicle, and the position of the obstacle is indicated by a
blue disk. The LEDs to indicate the risk of the obstacles were composed of the same red and yellow as
the actual hardware configuration. The UI on the left shows the data of the ultrasonic sensor, and the
view from the side, and the view from above. We confirmed that the movement of the blue disc and
the state of the LED change according to the distance between the ECU and the obstacle. The results
show the same behavior with the actual experiment in the previous section.

Electronics 2019, 8, 1025 12 of 18

Electronics 2019, 8, 1025 12 of 18

blue disk. The LEDs to indicate the risk of the obstacles were composed of the same red and yellow
as the actual hardware configuration. The UI on the left shows the data of the ultrasonic sensor, and
the view from the side, and the view from above. We confirmed that the movement of the blue disc
and the state of the LED change according to the distance between the ECU and the obstacle. The
results show the same behavior with the actual experiment in the previous section.

(a)

(b)

(c)

(d)

Figure 8. State when the detection distance is: (a) 0.5 m; (b) 1.0 m; (c) 1.5 m; (d) 2.0 m.

5. Performance Evaluation

As the performance of open source AUTOSAR is not proven and there is a lack of existing
methods benchmarking open source distribution of AUTOSAR, this section presents the metrics for
evaluating the real-time performance and latency of the communication stack of AUTOSAR focusing
on the developed collision warning system in the previous section. Real-time performance tests of
the Os tasks were performed to verify that the real-time constraints were satisfied; specifically, the
periodicity of the tasks was measured. As the communication stack is implemented in a hierarchical
manner, this can contribute to the overall latency of the task and could affect the real-time
performance. Thus, we have also evaluated the latency at each layer and calculated the overall latency
from the SWC to the CAN bus.

Figure 8. State when the detection distance is: (a) 0.5 m; (b) 1.0 m; (c) 1.5 m; (d) 2.0 m.

5. Performance Evaluation

As the performance of open source AUTOSAR is not proven and there is a lack of existing methods
benchmarking open source distribution of AUTOSAR, this section presents the metrics for evaluating
the real-time performance and latency of the communication stack of AUTOSAR focusing on the
developed collision warning system in the previous section. Real-time performance tests of the Os
tasks were performed to verify that the real-time constraints were satisfied; specifically, the periodicity
of the tasks was measured. As the communication stack is implemented in a hierarchical manner, this
can contribute to the overall latency of the task and could affect the real-time performance. Thus, we
have also evaluated the latency at each layer and calculated the overall latency from the SWC to the
CAN bus.

5.1. Real-Time Performance

This section presents the real-time performance evaluation [29,30] of the collision warning system.
AUTOSAR OS is based on the Open Systems and their Interfaces for the Electronics in Motor Vehicles
(OSEK) OS, which is an OSEK/vehicle distributed executive (VDX) compliant real-time operating
system and supports a priority-based preemption real-time scheduling function [31]. In order to verify
that the AUTOSAR OS satisfied the real-time constraints, the periodicity of the tasks constructed in the

Electronics 2019, 8, 1025 13 of 18

OS module of the BSW is evaluated. This is used to confirm whether the system displayed deterministic
behavior and responsiveness, which are critical to the stability of the system [29]. The tasks and events
configured in the OS module were mapped to the runnables of the SWC in the RTE configuration step.
Then the RTE source code was generated. Among them, the source code, where the task, event, and
the runnables were mapped, were implemented in the Rte.c file. The tasks implemented in the Rte.c
file are executed repeatedly, waiting for the event mapped to the task. When a mapped event occurred,
the task is executed again. Using this characteristic, the real-time property of the AUTOSAR OS was
checked by measuring the time from immediately after the event occurred to when the event occurred
again. Tperiod represents an actual time that it takes for one cycle of the task. Enow is the time at which
the event mapped to the current task occurred, and Eprev is the time at which the event occurred before.
Its relationship with the period is defined by the following equation:

Tperiod = |Enow − Eprev
∣∣∣ (1)

Experiments were performed for 30 min and the real-time performance is evaluated for the
OsLEDTask task (τ1), OsObstacleDetectionTask (τ2), and OsSonarTask (τ3), which were the events and
runnable mapped tasks in the OS module configuration. τ1 had the highest priority and is executed
in a 10 ms Tcycle. τ2 had a medium priority and is executed in a Tcycle of 20 ms. τ3 had the lowest
priority and is executed at a Tcycle of 40 ms. Tcycle is the expected cycle of the real-time task. The results
are summarized in Table 1 with the statistical average (avg), maximum (max), minimum (min), and
standard deviation (σ) values for each timing metric. Tperiod represents the actual time that it takes for
one cycle of the task. Its relationship with the jitter is defined by the following equation [32,33]:

T jitter =
∣∣∣Tcycle − Tperiod

∣∣∣ (2)

Table 1. Statistical analysis of the periodicity of tasks used in the collision warning system.

Task τ1 High Priority τ2 Middle Priority τ3 Low Priority

Metric (ms) Tperiod Tjitter Tperiod Tjitter Tperiod Tjitter

avg. 9.984680 0.022939 20.007748 0.023442 40.000080 0.026439
max. 10.077800 0.106275 20.199025 0.205300 40.502225 0.502225
min. 9.893725 0.001025 19.794700 0.002375 39.596200 0.000000

st.d (σ) 0.024978 0.017580 0.030898 0.022102 0.043450 0.034481

The results show that the task with the highest priority had the best performance with the lowest
deviation to the statistical average of period and jitter. Therefore, it is confirmed that the AUTOSAR
OS performed scheduling according to priority and satisfied periodicity.

5.2. AUTOSAR Communication Stack

In order to apply the ECU that implements the ADAS to a real vehicle, it must be able to
communicate with the various ECUs installed in the vehicle. AUTOSAR provides a communication
stack for communication between these ECUs. The communication stack is a hierarchical structure of
communication-related modules existing in the service layer, the ECU abstraction layer, and MCAL of
the BSW lay. The Com and PduR modules are used in the service layer. The Com module controls
communication transmission and converts the signal used in RTE to interaction layer protocol data unit
(I-PDU), which is used in the communication stack. The PduR module routes the I-PDU received from
the Com module to the interface (If) module of the ECU abstraction layer according to the specified
communication method.

In the ECU abstraction layer, an If module is used according to the communication method.
The interface module provides the interface between the service layer PduR module and the MCAL

Electronics 2019, 8, 1025 14 of 18

communication driver module and initializes the driver module. MCAL’s communication driver
module controls the ECU’s communication controller. The signal transmitted from the SWC to
communicate with the SWC of another ECU passes through each layer due to the hierarchical structure,
and this creates latency. This can affect the real-time behavior of AUTOSAR. Therefore, the latency
consumed in each layer in the AUTOSAR communication stack is measured to take this into account.
The layers of the AUTOSAR communication stack use the API that calls the next layer to transmit data
to the next layer and request data processing. The data processing time is measured by installing a
timer provided by the Gpt module in the API that calls the next layer in each layer. The communication
stack source code is automatically generated by the AUTOSAR development tool based on the BSW
configuration, so the timer is installed after the BSW configuration is finished. Figure 9a is a pseudo code
that calls the COM module to use the communication stack in the RTE. When the Com_MainFunctionTx
API is called, the data to be transmitted is sequentially called from the COM module to the driver
module, which is the lowermost module of the communication stack. Figure 9b shows the process
of calling the PduR_ComTransmit API to send data to the next layer, PduR module, after finishing
data processing in COM module. The measured rte_latency in Figure 9a is the sum of the latencies at
all layers of the communication stack, and the com_latency measured in Figure 9b is the sum of the
latencies at all layers below the COM module. Therefore, the latency in the COM module is the value
obtained by subtracting com_latency from rte_latency. The remaining layers are measured using the
same method.

Electronics 2019, 8, 1025 14 of 18

from the Com module to the interface (If) module of the ECU abstraction layer according to the
specified communication method.

In the ECU abstraction layer, an If module is used according to the communication method. The
interface module provides the interface between the service layer PduR module and the MCAL
communication driver module and initializes the driver module. MCAL’s communication driver
module controls the ECU’s communication controller. The signal transmitted from the SWC to
communicate with the SWC of another ECU passes through each layer due to the hierarchical
structure, and this creates latency. This can affect the real-time behavior of AUTOSAR. Therefore, the
latency consumed in each layer in the AUTOSAR communication stack is measured to take this into
account. The layers of the AUTOSAR communication stack use the API that calls the next layer to
transmit data to the next layer and request data processing. The data processing time is measured by
installing a timer provided by the Gpt module in the API that calls the next layer in each layer. The
communication stack source code is automatically generated by the AUTOSAR development tool
based on the BSW configuration, so the timer is installed after the BSW configuration is finished.
Figure 9a is a pseudo code that calls the COM module to use the communication stack in the RTE.
When the Com_MainFunctionTx API is called, the data to be transmitted is sequentially called from
the COM module to the driver module, which is the lowermost module of the communication stack.
Figure 9b shows the process of calling the PduR_ComTransmit API to send data to the next layer,
PduR module, after finishing data processing in COM module. The measured rte_latency in Figure
9a is the sum of the latencies at all layers of the communication stack, and the com_latency measured
in Figure 9b is the sum of the latencies at all layers below the COM module. Therefore, the latency in
the COM module is the value obtained by subtracting com_latency from rte_latency. The remaining
layers are measured using the same method.

(a)

(b)

Figure 9. Pseudo code for measuring the latency of communication stack: (a) from Com module to
Driver module; (b) from PduR module to Driver module.

We measured the latency of each layer in the CAN communication stack used in the collision
warning system. The latency was measured by installing a timer in a routine displayed in Figure 10
that passes data from the layer constituting the communication stack to the next layer. The figure
illustrates the latency of each layer of the CAN communication stack and the routines that pass data
to the next layer. Analysis of the latency of each layer in the communication stack shows that the
exchange of data between the SWC and the RTE has a low latency because the data are stored in a
shared structure. The Com module converted the signal used in the RTE to that of the I-PDU used in
the communication module of BSW. This task determined the number of bytes to be converted for
endianness. Collision warning systems use 32-bit little endian CAN messages. This data conversion
operation consumes the most time in the Com module and the longest latency was measured. The
latency from the SWC to the CAN controller is 36 μs during the transmission and 34 μs during the
reception.

Figure 9. Pseudo code for measuring the latency of communication stack: (a) from Com module to
Driver module; (b) from PduR module to Driver module.

We measured the latency of each layer in the CAN communication stack used in the collision
warning system. The latency was measured by installing a timer in a routine displayed in Figure 10 that
passes data from the layer constituting the communication stack to the next layer. The figure illustrates
the latency of each layer of the CAN communication stack and the routines that pass data to the next
layer. Analysis of the latency of each layer in the communication stack shows that the exchange of data
between the SWC and the RTE has a low latency because the data are stored in a shared structure. The
Com module converted the signal used in the RTE to that of the I-PDU used in the communication
module of BSW. This task determined the number of bytes to be converted for endianness. Collision
warning systems use 32-bit little endian CAN messages. This data conversion operation consumes the
most time in the Com module and the longest latency was measured. The latency from the SWC to the
CAN controller is 36 µs during the transmission and 34 µs during the reception.

Electronics 2019, 8, 1025 15 of 18

Electronics 2019, 8, 1025 15 of 18

Figure 10. AUTOSAR controller area network (CAN) communication stack latency in each layer.

6. Conclusions

In this paper, a procedure was presented to develop an ADAS using open source AUTOSAR. It
was addressed using open source AUTOSAR to ensure the interoperability, portability, and
maintenance of complex ADAS software. To develop a system using AUTOSAR, a development
solution must first be selected. The development procedure of commercial solutions is well-defined
and easy to develop but it is difficult to acquire a license. Licenses can be easily acquired for an open
source solution, but there is no established procedure for development, making it difficult for users
to develop. Therefore, the detailed design procedure for ADAS based on open source AUTOSAR
needs to be defined for most engineers.

Here, we have presented a development procedure that includes design, implementation, and
evaluation using open source solutions. To verify the proposed procedure, we implemented a simple
collision warning system for ADAS using ARCCORE’s open source AUTOSAR solution Arctic tool
and an MPC574XG-324DS board equipped with NXP's MPC5748G MCU. Real-time performance
evaluation, visualization of the sensor data, and communication stack evaluation were performed to
test the implemented systems. We confirmed that the implemented system satisfied the real-time
constraints and verified the sensor data through visualization. This paper will be a promising result
for engineers who want to develop a more complicated ADAS using open source AUTOSAR, from
the development environment to implementation and evaluation.

We have provided the entire AUTOSAR and V-REP software for the collision warning system
in this paper available at [34] enumerating the BSW modules and their usage.

Author Contributions: J.P. surveyed the background of this research, presented the procedure including the
ADAS design, procedure, and evaluation methods using open source AUTOSAR, and performed the
experiments to verify the proposed procedure. B.W.C. supervised and supported this study.

Acknowledgments: This work was supported by the Human Resources Development of the Korea Institute of
Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Trade, Industry & Energy
of the Korea government (No. 20174030201840).

Conflicts of Interest: The authors declare no conflict of interest.

Figure 10. AUTOSAR controller area network (CAN) communication stack latency in each layer.

6. Conclusions

In this paper, a procedure was presented to develop an ADAS using open source AUTOSAR. It was
addressed using open source AUTOSAR to ensure the interoperability, portability, and maintenance of
complex ADAS software. To develop a system using AUTOSAR, a development solution must first be
selected. The development procedure of commercial solutions is well-defined and easy to develop
but it is difficult to acquire a license. Licenses can be easily acquired for an open source solution, but
there is no established procedure for development, making it difficult for users to develop. Therefore,
the detailed design procedure for ADAS based on open source AUTOSAR needs to be defined for
most engineers.

Here, we have presented a development procedure that includes design, implementation, and
evaluation using open source solutions. To verify the proposed procedure, we implemented a simple
collision warning system for ADAS using ARCCORE’s open source AUTOSAR solution Arctic tool
and an MPC574XG-324DS board equipped with NXP’s MPC5748G MCU. Real-time performance
evaluation, visualization of the sensor data, and communication stack evaluation were performed
to test the implemented systems. We confirmed that the implemented system satisfied the real-time
constraints and verified the sensor data through visualization. This paper will be a promising result
for engineers who want to develop a more complicated ADAS using open source AUTOSAR, from the
development environment to implementation and evaluation.

We have provided the entire AUTOSAR and V-REP software for the collision warning system in
this paper available at [34] enumerating the BSW modules and their usage.

Author Contributions: J.P. surveyed the background of this research, presented the procedure including the
ADAS design, procedure, and evaluation methods using open source AUTOSAR, and performed the experiments
to verify the proposed procedure. B.W.C. supervised and supported this study.

Acknowledgments: This work was supported by the Human Resources Development of the Korea Institute of
Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Trade, Industry & Energy
of the Korea government (No. 20174030201840).

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2019, 8, 1025 16 of 18

Abbreviations

Abbreviation Full form Software Module
AUTOSAR AUTomotive Open System ARchitecture
ADAS Advanced driver-assistance systems
OSEK Open Systems and their Interfaces for the

Electronics in Motor Vehicles
VDX Vehicle Distributed eXecutive
OEM original equipment manufacturer
ECU Electronic Control Unit

ASW Application Software
SWC Software Component
RTE Run-Time Environment
VFB Virtual Functional Bus
BSW Basic Software
MCAL Microcontroller Abstraction Layer
EEPROM electrically erasable programmable

read-only memory
I-PDU Interaction Layer Protocol Data Unit
CAN Controller Area Network
LIN Local Interconnected network
Adc Analog-Digital Converter MCAL-I/O Drivers
Pwm Pulse Width Modulation MCAL-I/O Drivers
Dio Digital Input / Output MCAL-I/O Drivers
IoHwAb I/O Hardware Abstraction ECU Abstraction-I/O Hardware Abstraction
Gpt General Purpose Timer MCAL-Microcontroller Drivers
EcuM ECU State Manager Service-Mode Management
BswM Basic Software Mode Manager Service-Mode Management
Mcu Microcontroller Unit MCAL-Microcontroller Drivers
OS Operating System Operating System-OS
PduR Protocol Data Unit Router Communication-COM Services
Com Communication Communication-COM Services
CanIf CAN Interface ECU Abstraction-CAN
CanSm CAN State Manager Communication-CAN
CanNm CAN Network Management Communication-CAN
CanTp CAN Transport Protocol Communication-CAN
WdgIf Watchdog Interface ECU Abstraction-Onboard Device Abstraction
LinIf LIN Interface ECU Abstraction-LIN
LinSm LIN State Manager Communication-LIN
LinNm LIN Network Management Communication-LIN
LinTp LIN Transport Protocol Communication-LIN
FrIf FlexRay Interface ECU Abstraction-FlexRay
FrSm FlexRay State Manager Communication-FlexRay
FrNm FlexRay Network Management Communication-FlexRay
FrTp FlexRay Transport Protocol Communication-FlexRay
MemIf Memory abstraction interface ECU Abstraction-Memory
Ea EEPROM Abstraction ECU Abstraction-Memory
Fee Flash EEPROM Emulation ECU Abstraction-Memory

References

1. Lu, M.; Wevers, K.; van der Heijden, R.; Heijer, T. ADAS applications for improving traffic safety.
In Proceedings of the 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat.
No.04CH37583), The Hague, The Netherlands, 10–13 October 2004; Volume 4, pp. 3995–4002.

Electronics 2019, 8, 1025 17 of 18

2. Zou, Y.; Zhang, W.; Weng, W.; Meng, Z. Multi-Vehicle Tracking via Real-Time Detection Probes and a Markov
Decision Process Policy. Sensors 2019, 19, 1309. [CrossRef] [PubMed]

3. Wusk, G.; Gabler, H. Non-Invasive Detection of Respiration and Heart Rate with a Vehicle Seat Sensor.
Sensors 2018, 18, 1463. [CrossRef] [PubMed]

4. Galanis, I.; Anagnostopoulos, I.; Gurunathan, P.; Burkard, D. Environmental-Based Speed Recommendation
for Future Smart Cars. Future Internet 2019, 11, 78. [CrossRef]

5. Hobert, L.; Festag, A.; Llatser, I.; Altomare, L.; Visintainer, F.; Kovacs, A. Enhancements of V2X communication
in support of cooperative autonomous driving. IEEE Commun. Mag. 2015, 53, 64–70. [CrossRef]

6. Sun, Y.; Huang, W.L.; Tang, S.M.; Qiao, X.; Wang, F.Y. Design of an OSEK/VDX and OSGi-based embedded
software platform for vehicular applications. In Proceedings of the 2007 IEEE International Conference on
Vehicular Electronics and Safety, Beijing, China, 13–15 December 2007; pp. 1–6.

7. Kutila, M.; Pyykonen, P.; van Koningsbruggen, P.; Pallaro, N.; Perez-Rastelli, J. The DESERVE project:
Towards future ADAS functions. In Proceedings of the 2014 International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV), Agios Konstantinos, Samos,
Greece, 14–17 July 2014; pp. 308–313.

8. Jo, K.; Kim, J.; Kim, D.; Jang, C.; Sunwoo, M. Development of Autonomous Car—Part I: Distributed System
Architecture and Development Process. IEEE Trans. Ind. Electron. 2014, 61, 7131–7140. [CrossRef]

9. Jo, K.; Kim, J.; Kim, D.; Jang, C.; Sunwoo, M. Development of autonomous car—Part II: A case study on
the implementation of an autonomous driving system based on distributed architecture. IEEE Trans. Ind.
Electron. 2015, 62, 5119–5132. [CrossRef]

10. Martínez-Fernández, S.; Ayala, C.P.; Franch, X.; Nakagawa, E.Y. A Survey on the Benefits and Drawbacks of
AUTOSAR. In Proceedings of the First International Workshop on Automotive Software Architecture—WASA
’15, Montreal, QC, Canada, 4–8 May 2015; pp. 19–26.

11. Fürst, S.; Mössinger, J.; Bunzel, S.; Weber, T.; Kirschke-Biller, F.; Heitkämper, P.; Kinkelin, G.; Nishikawa, K.;
Lange, K. AUTOSAR–A Worldwide Standard is on the Road. In Proceedings of the 14th International VDI
Congress Electronic Systems for Vehicles, Baden-Baden, Germany, 7–8 October 2009; Volume 62, p. 5.

12. Wozniak, E.; Tucci-Piergiovanni, S.; Mraidha, C.; Gerard, S. An Integrated Approach for Modeling, Analysis
and Optimization of Systems whose Design Follows the EAST-ADL2/AUTOSAR Methodology. SAE Int. J.
Passeng. Cars Electron. Electr. Syst. 2013, 6, 276–286. [CrossRef]

13. Melin, J.; Boström, D. Applying AUTOSAR in Practice: Available Development Tools and Migration Paths.
Master’s Thesis, School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden,
April 2011.

14. Sun, B.; Huang, S.T. AUTOSAR Acceptance Test of Communication on CAN Bus. Master’s Thesis, Department
of Computer and Information Science, Linköping University, Linköping, Sweden, November 2017.

15. Jansson, J.; Elgered, J. AUTOSAR Communication Stack Implementation with FlexRay. Master’s Thesis,
Chalmers University of Technology, Gothenburg, Sweden, March 2012.

16. Kulatỳ, O. Message Authentication for CAN Bus and AUTOSAR Software Architecture. Master’s Thesis,
Czech Technical University in Prague, Prague, Czech Republic, 2015.

17. AUTOSAR Methodology. Available online: https://www.autosar.org/fileadmin/user_upload/standards/
classic/4-2/AUTOSAR_RS_Methodology.pdf (accessed on 3 May 2019).

18. Chaaban, K.; Leserf, P.; Saudrais, S. Steer-By-Wire system development using AUTOSAR methodology.
In Proceedings of the 2009 IEEE Conference on Emerging Technologies & Factory Automation, Palma de
Mallorca, Spain, 22–25 September 2009; pp. 1–8.

19. Kumar, M.; Yoo, J.; Hong, S. Enhancing AUTOSAR methodology to a cotsbased development process via
mapping to V-Model. In Proceedings of the 2009 IEEE International Symposium on Industrial Embedded
Systems, Lausanne, Switzerland, 8–10 July 2009; pp. 50–53.

20. Sung, K.; Han, T. Development Process for AUTOSAR-based Embedded System. Int. J. Control Autom. 2013,
6, 10.

21. Hebig, R. Methodology and Templates in AUTOSAR; Technical Report; HassoPlattner-Institut für
Softwaresystemtechnik: Potsdam, Germany, 2009.

22. MPC5748G EVB User Guide. Available online: https://www.nxp.com/files-static/microcontrollers/doc/user_
guide/MPC5748GEVBUG.pdf (accessed on 15 May 2019).

http://dx.doi.org/10.3390/s19061309
http://www.ncbi.nlm.nih.gov/pubmed/30875917
http://dx.doi.org/10.3390/s18051463
http://www.ncbi.nlm.nih.gov/pubmed/29738456
http://dx.doi.org/10.3390/fi11030078
http://dx.doi.org/10.1109/MCOM.2015.7355568
http://dx.doi.org/10.1109/TIE.2014.2321342
http://dx.doi.org/10.1109/TIE.2015.2410258
http://dx.doi.org/10.4271/2013-01-1225
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_RS_Methodology.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_RS_Methodology.pdf
https://www.nxp.com/files-static/microcontrollers/doc/user_guide/MPC5748GEVBUG.pdf
https://www.nxp.com/files-static/microcontrollers/doc/user_guide/MPC5748GEVBUG.pdf

Electronics 2019, 8, 1025 18 of 18

23. Freese, M.; Singh, S.; Ozaki, F.; Matsuhira, N. Virtual robot experimentation platform v-rep: A versatile 3d
robot simulator. In Proceedings of the International Conference on Simulation, Modeling, and Programming
for Autonomous Robots, Darmstadt, Germany, 15–18 November 2010; pp. 51–62.

24. Rohmer, E.; Singh, S.P.N.; Freese, M. V-REP: A versatile and scalable robot simulation framework.
In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo,
Japan, 3–7 November 2013; pp. 1321–1326.

25. Naumann, N. Autosar Runtime Environment and Virtual Function Bus; Technical Report; Hasso-Plattner-Institut:
Potsdam, Germany, 2009; p. 38.

26. AUTOSAR Layered Software Architecture. Available online: https://www.autosar.org/fileadmin/

user_upload/standards/classic/4-3/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf (accessed on 26
August 2019).

27. Warschofsky, R. AUTOSAR Software Architecture; Hasso-Plattner-Institute für Softwaresystemtechnik:
Potsdam, Germany, 2009.

28. Gosda, J. Autosar Communication Stack; Technical Report; Hasso-Plattner Institute fur Softwaresystemtechnik:
Potsdam, Germany, 2009; pp. 13–23.

29. Delgado, R.; Park, J.; Choi, B.W. Open embedded real-time controllers for industrial distributed control
systems. Electronics 2019, 8, 223. [CrossRef]

30. Koh, J.H.; Choi, B.W. Real-time performance of real-time mechanisms for rtai and xenomai in various running
conditions. Int. J. Control Autom. 2013, 6, 235–246.

31. Anssi, S.; Tucci-Piergiovanni, S.; Kuntz, S.; Gérard, S.; Terrier, F. Enabling scheduling analysis
for AUTOSAR systems. In Proceedings of the 2011 14th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing, Newport Beach, CA, USA, 28–31
March 2011; pp. 152–159.

32. Delgado, R.; You, B.J.; Choi, B.W. Real-time control architecture based on xenomai using ros packages for a
service robot. J. Syst. Softw. 2019, 151, 8–19. [CrossRef]

33. Delgado, R.; Choi, B.W. Network-Oriented Real-Time Embedded System Considering Synchronous Joint
Space Motion for an Omnidirectional Mobile Robot. Electronics 2019, 8, 317. [CrossRef]

34. Park, J. Collision Warning System. Available online: https://github.com/qkrwoghsla12/ARCCORE-collision-
warning-system (accessed on 26 May 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
http://dx.doi.org/10.3390/electronics8020223
http://dx.doi.org/10.1016/j.jss.2019.01.052
http://dx.doi.org/10.3390/electronics8030317
https://github.com/qkrwoghsla12/ARCCORE-collision-warning-system
https://github.com/qkrwoghsla12/ARCCORE-collision-warning-system
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	AUTOSAR Basic Concept
	Collision Warning ADAS based on an Open Source AUTOSAR
	Design Methodology
	Designing a Collision Warning System
	SWC Configuration
	BSW Configuration
	BSW and RTE Generation
	SWC Runnable Implementation

	Experiment Results
	Hardware Environment
	Software Environment
	Collision Warning System Operation Test
	Sensor Data Visualization Using V-REP

	Performance Evaluation
	Real-Time Performance
	AUTOSAR Communication Stack

	Conclusions
	References

