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Abstract: Aiming at the problems that current predicting models are incapable of extracting the 

inner rule of the traffic flow sequence in traffic big data, and unable to make full use of the spatio-

temporal relationship of the traffic flow to improve the accuracy of prediction, a Bi-directional 

Regression Neural Network (BRNN) is proposed in this paper, which can fully apply the context 

information of road intersections both in the past and the future to predict the traffic volume, and 

further to make up the deficiency that the current models can only predict the next-moment output 

according to the time series information in the previous moment. Meanwhile, a vectorized code to 

screen out the intersections related to the predicting point in the road network and to train and 

predict through inputting the track data of the selected intersections into BRNN, is designed. In 

addition, the model is testified through the true traffic data in partial area of Shen Zhen. The results 

indicate that, compared with current traffic predicting models, the model in this paper is capable of 

providing the necessary evidence for traffic guidance and control due to its excellent performance 

in extracting the spatio-temporal feature of the traffic flow series, which can enhance the accuracy 

by 16.298% on average. 
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1. Introduction 

In many cities of China, frequent traffic congestion in the main road intersections, especially 

during the rush hours, has brought an increasingly severe challenge to the urban road traffic system 

[1,2]. To improve traffic safety and efficiency, some researchers are connecting vehicles to each other 

and to the road infrastructure [3]. Nonetheless, the long-studied techniques on traffic systems in 

many developed countries have already paved the way to the birth of the Intelligent Transportation 

System (ITS) [4]. In the past ten years, ITS has exerted its significant influence on many aspects such 

as traffic guidance, supervision on fatigue driving [5,6], monitoring traffic conditions, emergency 

support, as well as the prediction of traffic flow. Noticeably, for a more accurate and efficient 

identification on the traffic condition, as well as the more perfect and intelligent traffic system, the 

difficulties and key points stand on the prediction of the traffic flow, of which the core study point in 

turn lies on how to predict traffic volume. 

The variation pattern of traffic volume is affected by factors which are very complicated, thereby 

with the characters of nonlinearity and spatial-temporal correlation, etc., which have brought 

significant difficulties in predicting the traffic flow [7,8]. Of the current predicting methods on traffic 

flow, the mainstream models contain the parametric model and nonparametric model, as well as the 

mixed model, etc.  

Among those, the Seasonal Autoregressive Integrated Moving Average model (SARIMA), a 

parametric model advocated by Kumar, taking into account the influence that the various seasons 
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exert upon traffic flow, can predict the short-term traffic flow with just a small amount of data input, 

which have solved the problem of applicability that the traditional model ARIMA cannot deal with; 

but the considerable deviation that this model generates during the fluctuation of traffic flow may 

have a significant impact on the prediction results, and the results of the experiments based on the 

nonlinear and instable traffic flow data set are lower than expected [9]. In order to minimize the 

deviation and to further perfect the method related to the nonlinear traffic flow, nonparametric 

models such as nonparametric regression, wavelet theory, etc., were proposed by scholars, which can 

better process the data with complicated variations when targeting the traffic time series; but due to 

the enormous calculation and complex structure, this kind of model is not applicable for practical 

operation [10,11]. Thereby, many mixed models have been proposed to improve the prediction 

performance. Li et al firstly proposed a mixed model combining the Support Vector Regression (SVR) 

with ARIMA to predict the sample data by preprocessing the traffic flow data set to extract the data 

representing the traffic features from the complicated and complex samples [12]. Cheng et al 

integrated the advantages of the Particle Swarm Optimizer (PSO) (aiming at optimizing the weight 

and threshold of the BP neural network) and the BP neural network (aiming at predicting the traffic 

flow) into one single model to fulfill the purpose of an accurate prediction by enhancing the accuracy 

of prediction and the rate of convergence [13]. Liu et al combined the Support Vector Regression 

(SVR) with the k-nearest Neighbor method to construct the more accurate KNN-SVR model, which 

is obtained by comparing the three other models—SVR, BPNN and KNN—with the SVR model 

retrained by the historical traffic flow series that is reorganized according to the KNN algorithm [14]. 

Chen Xiaobo et al analyzed the urban traffic road network through a model constructed by combining 

the Least Squares SVR (LSSVR) and theGenetic Algorithm (GA), which can simulate the variation 

rules to accomplish the prediction of traffic flow [15]. Although those mixed models above have 

succeeded in integrating the advantages and to some extent optimized the prediction, the enormous 

difficulty in combination and different results from various combinations have negatively impacted 

the actual effect. 

Nowadays, with the computer becoming increasingly pervasive and powerful, the development 

of the Artificial Intelligence and deep learning theory have opened a new horizon in the field of traffic 

flow prediction. The general deep learning algorithm contains Deep Residual Network, 

Convolutional Neural Network and Recurrent Neural Network, etc. Ma et al. constructed an 

integrated model algorithm combining the Restricted Boltzmann Machine (RBM) and Recurrent 

Neural Network (RNN) after fully investigating the rule of traffic series, and the consequence showed 

that the model had more a accurate prediction and thus was applicable to predict the traffic volume 

of the urban road network [16]. But this model, like other neural network prediction models, has the 

flaws of the gradient disappearing and a gradient blow-up, and thus is not applicable for prediction 

on a long-term time series. Deng Xuankun et al. combined the feature components extracted by the 

Convolutional Neural Network (CNN) with an LSTM model to solve the problem on predicting the 

traffic flow series [17]. This model has stronger real-time capability, but was too complicated, due to 

the countless parameters. Jonathan Mackenzie et al. [18] adopted the Regression Analysis method in 

the experiment part to compare the expectation value (Y) with the actual traffic figure (Y), and to 

assess the statistical data from traffic prediction model with the Mean Absolute Percentage Error 

(MAPE), Root Mean Squared Error (RMSE) and GEH [18,19]. Meanwhile the MAPE and RMSE were 

recorded for the sake of comparison with previous studies. At last, GEH was considered to be the 

most useful to assess the traffic prediction. Tian and Pan firstly studied a variant of the Long Short 

Term Memory (LSTM), one of the Recurrent Neural Network [20]. After realizing a hidden layer 

containing 5–40 units, they assessed the traffic data with the California Caltrans Performance 

measuring system, and eventually made a comparison with the methods of Random Walk, Radial 

Basis Function Support Vector Machine, Single-hidden Layer Feedforward Neural Network and 

SAEs; the consequence revealed that the MAPE and RMSE deriving from the LSTM were impressive 

in all testing sections.  

In the test, T. Pamula proposed the simplest network structure to realize the function of 

monitoring the difference of the traffic data series in the network map by predicting through various 
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neural network structures [21,22]. Huang et al developed a deep system structure consisting of the 

Deep Belief Network (DBN) and a multitasking regression layer to obtain the optimized prediction 

result, in which the author had tested the DBN in different depth and with various node numbers 

[23]. K. Halawa et al. proposed the expanding method for the main road intersection in the urban 

traffic network through introducing an additional hidden layer in the network to realize the reflection 

of the multi-layer sensor to the complicated relation among different variates [24]. J. Guo et al. 

developed the filter method based upon the least square, minimum mean square, generalized linear 

model and Kalman filter by adopting the Kalman filter with the adaptive mechanism to the variance, 

which revealed an excellent fitting ability to the varying flow characteristic [25]. Min and Wynter 

presented a multivariate auto-regression model based on Vector-ARMA, which contains the 

dependency relationship between the adjacent testing points, and the consequence showed an 

outstanding prediction accuracy to the different vehicle speed and traffic volume [26].  

As known from the studies above on the prediction of the traffic flow, the deviation of the traffic 

flow time series in a single road intersection is usually significant, and the deviation reduces as the 

flow curve or such is taken account into the prediction input data of the road intersection. However, 

the similar flow curve between the road intersections does not indicate a necessary relationship 

among them, neither the influence relation among different road intersections. Accordingly, to 

explore the spatio-temporal relationship among the road intersections, this paper designs a 

vectorized code which extracts the spatial feature of the road intersections by vectorizing them and 

meanwhile screens out those with the closest relation to the predicting point; eventually, the track 

vector matrix will be input into BRNN model for training and predicating, and be evaluated and 

compared with other predicting models. As a result, the consequence shows that the predicting 

method in this paper has higher accuracy. 

2. Theory  

2.1. Model Introduction 

Recurrent Neural Network (RNN) is specialized for processing the series data. Compared with 

the classical feedforward neural network, the structure is relatively simple, which just reconnects the 

output of the hidden layer (or the output layer) back to the hidden layer forming a closed loop. It can 

also be considered as to add a memory unit in the feedforward neural network. When the neure 

transmits forward, the hidden layer does not only send messages to the front end, but also stores the 

message in the memory unit. When the next message performs, it will be sent to the hidden layer 

with the previous message stored in the memory units together to extract the features, and those 

processed messages will then be stored in the memory units again. The typical RNN model structure 

is as shown in Figure 1. 

 

Figure 1. Computation flow of RNN model. 

However, as the standard RNN is unidirectional, when processing the time series, the status 

value in the position 𝑖 is only related to output from position 0 to position 𝑖, but has nothing to do 

with that from position i+1 to the end, namely information above only; to obtain the context 

information, RNN may calculate inversely to allow the status value in every position, and can obtain 

the information above from the forward RNN and the information below from the inverse RNN in 
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order to make full use of the information in the past and the future. Such RNN is called bidirectional 

RNN, and according to which this paper proposed the Bi-directional Recurrent Neural Network 

(BRNN) [27]. The core conception of BRNN is that two RNNs will read the information from opposite 

directions with one starting from the beginning and the other starting from the end, as the series data 

are input into the model; the model will store the information respectively in two hidden layers 

connecting to the same output layer, and such a bidirectional recycle structure can provide every 

output series point in the output layer with the complete context information of the past and the 

future; namely the output of the neure in time 𝑡 depends on both the elements in the past and the 

future. Thereby, this model is able to visit the context information in the past as well as that in the 

future, and make full use of the input information during the model training. Whereas, RNN is 

incapable of providing the context information in the future. Theoretically, the input of BRNN 

contains three parts including the input from the input layer, as well as the previous-moment and 

next-moment output from the hidden layer. Consequently, the output layer can integrate perfectly 

the complete context information in every moment of the input series. The typical structure of BRNN 

is as shown in Figure 2. 

 

Figure 2. Computation flow of Bi-directional Regression Neural Network (BRNN) model. 
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From Figure 2, it is clear that the hidden layer of the network reserves two parts of information, 

namely the forward information ℎ𝑓
(𝑙𝑖)

, and the inverse information ℎ𝑏
(𝑙𝑖)

, while the final output 𝑦(𝑙𝑖) 

contains both parts. 𝑏𝑖 is the output bias. Known from the three Equations above, the six unique 

weights including the weight matrix 𝑤ℎ𝑓𝑥、𝑤ℎ𝑏𝑥 (input layer to hidden layer), 𝑤𝑦ℎ𝑓
、𝑤𝑦ℎ𝑏

 (hidden 

layer to input layer) and  𝑤ℎ𝑓ℎ𝑓
、𝑤ℎ𝑏ℎ𝑏

 (hidden layer to hidden layer) are applied repeatedly in 

every moment, but each pair of the values between the forward and inverse is quite different. 

2.2. The Vectorization of the Road Intersection 

In the intelligent transportation system (ITS), the camera installation applied in recording the 

passing vehicles is involved. The cameras are installed in each road intersection with a unique serial 

number represented as 𝑙𝑖  ( 𝑖  is the integer between 0 and  𝑛 , and 𝑛  is the sum of the road 

intersections).  

The data collected in every road intersection contain the information including the serial number 

of the road intersection, the vehicle numbers and time, which are the primary data for research. Since 

each vehicle passes through a different intersection in sequence, vehicle trajectory 𝑇𝑃  can be 

represented by a series of road intersection serial numbers sorted by time.  
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Where 𝑝 is the number of the vehicle. 𝑙0, 𝑙1, 𝑙2, ⋯ , 𝑙𝑠 is the road intersection serial number and 

{𝑙0, 𝑙1, 𝑙2, ⋯ , 𝑙𝑠}  is arranged according to the time sequence of the vehicles passing through the 

intersection. 𝑠 is the length of the vehicle track. In order to get the track data of each vehicle passing 

through the intersection serial number in a certain period of time, we need to process the original 

data into track data. Since the original data set is large, this paper adopts the trajectory data set 

statistical algorithm to generate the trajectory data (See Appendix A for the specific algorithm). 

In the neural network training, as the intersection serial numbers of the traffic flow data are not 

in the vector form, they are unable to be directly input into the neural network, thus for the 

convenience of calculation and understanding of the neural network, the intersection serial number 

should be vectorized. This paper will regard each track data as a natural-language document with 

each intersection serial number as the single word in the document. Firstly, according to the data set 

the intersection serial numbers will be collected, which will be vectorized into the corresponding 

serial number after that. Finally, the vector matrix will be obtained depending on the vectorized 

intersection serial number. The vectorized serial number model can simplify the process of the text 

content into the vector operation in k-dimensional vector space, and the similarity in the vector space 

can be used to express the similarity of the text meaning [28,29]. This model connects all words to the 

hidden layer casting out the most time-consuming, nonlinear hidden layer, meanwhile inputting the 

word vector of the context of the testing word and outputting that of the testing word. As the large 

number of weight matrices need updating during the model training, which results in the excessive 

calculation, the training speed may possibly slow down. Therefore, to reduce the burden of training, 

this model integrates the negative sampling method which updates only the input and element 

weight in the negative sample set, and tends to considerably reduce the calculation amount during 

the gradient descent, and thereby accelerate the training speed [30]. 

Negative Sampling may generate a random negative example in the source code (the variate can 

be set in the code, and if the original word is generated during the random generation of the negative 

example, the number may possibly be less), where the original word is positive example with the 

label as 1, the other random generated label is 0, so the input 𝑓 is: 

 1 sy 1Tf neu n   (5) 

 

(5) 

Loss is the negative Log likelihood (due to the random gradient descent method, here represents 

only a single layer in a word), namely:  
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The gradient transfer from the hidden layer to the output layer is even simpler, because the 

hidden layer is the sum of the variates in the input layer; thereby, the gradient of the input layer is 

namely that of the hidden layer. 

As shown in the Figure 3, the sentence position is the subscript of the current word in the 

sentence. Set the specific sentence A B C D as an example, when the code below is entered for the first 

time, the current word is A, its sentence position is 0. 𝑏 is the word generated randomly between 0 

and window −1, and the size of entire window is（2 × window + 1 – 2 × b), which means to read 

window −b words on both the left and right side. It is obvious that with the window slipping from 

left to right the size is random, and when the random variation is from 3 (when b = window −1) to 2 

(when b = 0), the random value b decides the size of the current window. In the code, nue1 is the 

vector of the hidden layer, namely the sum of the corresponding vector of the context (the words in 

the window except the current word.) 

 

Figure 3. Part of the source code flow chart of the vectorization coding model. 

As shown in Figure 4, the prediction of the vectorized code model P (wt｜wt-k, wt-(k-1), … wt-1, wt+1, 

wt+2, …, wt+k) can be obtained. The operation from input layer to the hidden layer is actually the sum 

of the context vector. The structure of the vectorized code model consists of four layers including the 

input layer, forward hidden layer, inverse hidden layer and the output layer, which is a 

discriminative model. 

The core concept is the probability that the appearance of the current word will be maximum 

when the number of words appearing around the current word in the context is c, namely conditional 

probability maximization. When the words (the number of words is c) around the current two words 

tends to appear frequently, the vector of the two words will be very close, and the vector distance of 

this word will shrink. 
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Based on such a theory, it can be considered that in the date set constituted by the road 

intersection serial numbers, when the current vehicle is passing the testing road intersection, if the 

similar situation happens frequently in the adjacent road intersections, the relevance of those road 

intersections is high. Thereby, the spatial-tempo feature of the traffic flow can be fully manifested by 

the corresponding vector of the road intersection. 

 

Figure 4. Calculation process the vectorization coding model. 

Where, 𝑣(𝑙𝑖) is the vector of road intersection 𝑙𝑖 . 𝑤 is the step length. The Equation for the 

output of the projection layer and output layer is as follows: 
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Where, η is learning rate. NEG(li) is the negative sampling set. The update Equation of the vector 

of the input road intersection is: 
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This paper considers all track {𝑇𝑝, 𝑝 ∈ 𝑉, 𝑉 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑁𝑢𝑚𝑏𝑒𝑟𝑠} as the input of 

vectorized code model for the road intersection. The corresponding vector matrix for each track data 

is obtain by obtaining the corresponding vector of each road intersection serial number through 

training. 

2.3. Calculation of Spatial Relations 

The spatial relationship between intersections can be expressed by calculating the distance 

between the corresponding vectors of each intersection. The spatial closeness of any two intersections 

can be expressed by Equation (13). 

distance(𝑙𝑖 , 𝑙𝑗) = ‖𝑣(𝑙𝑖) − 𝑣(𝑙𝑗)‖ (13) 
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For each intersection serial number 𝑙𝑎, we calculated the Euclidean distance between 𝑙𝑎 and the 

corresponding vectors of other intersection serial numbers and sorted the results from smallest to 

largest. After this, we can get the serial number of K intersections that are closest to it. Their serial 

number is {𝑙𝑏 , 𝑙𝑐 , 𝑙𝑑 , ⋯ }. Combine them with 𝑙𝑎, and the result is Ga: {la, 𝑙𝑏 , 𝑙𝑐 , 𝑙𝑑 , ⋯ }. The elements in 

this group are ordered from smallest to largest distance from the vector of the first intersection serial 

number (See Algorithm 2 in the Appendix A). Finally, the vehicle trajectory matrix of these 

intersections is input into the BRNN model for training and prediction. Such prediction results can 

not only reflect the close relationship between adjacent road intersections in traffic flow, but also 

reflect the spatial traffic flow relationship. 

3. Experimental Results and Discussion 

3.1. Data Description 

This paper adopts the monitoring data of road intersections in partial sections in Shen Zhen, of 

which the list information of the intersection serial number includes six aspects—intersection serial 

number, ID of the monitoring point, name of the monitoring point, direction, the involved road and 

date. The passing vehicle record data in the intersections includes the plate number, vehicle color, 

time, the name of the monitoring point and the ID of the vehicle lane. Setting the intersection with 

the serial number 101000206 as the predicting point, nine intersection serial numbers with the closest 

relation to the predicting point are obtained by calculating the spatial relationship, as shown in Figure 

5. Those ten intersections contain 3,469,741 primary data which were collected during Mar. 12, 2018 

to Apr. 1, 2018. Through the trajectory data set statistic algorithm we obtained 725, 570 track data 

which were low-quality primary data with a different step length S for each track owing to the 

deviation during the data collection, such as equipment defect on certain intersections, identification 

error of the moving vehicle, failure of the information collection and position error of the moving 

vehicle, and so on. In order to solve those questions above, this paper input the corresponding vector 

matrix of the track data into the BRNN for training and prediction. BRNN will make full use of the 

historical and future information of the spatio-temporal series to predict the intersection serial 

number that the track actually passed. After several trainings, the model can obtain the high-quality 

track data, perform the counting statistics on the time of fixed step length, and thereby predict the 

traffic volume in the predicting intersection. Comparing the actual traffic volume on Apr. 1 with the 

predicting value: 

 

Figure 5. Distribution and ID of intersections in the testing road network. 

3.2. Error Evaluation Index 
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This paper uses mean square error (MSE) and accuracy (ACC) as evaluation indicators. The 

specific definition is as follows: 

 
2

1

1
ˆ

N

i i

i

MSE y y
N 

   (14) 

1

ˆ1
1 100%

N
i i

i i

y y
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N y

 
    
 

  (15) 

Where: 𝑦𝑖 is the true value of traffic flow; ˆ
iy  is the predicted result; N is the number of predicted 

samples. 

3.3. Result of the Intersection Vector 

During the training of the vectorized mode model, the negative sampling set needed setting, 

which will be set as 10 here. In order to improve the training speed and the vector quality of the 

obtained word, the loss value of the vectorized code model with the different step length 𝑤 needs 

analyzing as well for a more accurate intersection vector. To analyze the variation rule of the loss 

value under a different step length, with the step length w between 1 and 8, after training 

experiments, the variation pattern of the loss value under different conditions can be summarized as 

shown in Figure 6. 

 

Figure 6. Linear graph of loss variation. 

As known from the graph, the loss value meets a decrease before increasing, and slightly 

fluctuates after that. When 𝒘 is 3, this loss value reaches the bottom, and thereby the intersection 

vector is obtained by setting the step length 𝒘 as 3. Accordingly, the variation curve of the loss value 

with the iterations under the situation of negative sampling set being 10 and the step length 𝒘 being 

3, is obtained as shown in Figure 7. 
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Figure 7. Curve of loss value varying with iterations. 

3.4. Result of BRNN Experiment 

After a great deal of training of BRNN, the traffic volume on the predicting point (10100206) has 

been predicted during Mar. 25 to Mar. 31, as shown in Figure 8. 

 

Figure 8. The predicted value in a week. 

As shown in Figure 8, the rush hour shows during 7 a.m. to 10 a.m. and 4 p.m. to 7 p.m. when 

the traffic is intense and the congestion is severe. According to the peak value and traffic intensity, 

traffic volume on Saturday and Sunday is considerably large. Accordingly, it is evident that the 

variation curve accords with the actually daily traffic situation. 

As shown in Figure 9, the predicting training results of the intersection (10100206) in one week 

reveal the deviation existing between the predicting results of BRNN and the true value. In order to 
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more thoroughly analyze the predicting performance of BRNN, the RNN is trained as well during 

the training of the BRNN, and the result of comparison of the two models is as follows: 

 

Figure 9. The comparison results of predicted and real traffic flow in a week's time. 

As shown in Figure 10, the result of BRNN is better than that of RNN. From the result of RNN, 

it is evident that RNN has higher similarity with short-term data series, but lower accuracy on long-

term data series. This is because RNN cannot make use of the information in the past and the future 

of any specific moment, and thus will lose certain characteristics as the time runs longer, which tends 

to generate the predicting deviation. 

  

(a) (b) 

Figure 10. This is the model prediction curves of RNN and BRNN. This first graph (a) is the 

comparison diagram of real traffic flow and predicted traffic flow by RNN, while the second (b) is the 

comparison diagram of real traffic flow and predicted traffic flow by BRNN. 

3.5. Data Fitting and Residual Analysis 



Electronics 2019, 8, 1006 12 of 18 

 

As shown in Figure 11, the discrete figure consists of three types of data on one coordination, 

and we fit those data by a nonlinear curve due to the nonlinear characteristic of the traffic flow, with 

GaussAmp as the fitting function during fitting to construct 95% of the confident belt, the Levenberg-

Marquardt optimizing algorithm and the root of Reduced Chi-square to shrink the standard 

deviation. The result is as follows: 

 

Figure 11. Fitting curve of the scatter value. 

The fitting residual graphs of true value, BRNN and RNN, are shown as Figures 12, 13, 14. The 

graphs show the result of fitting the Y value in the traffic flow prediction in the standard form, 

proportion form and column form. Comparing the intensity of the value near degree 0 in the three 

graphs, it is obvious that the density of BRNN is higher than RNN, thus with a better fitting result. 

In Figure 12, the fitting result of RNN is lower than expected due to the RNN being incapable to use 

the future information and losing part of data with input data becoming increasingly dense during 

training. However, the fitting result of BRNN is satisfied due to the capability of making full use of 

information in the past and the future, which makes the predicting result close to the true value. In 

Figure 13, all data points are distributed around the diagonal line, and the data point from BRNN is 

closer to the line with high density, and thus less deviation. In Figure 14 the column graphs of three 

predicting results reveal that the prediction of BRNN is closer to the true traffic volume. 

   

(a) (b) (c) 

Figure 12. This is the residual diagram of the predicted results for each model. The graph (a) is the 

regular residual of actual data under the fitted Y value. That of (b) is the regular residual of BRNN 

model under the fitted Y value. The one of (c) is the regular residual of RNN model under the fitted 

Y value. 
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(a) (b) (c) 

Figure 13. The graph designated (a) is the regular residual of actual data under the percentiles form, 

(b) is the regular residual of BRNN forecasting under the percentiles form, and (c) is the regular 

residual of RNN forecasting under the percentiles form. 

   

(a) (b) (c) 

Figure 14. This is a histogram of regular residual of traffic flow prediction results. Graph (a) is a 

histogram regular residual of the actual data. Graph (b) is a histogram regular residual of the BRNN 

model. Graph (c) is a histogram regular residual of the RNN model. 

The Equations used in the data fitting are shown in Table 1. The fitting results of the data are 

shown in Table 2. 

Table 1. Models and equations used in the fitting. 

Model Equation 

GaussAmp y = 𝑦0 + 𝐴 ∗ exp (−0.5 ∗ ((𝑥 − 𝑥𝑐) 𝑤⁄ )2) 

Table 2. Data table of fitting results. 

Plot Actual Date BRNN Forecasting RNN Forecasting 

𝑦0 0.8452 ± 2.02181 1.70427 ± 2.6873 −4.33261 ± 2.886 

𝑥𝑐 9.08585 ± 0.0815 9.229 ± 0.08364 0.34728 ± 0.1072 

𝑤 2.7974 ± 0.12182 2.87558 ± 0.1420 3.42083 ± 0.2021 

𝐴 90.87526 ± 2.808 92.04544 ± 3.179 74.42464 ± 2.888 

Reduced Chi-Square 8.64135 7.40129 6.03239 

R-square(COD) 0.80646 0.79486 0.79342 

ADJ.R-square 0.8043 0.79227 0.79093 

Residual sum of squares 96066.57313 90180.34987 68932.96234 
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From the squared value of the correlation coefficient R (COD) of the BRNN and RNN, it is 

apparent that the closer the squared value of R is to 0, the better the fitting degree. When the squared 

value of R of the BRNN and RNN are 7.40129 and 6.03239, respectively, that of BRNN is much closer 

to 1, and thus the deviation between the curve after fitting and the primary data point is smaller, and 

the prediction is more accurate. As to the residual sum of squares, that of BRNN is obviously larger 

than that of RNN, which means BRNN is better. 

3.6. The Effect of Track Length on the Model 

In data collection, due to the error of the acquisition equipment (or other error factors), we get 

the wrong original data. The original data can be processed to obtain the track data, and the vector 

matrix corresponding to the track data can be used as the input of the model for training and 

prediction. Therefore, when errors occur in the collected data, the most significant impact on the 

model is the accuracy of prediction results. Let us discuss how error data affects model accuracy. In 

other words, explore the influence of trajectory length 𝑠 con model accuracy. 

As shown in section 2.2., this 𝑠 is the number of intersections, so when the data is wrong, we get 

that the length of the trajectory will change or stay the same. In this case, it reduces the track collection 

density, affects the description of moving vehicle tracks, and also gets the wrong track data. 

Therefore, it is equivalent to discussing the influence of 𝑠 on model accuracy. 

There are two cases of the most common trajectory missing (we only discuss the most common 

cases). For example, if the HD camera fails, it will not work properly. At this time, the serial number 

of the road intersection of the trajectory data will be missing, and the track length 𝑠 will become 

smaller. In another case, when the camera recognizes an error in the license plate number, the serial 

number of the intersection does not change, but the identified vehicle is no longer a real vehicle. 

When 𝑠 changes. We select the trajectory of 𝑠 ≥ 5. Because when the trajectory length is less 

than 5, the trajectory does not reflect the moving characteristics of the vehicle between road 

intersections (If there are too many such trajectories, it can be inferred that the damage of the 

collection equipment is too serious. It is recommended that the equipment at the intersection be 

inspected and repaired). Set the default length of the track length to 7 (value range is 5, 7, 8, 9, 10, 11, 

12, 13, 14, 15, 16, 17) to compare the accuracy of the model at different track lengths. The result is 

shown in the Figure 15. 

 

Figure 15. Accuracy of the model for different 𝑠 values 

As shown in the above figure, the accuracy of the BRNN model is relatively low at the beginning 

and fluctuates strongly, and then becomes a slow upward trend, then slowly stabilizes, while RNN 

is reversed. When 𝑠 = 6, the BRNN model has the lowest accuracy rate of 87.53%. When 𝑠 = 15, the 

BRNN model has the highest accuracy rate of 96.75%.  
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In summary, when there are more errors in data collection, 𝑠 will become smaller. As a result, 

the accuracy of the BRNN model is reduced, and the magnitude of the change is large, which is an 

unstable state. 

When S does not change. Due to camera recognition error. For example, the real license plate 

number AT6351 is incorrectly identified as AT63S1. The track length S thus acquired is constant, and 

the prediction accuracy obtained after the model training is higher than the true accuracy. Therefore, 

the BRNN model has to do more work. This work is to repair the trajectory. This will result in an 

increase in the computation time of the model (After the track data is repaired, it has little influence 

on the prediction accuracy of the model and can be ignored). 

In order to further assess the predicting performance of BRNN, this paper calculates the 

predicting results of MSE and ACC, respectively, and makes comparison with RNN, ARIMA, SVR, 

DBN-SVR, LSTM and KNN-LSTM [31]. The results are shown as in Table 3 that BRNN processes the 

best predicting performance with an accuracy of 96.75%, which is 24.34%, 25.06, 8.58%, 7.15% and 

6.36% higher than RNN, ARIMA, SVR, DNB-SVR and LSTM, respectively. Meanwhile compared 

with KNN-LSTM, which takes into account the spatio-temporal relationship, the accuracy improves 

2.16% as well. Consequently, this experiment illustrates that BRNN has excellent predicting 

performance. 

Table 3. Prediction performance of different models. 

Prediction Model 
The Evaluation Index 

MSE ACC/% 

ARIMA 1.5134 61.09 

RNN 0.7365 72.36 

SVR 0.3266 88.17 

DBN-SVR 0.3053 89.60 

LSTM 0.1262 90.39 

KNN-LSTM 0.0987 94.59 

BRNN 0.0831 96.75 

4. Conclusion 

Based on the deep learning theory, this paper proposed the Bi-directional Regression Neural 

Network, which can make full use of the intersection information in the past and the future to make 

up the deficiency of most other models that they are incapable to reflect the spatio-temporal relation 

of the traffic flow. Meanwhile, this paper, according to the TensorFlow platform, designed the 

vectorized code to extract the spatial feature of the intersections and to screen out the intersections 

related closely to the predicting point, as well as to train and predict through inputting the track 

vector matrix of those intersections into the BRNN. This paper also carried out the predicting data 

fitting of BRNN and RNN, and the residual analysis. The results indicated that the BRNN can make 

full use of the information in the past and future to process better performance, whose accuracy is up 

to 96.75%. In addition, this paper made the compassion of the deviation between BRNN and RNN, 

ARIMA, SVR, DBN-SVR and LSTM, as well as KNN-LSTM, and the consequences show that the 

accuracy of BRNN is 16.298% higher on average, which further proved the excellent predicting 

performance of BRNN. 
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Appendix A 

Algorithm 1. Trajectory data set statistical algorithm. 

map: 

map (key, value, context): 

   passRecord = value. split(); 

   for pr in passRecord: 

       context. write(pr. vehicleNo, pr. locationId); 

reduce: 

reduce (key, values, context): 

   result = temp; 

   for value in values; 

         result.append (value); 

   context.write(key, result); 

//The final output is < vehicle ID, intersection serial number list > 

 

Algorithm 2. The algorithm of spatial closeness. 

G = Empty collection; 

for la in L: //L is the set of all intersection serial number 

  list<lx, distance(la, lx)>1; 

  for lx in L: 

     if(lx ≠ la): 

       d = distance(la, lx); 

       1.put(lx, d); 

  1.sortByValues();//Sort by distance 

  Ga = 1.top(k) ∪ la;//Banked the nearest k intersection serial number collection 

  G = G ∪ Ga; 

return G; 

References 

1. Zambrano-Martinez, J.L.; Calafate, C.T.; Soler, D.; Lemus-Zúñiga, L.-G.; Cano, J.-C.; Manzoni, P.; Gayraud, 

T. A Centralized Route-Management Solution for Autonomous Vehicles in Urban Areas. Electronics 2019, 

8, 722. 

2. Shaikh, R.A.; Thayananthan, V. Risk-Based Decision Methods for Vehicular Networks. Electronics 2019, 8, 

627. 

3. Botte, M.; Pariota, L.; D’Acierno, L.; Bifulco, G.N. An Overview of Cooperative Driving in the European 

Union: Policies and Practices. Electronics 2019, 8, 616. 

4. Kalamaras, I.; Zamichos, A.; Salamanis, A.; Drosou, A.; Kehagias, D.D.; Papadopoulos, S.; Tzovaras, D. An 

interactive visual analytics platform for smart intelligent transportation systems management. IEEE Trans. 

Intell. Transp. Syst. 2017, 19, 1–10. 

5. Shuanfeng, Z.; Wei, G.; Chuanwei, Z. Extraction Method of Driver’s Mental Component Based on Empirical 

Mode Decomposition and Approximate Entropy Statistic Characteristic in Vehicle Running State. J. Adv. 

Transp. 2017, 2017, 1–14. 

6. Zhao, S. The implementation of driver model based on the attention transfer process. Math. Probl. Eng. 2017, 

2017, 15. 

7. Gang,Y.; Le,W.; Lizhen,D.; Fangping,X. Traffic Flow Prediction Based on Adaptive Particle Swarm 

Optimization of Least Square Support Vector Machine [J]. Control Eng. China 2017, 24,1838–1843. 

8. Sheng, N.; Tang, U.W. Spatial Analysis of Urban Form and Pedestrian Exposure to Traffic Noise. Int. J. 

Environ. Res. Public Health 2011, 8, 1977–1990. 



Electronics 2019, 8, 1006 17 of 18 

 

9. Kumar, S. V.; Vanajakshi, L. Short-term traffic flow prediction using seasonal ARIMA model with limited 

input data[J]. Eur. Transp. Res. Rev. 2015, 7, 21. 

10. Dihua,S.; Chao,L.; Xiaoyong,L. An Improved Nonparametric Regression Algorithm for Short-term 

Expressway Traffic Flow Forecasting. J. Highw. Transp. Res. Dev. 2013, 30, 112–118. 

11. Yu, W.; Su, J.; Zhang, W. Research on Short-Time Traffic Flow Prediction Based on Wavelet de-Noising 

Preprocessing. In Proceedings of the IEEE Ninth international Conference on Natural Computation. 

Shenyang, China, 23–25 July 2013; pp. 252–256. 

12. Li, L.; He, S.; Zhang, J.; Ran, B. Short-term highway traffic flow prediction based on a hybrid strategy 

considering temporal-spatial information. J. Adv. Transp. 2016, 50, 2029–2040. 

13. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed Representations of Word and their 

Compositionality[J]. In Proceedings of the Advances in Neural Information Processing Systems, Stateline, 

NV, USA, 5–10 December 2013; pp. 3111–3119. 

14. Lee, C.-H.; Chih-Hung, W. A Novel Big Data Modeling Method for Improving Driving Range Estimation 

of EVs[J]. IEEE Access 2015, 3, 1980–1993. 

15. Xiaobo,C.; Xiang,L.; Zhongjie,W.; Jun,L.; Yingfeng,C.; Long,C. Short-term Traffic Flow Forecasting of Road 

Network Based on GA-LSSVR Model. J. Transp. Syst. Eng. Inf. Technol. 2017, 17, 60–66. 

16. Ma, X.; Yu, H.; Wang, Y.; Wang, Y.; Large-scale transportation network congestion evolution prediction 

using deep learning theory. PLoS ONE 2015, 10, e0119044. 

17. Xuankun, D.; Liang, W.; Hongwei, D.; Zhuang,X. Traffic Flow Prediction Based on Deep Neural Networks. 

Comput. Eng. Appl. 2019, 55, 228–235. 

18. Mackenzie, J.; Roddick, J.F.; Zito, R. An Evaluation of HTM and LSTM for Short-Term Arterial Traffic Flow 

Prediction. IEEE Trans. Intell. Transp. Syst. 2019, 20, 1847–1857. 

19. Feldman, O.; The GEH Measure and Quality of the Highway Assignment Models; Association European 

Transport: Glasgow, Scotland, UK, 2012. 

20. Tian, Y.; Pan, L. Predicting short-term traffic flow by long short-term memory recurrent neural network. 

In Proceedings of the IEEE international conference on smart city/SocialCom/SustainCom (SmartCity), 

Chengdu, China, 19–21 December 2015; pp. 153–158. 

21. Pamuła, T. Classification and prediction of traffic flow based on real data using neural networks. Arch. 

Transp. 2012, 24, 519–529. 

22. Pamuła, T. Short-term traffic flow forecasting method based on the data from video detectors using a neural 

network. In Activities of Transport Telematics (Communications in Computer and Information Science); Springer: 

Berlin, Germany, 2013; pp. 147–154. 

23. Huang, W.; Song, G.; Hong, H.; Xie, K. Deep architecture for traffic flow prediction: Deep belief networks 

with multitask learning. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2191–2201. 

24. Halawa, K.; Bazan, M.; Ciskowski, P.; Janiczek, T.; Kozaczewski, P.; Rusiecki, P. Road traffic predictions 

across major city intersections using multilaye perceptrons and data from multiple intersections located in 

various places. IEEE Trans. Intell. Transp. Syst. 2016,10, 469–475. 

25. Guo, J.; Huang, W.; Williams, B.M. Adaptive Kalman filter approach for stochastic short-term traffic flow 

rate prediction and uncertainty quantification. Transp. Res. C Emerg. Technol. 2014, 43, 50–64. 

26. Min, W.; Wynter, L. Real-time road traffic prediction with spatiotemporal correlations. Transp. Res. C Emerg. 

Technol. 2011, 19, 606–616. 

27. Schuster, M.; Paliwal, K.K. Bidirectional Recurrent Neural Networks. IEEE Trans. Signal Process. 1997, 11, 

2673–2681. 

28. Mikolov, T.; Kai, C.; Greg, C.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 

2013, 1301–3781. 

29. Mikolov, Tomas，Kai, C.，Corrado, Greg，and Dean, J. Efficient Estimation of Word Representations in 

Vector Space. In Proceeding of Workshop at ICLR，2013. doi:arXiv:1301.3781 

30. Tomas Mikolov ， Ilya Sutskever ， KaiChen ， Greg Corrado ， and Jeffrey Dean. Distributed 

Representations of Word and Phrases and their Compositionality. In proceedings of the 26th International 

Conference on Neural Information Processing Systems，Lake Tahoe, Nevada, 5–10 December 2013. 

31. Luo, X.; Li, D.; Yu, Y.; Zhang, S. Short-term traffic flow prediction based on KNN-LSTM. J. Beijing Univ. 

Technol. 2018, 44, 1521–1527. 



Electronics 2019, 8, 1006 18 of 18 

 

 

©  2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

 


