
electronics

Article

Incorporating a Model-Driven Approach into an
Embedded Software Course

Dong-Jin Lim
Division of Electrical Engineering, Hanyang University, Hanyangdaehak-ro 55, Sangrok-gu, Ansan-si,
Gyeonggi-do 15588, Korea; limdj@hanyang.ac.kr

Received: 23 July 2019; Accepted: 7 September 2019; Published: 8 September 2019
����������
�������

Abstract: The model-driven method has recently attracted considerable attention as a means of
improving the reliability and efficiency of embedded software design. This paper describes an
embedded software course incorporating a model-driven method. In this course, students learn
both a new model-driven approach for embedded software design and a conventional programming
method. Even though they initially find it difficult to learn and apply the new concepts, most of the
students find the model-driven method attractive due to its visual design. Our teaching experience
indicates that the model-driven method can be incorporated into an embedded software course
without compromising conventional content.

Keywords: embedded software; microprocessor; model-driven; teaching

1. Introduction

The development of complex embedded software is very complicated, especially when reliability
is essential, as is the case for automotive applications. When developing large and complex software,
it is essential to employ an appropriate developmental process [1,2]. The many processes available
include the classic waterfall, incremental, iterative, spiral, and Agile models, as well as the V-model;
the latter model is among the most popular models. Although the V-model has been criticized, many
companies still use it. In the automotive industry, the V-model is the standard model [3,4]. Figure 1
shows the V-model concept.

Figure 1. V-model process.

Electronics 2019, 8, 1004; doi:10.3390/electronics8091004 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://www.mdpi.com/2079-9292/8/9/1004?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8091004
http://www.mdpi.com/journal/electronics


Electronics 2019, 8, 1004 2 of 11

In conventional software development processes, such as the V-model, software design
specifications are usually written as documents; software engineers or programmers write software
based on those specifications. However, it is very difficult to accurately describe all required functions
of complex embedded software in the form of documents. Therefore, when a software engineer writes
software using information provided in documents, there is a very high risk of error. In model-driven
approaches, software functions are modeled in various ways. In embedded software engineering,
Unified Modeling Language (UML), which was approved by the Object Management Group (OMG)
in 1997, is frequently used for software modeling [5–8]. UML allows engineers to describe software
functions graphically. As the diagrams are accurate, it is almost impossible to misunderstand the
software requirements. Furthermore, as some modeling tools allow for execution [9], it is possible to
simulate the software prior to development, which can reveal logical errors at an early stage. Also,
software models automatically generate test cases [10], which are essential to ensure software reliability.

In electrical and computer engineering curricula, embedded software development is very
important, even for students who may not be involved in software development after graduation.
Recently, the importance of embedded software has grown; an understanding of such software is critical
for both electrical and computer engineers. Most electrical and computer engineering curricula feature
at least one introductory course on microprocessor programming [11–13]. After taking such a course,
some students may then be motivated to take an advanced course. For such students, many universities
offer an advanced course on embedded software [14–16]. Typical topics include software design
based on embedded operating systems, writing device drivers, and the development of applications
that use kernel objects such as threads, semaphores, and mutex. Although the conventional topics
are important, students with a deep interest in embedded system software design should have the
opportunity to be exposed to leading-edge technology. As it is believed that a model-driven approach
is among the most promising for embedded software design, incorporation of a model-driven approach
into a conventional course may be very helpful for students [1,17,18].

Here, we present an embedded software course incorporating a model-driven approach. Our aim
is to teach software embedding using a model-driven method. Students learn about a leading-edge
model-driven method for embedded software design, without compromising conventional content.

Schwerin proposed a course in which an UML is used for embedded software programming for a
Lego platform [19]. This course is not a traditional embedded software course but, instead, focuses
on the application of software engineering techniques to embedded systems. Muppala proposed a
traditional embedded software course with a brief introduction of software modeling and UML [20].
In the course proposed by Muppala, there is no lab exercise to apply software modeling or UML to
embedded software.

2. Embedded Platforms and the Software Modeling Tool

The embedded platform is based on the Freescale I.MX6Q Cortex-A9 microprocessor (NXP
Semiconductors, Eindhoven, Netherlands). The board is equipped with various peripheral devices,
such as a seven- segment display, button switches, and a character LCD. Students write applications
that control these devices. Figure 2 shows the embedded board (Huins, Sungnam, Korea).



Electronics 2019, 8, 1004 3 of 11

Figure 2. Freescale I.MX6Q Cortex-A9 board.

The operating system used is embedded Linux. To develop Linux programs for the embedded
platform, a Windows PC running the VMware player serves as the host computer. The VMware player
runs Ubuntu 12.04; this is used to build drivers and applications for the hardware.

When using UML for software development, a UML software tool must be employed. Although
many commercial tools are available, it is very important to choose a tool with an automatic
code-generation capacity. If coding is performed manually, there is no guarantee that the code
will match the specifications described by the UML model. Use of a UML tool featuring automatic
code generation automates the steps between the design and implementation stage [21–23]. To allow
students to experience seamless solutions via the model-driven method, UML tools that generate
code automatically should be used for laboratory (lab) assignments. We employ Rhapsody (IBM),
which generates very efficient code that does not require a great deal of memory, and is relatively easy
to understand [24,25]. Rhapsody can generate code that will run on embedded operating systems.
Figure 3a shows the conceptual structure of the software, where a layer is placed between the UML code
and the operating system. In this course, the operating system shown in Figure 3a is embedded Linux.
Rhapsody-generated codes can run without an operating system. In this case, an interrupt-driven
framework (IDF) serves as the framework for both the framework in Figure 3a and the operating
system (Figure 3b).

Figure 3. Software structure: (a) With an operating system; (b) Without an operating system.

In addition to the embedded Linux platform, a second target featuring a Cortex-M4 microcontroller
is used. Figure 4 shows the picture of the board. Recently, the microcontroller market has undergone
rapid changes. In the past, the market was dominated by the 8051, AVR, and PIC microcontrollers.
However, the market share of 32-bit Cortex-M microcontrollers is now growing rapidly, given their high



Electronics 2019, 8, 1004 4 of 11

performance and low price. According to this trend, students need to study new high-performance
microcontrollers. In the lab, the Cortex-M4 microcontroller (STMicroelectronics, Geneva, Switzerland)
is programmed using a conventional programming language. By employing a second target, students
have the chance to compare a conventional and model-driven method.

Figure 4. Cortex-M4 microcontroller.

3. Course Overview and Lab Assignments

This course is offered to senior students in disciplines of electrical and computer engineering. It is
assumed that students have adequate programming skills such as C-programming language experience.
Also, it is assumed that they have basic knowledge in microcomputer architecture and programming.

The class meets twice weekly (2 h per session). The first session is a lecture, and the second session
is a lab. The course is offered over a 16-week semester, and is divided into four parts. In the first
part, the kernel objects of embedded operating systems, such as threads, semaphore, mutex, and the
message queue, are taught via lectures. Students learn how to write multi-thread programs; they also
learn how to use kernel objects to deal with synchronization and communication problems between
threads. In the lab, students are provided with sample programs showing how to use kernel objects,
and are required to perform assignments employing the kernels. Then, they are introduced to device
drivers, which are used to write applications employing I/O devices such as the seven-segment display,
button switches, and a character LCD display. These topics are taken from traditional courses on
embedded software.

Next, the course addresses the model-driven approach. Initially, the basics of UML and how to
model software structures and behaviors using UML are taught. In the lab, students learn how to use
the IBM Rhapsody UML software. Before performing any UML software modeling for embedded
platforms, the students engage in software modeling exercises, in which code generated by a UML
model runs on a Linux host. After learning how to use the UML software tool, the students construct
software models running on embedded platforms. During such exercises, they must use some of the
peripherals, such as the seven-segment display and the button switches. In the embedded system, the
hardware peripherals are accessed via device drivers. To use the peripherals, some of the legacy code
accessing hardware devices via device drivers is combined with code generated by the UML software
model. Students learn how to do this via lab assignments.

In the third part of the course, students learn how to write programs for Cortex-M microcontrollers
using a conventional programming language, such as C. The fourth part of the course is the final design
project; students are required to write programs controlling an elevator simulator running on a PC
(the details are described below). Students must use and compare a conventional and model-driven
method. Table 1 summarizes the topics of the lectures and labs.



Electronics 2019, 8, 1004 5 of 11

Table 1. Course summary.

Category Lecture Lab

Conventional Method for
Linux

Introduction to Embedded Linux Embedded Linux Applications
Development Environment

Real-Time Kernel Concepts Multi Threads, Semaphore, Mutex

Device Drivers Applications using LED, FND, and LCD
drivers

Linux Architecture Applications using Interrupt Drivers,
Digital Clock, on Embedded Linux

Building a Linux Kernel Building a Linux Kernel including Device
Drivers

Model-driven Method for
Linux

Concepts of Model-driven Design Hello World Example, Counter

Concepts of Model-driven Design Stopwatch

Midterm Exam

Concepts of Model-driven Design Linux CAN Communication

Conventional Method for
ARM Cortex-M

ARM Cortex-M Processors Cortex-M serial ports

ARM Cortex-M Processors Cortex-M I2C

ARM Cortex-M Processors Cortex-M CAN

Final Project (Model-driven
and Conventional)

Design Project Elevator Controller

Design Project Elevator Controller

Design Project Elevator Controller

Final Exam

Below, the lab assignments that use UML are described in detail.
� Simple Counter in UML: Seven-segment Display
In this lab, students develop a simple counter and run it on the embedded Linux platform. The

counter value must be displayed on the seven-segment display. As the UML tool allows the model to
include legacy code, students can use the same interface code employed in the previous lab to access
the device driver.

� Button Switch in UML
In the UML model of embedded software, events are the most important element for describing

software behavior. Most embedded software deals with external events that usually trigger certain
software functions. In UML modeling, software behaviors are commonly modeled using state charts;
transitions between states are triggered by certain events.

In this lab, as an example of event-driven software modeling, a simple button switch example is
studied. The button switch is scanned at 20-ms intervals and an event is generated when the switch is
pressed. Figure 5 shows a diagram of the object model and the state charts for the objects of the project.
Three light-emitting diodes (LEDs) are sequentially turned on when the button is pressed. To interface
with the hardware drivers, the legacy code used in previous labs is combined with the code generated
by the model.



Electronics 2019, 8, 1004 6 of 11

Figure 5. Object Model Diagram and state chart for the button switch project: (a) Object Model Diagram
of the project; (b) State chart for the Button object; (c) State chart for the Led object. (d) State chart for
the PushSwitch object.

� Stopwatch in UML.
In this lab, students are required to complete a stopwatch model and run it on the Linux platform.

Students are provided with a basic skeletal model for a stopwatch; they then complete the model
and the interface code that allows it to run on the Linux platform. Figure 6 shows a diagram of the
stopwatch skeletal object model.

Figure 6. Object Model Diagram of the Stopwatch project.

In this lab, button switches and the seven-segment display are used to create the stopwatch.
Students are expected to use the object models and hardware interface codes derived in previous labs.

� Elevator Controller in UML



Electronics 2019, 8, 1004 7 of 11

This is the most complex assignment of the course. An elevator simulator that runs on a Windows
PC is provided. The PC is equipped with a USB-CAN (Controller Area Network) interface and the
elevator is controlled by CAN messages. Figure 7 shows a screenshot of the program. The elevator car
can be moved upward, downward, or stopped via CAN messages. When a user presses the call button
on a certain floor, the simulator sends a predetermined CAN message. Also, when the elevator car is
moving, the simulator sends CAN messages containing current position data at 200-ms intervals.

Figure 7. Screenshot of the elevator simulator.

A general control algorithm for an elevator can be very complicated. To simplify the problem,
the operational scenario for this elevator is simplified. It is assumed that the elevator is used only at
lunchtime, and that all users wants to descend to the first floor for lunch. It is also assumed that only
the down call button of each floor is used. Initially, the elevator is waiting at the first floor. When
one of the call buttons is pressed, the car starts moving upward. The rest of the scenario imitates the
behavior of a normal elevator.

In this lab, students are required to construct a fully operational model of an elevator controller.
As a CAN interface is used to control the elevator simulator on a Windows PC, a basic CAN interface
legacy code is provided to the students. Students are expected to build executable code by combining
the legacy code and code generated by their model of the elevator controller. Figure 8 shows one
possible solution.



Electronics 2019, 8, 1004 8 of 11

Figure 8. Object Model Diagram and state chart for the elevator controller project: (a) Object Model
Diagram of the elevator controller project; (b) State chart for the ElevatorControl object.

Apart from the model-driven method mentioned above, students are required to write a C
program for the Cortex-M board to control the same elevator simulator. By doing so, students can
compare the model-driven and conventional methods.



Electronics 2019, 8, 1004 9 of 11

4. Student Feedback

This course was offered in the 2018 and 2019 spring semesters. At the end of the semester, students
were asked to fill out standardized evaluation forms, which contained 17 standard multiple-choice
questions and a space for written comments. Table 2 shows the evaluation data for the questions
related to the course content.

Table 2. Student evaluation results. (a) 2018; (b) 2019.

(a)
Questions SA A N D SD AVG

Syllabus was helpful in choosing this course 13 6 2 1 0 4.41
Course objectives were concrete and clear 14 4 3 1 0 4.41

The instructor effectively presented concepts and techniques 12 7 2 1 0 4.36
The instructor provided helpful feedback 12 7 2 1 0 4.36

The instructor is enthusiastic about teaching 12 7 2 1 0 4.36
The instructor stimulated my interest in the subject matter 13 5 3 1 0 4.36

I gained worthwhile knowledge in this course 14 4 3 1 0 4.41

(b)
Questions SA A N D SD AVG

Syllabus was helpful in choosing this course 6 3 1 0 1 4.18
Course objectives were concrete and clear 6 3 1 0 1 4.18

The instructor effectively presented concepts and techniques 6 3 1 0 1 4.18
The instructor provided helpful feedback 5 3 2 0 1 4.00

The instructor is enthusiastic about teaching 5 3 2 0 1 4.00
The instructor stimulated my interest in the subject matter 5 4 1 0 1 4.09

I gained worthwhile knowledge in this course 5 4 1 0 1 4.09

(Key: SA-strongly agree, A-agree, N-neutral, D-disagree, SD-strongly disagree, AVG-average).

In the table, the number in each cell is the number of students who selected that particular choice,
and the averages were computed by assigning a score ranging from 1 to 5 to each choice. For each
question, the maximum score was 5. The students’ reactions to this course were relatively positive.
However, as the student evaluation results show, a few students had difficulty in understanding the
course material.

Most students are familiar with basic microprocessor/microcontroller programming, but none, or
very few, have encountered a model-driven method. Programming of microprocessors using UML was
new to almost all of the students. The final project is the most difficult and not all students finished it.
The number of students who finished the final project came to 8 out of 22 students in 2018 and 5 out of
11 students in 2019. Many students adapt to the new programming method quickly, but some found
the new concepts to be difficult.

When giving feedback on the final design project, students are requested to complete a table
(Table 3 below, with example replies) comparing the conventional and model-driven methods.

Table 3. Model-driven versus legacy code.

Model-Driven Legacy Code (C)

Architectural
Design

Pros Visualization None
Cons Need to learn modeling language Hard to capture the whole picture

Detail Design Pros Intuitive design with state chart Familiar source code design

Cons Need to learn state chart designs Difficult to design complex functions

Coding Pros Automatic code generation Flexible

Cons Less flexible
Increased code size

Hard to understand code written by
other programmers



Electronics 2019, 8, 1004 10 of 11

Table 3. Cont.

Model-Driven Legacy Code (C)

Debugging Pros State chart animation Familiar source code debugger

Cons Hard to find errors in generated code No animation

Many students commented that an advantage of model-driven design was the associated
visualization, especially in terms of architectural design (20 out of 22 students in 2018, 7 out of 11
students in 2019). In addition, they found the state chart detail design very useful; the graphical
method allows for intuitive design (14 out of 22 students in 2018, 4 out of 11 students in 2019). Most
students were already familiar with a conventional programming language, such as C; the students
typically take more than one programming course. Therefore, when students try to program using a
model-driven method, they need to change their thinking processes. Our teaching experience suggests
that students who wish to engage in serious programming using a model-driven method need to take
at least one full course on a modeling language such as UML.

5. Conclusions

Model-driven methods have recently attracted much attention as a means of improving the
reliability and efficiency of embedded software design. We describe an embedded software course
featuring a model-driven method. The course has been successfully taught twice over the last 2 years;
students learn both a new model-driven approach for embedded software design and conventional
programming. Although students initially have difficulty in learning and applying the new concepts,
most find the new model-driven method attractive because of its visual design. Our teaching experience
leads us to believe that a new model-driven method can be incorporated into an embedded software
course without compromising conventional content. However, a separate modeling language course
may be necessary for those who wish to study a systematic, advanced model-driven method.

Funding: This research was funded by the WC300 Technological innovation R&D program of Small and Medium
Business Administration (SMBA, Korea) [S2341060, Development of next generation integrated smart key system
based on SoC using IT fusion technology].

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liggesmeyer, P.; Trapp, M. Trends in Embedded Software Engineering. IEEE Softw. 2009, 26, 19–25. [CrossRef]
2. Sangiovanni-Vincentelli, A.; Di Natale, M. Embedded system design for automotive applications. Computer

2007, 40, 42–51. [CrossRef]
3. Staron, M. Automotive Software Architectures: An Introduction; Springer International Publishing AG: Basel,

Switzerland, 2017; p. 52.
4. ISO 26262-9:2011(en) Road vehicles—Functional safety—Part 9: Automotive Safety Integrity Level

(ASIL)-oriented and safety-oriented analyses. Available online: https://www.iso.org/obp/ui#iso:std:iso:
26262:-9:ed-1:v1:en (accessed on 28 August 2019).

5. Martin, G. UML for embedded systems specification and design: motivation and overview. In Proceedings
of the 2002 Design, Automation and Test in Europe Conference and Exhibition, Paris, France, 4–8 March
2002; pp. 773–775.

6. Seidewitz, E. What models mean. IEEE Softw. 2003, 20, 26–32. [CrossRef]
7. France, R.B.; Ghosh, S.; Dinh-Trong, T.; Solberg, A. Model-driven development using UML 2.0: Promises

and pitfalls. Computer 2006, 39, 59–66. [CrossRef]
8. Object Management Group. Available online: http://www.omg.org (accessed on 28 August 2019).
9. Running animated models. Available online: https://www.ibm.com/support/knowledgecenter/en/SSB2MU_

8.4.0/com.ibm.rhp.animation.doc/topics/rhp_c_dm_rning_anm_models.html (accessed on 28 August 2019).

http://dx.doi.org/10.1109/MS.2009.80
http://dx.doi.org/10.1109/MC.2007.344
https://www.iso.org/obp/ui#iso:std:iso:26262:-9:ed-1:v1:en
https://www.iso.org/obp/ui#iso:std:iso:26262:-9:ed-1:v1:en
http://dx.doi.org/10.1109/MS.2003.1231147
http://dx.doi.org/10.1109/MC.2006.65
http://www.omg.org
https://www.ibm.com/support/knowledgecenter/en/SSB2MU_8.4.0/com.ibm.rhp.animation.doc/topics/rhp_c_dm_rning_anm_models.html
https://www.ibm.com/support/knowledgecenter/en/SSB2MU_8.4.0/com.ibm.rhp.animation.doc/topics/rhp_c_dm_rning_anm_models.html


Electronics 2019, 8, 1004 11 of 11

10. Model Based Testing with TestConductor and Automatic Test Generation (ATG). Available
online: https://www.ibm.com/support/knowledgecenter/SSB2MU_8.2.1/com.btc.tcatg.user.doc/topics/com.
btc.tcatg.user.doc.html (accessed on 28 August 2019).

11. Introduction to Microcontroller-Based Systems. Available online: https://ece.osu.edu/courses/introduction-
microcontroller-based-systems-2560 (accessed on 28 August 2019).

12. Introductory Microcomputer Interfacing Laboratory. Available online: https://www2.eecs.berkeley.edu/

Courses/EEC145M/ (accessed on 28 August 2019).
13. Design of Microprocessor-Based Systems. Available online: http://eecs.umich.edu/eecs/academics/courses/

eecs-373.html (accessed on 28 August 2019).
14. Advanced Embedded Software Development. Available online: https://sites.google.com/colorado.edu/

ecen5013/home (accessed on 28 August 2019).
15. Advanced Embedded Software. Available online: https://my.eng.utah.edu/~{}cs5785/ (accessed on 28

August 2019).
16. Embedded and Real Time Software. Available online: https://cs.brown.edu/courses/csci1600/ (accessed on 28

August 2019).
17. Mellor, S.J.; Clark, A.N.; Futagami, T. Model-driven development - Guest editor’s introduction. IEEE Softw.

2003, 20, 14–18. [CrossRef]
18. Selic, B. The pragmatics of model-driven development. IEEE Softw. 2003, 20, 19–25. [CrossRef]
19. von Schwerin, M. Software engineering in a nutshell for Electrical Engineering students. In Proceedings

of the 2014 IEEE Global Engineering Education Conference (EDUCON), Istanbul, Turkey, 3–5 April 2014;
pp. 788–793.

20. Muppala, J. Experience with an embedded systems software course. ACM SIGBED Review 2005, 2, 29–33.
[CrossRef]

21. Khan, M.U.; Geihs, K.; Gutbrodt, F.; Gohner, P.; Trauter, R. Model-driven development of real-time
systems with UML 2.0 and C. In Proceedings of the Fourth Workshop on Model-Based Development of
Computer-Based Systems and Third International Workshop on Model-Based Methodologies for Pervasive
and Embedded Software (MBD-MOMPES’06), Potsdam, Germany, 30–30 March 2006; pp. 33–42. [CrossRef]

22. Mura, M.; Sami, M.G. Code Generation from Statecharts: Simulation of Wireless Sensor Networks.
In Proceedings of the 2008 11th EUROMICRO Conference on Digital System Design Architectures, Methods
and Tools, Parma, Italy, 3–5 September 2008; pp. 525–532. [CrossRef]

23. Shukla, S.K. Model-Driven Engineering and Safety-Critical Embedded Software. Computer 2009, 42, 93–95.
[CrossRef]

24. IBM Rational Rhapsody. Available online: https://www.ibm.com/support/knowledgecenter/SSB2MU_8.4.0/

com.ibm.rhp.homepage.doc/helpindex_rhapsody.html (accessed on 28 August 2019).
25. Krasner, J.L. Reducing OEM Development Costs and Enabling Embedded Design Efficiencies Using UML.

In Embedded Market Forecasters; American Technology International Inc.: Framingham, MA, USA, 2004.

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.ibm.com/support/knowledgecenter/SSB2MU_8.2.1/com.btc.tcatg.user.doc/topics/com.btc.tcatg.user.doc.html
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.2.1/com.btc.tcatg.user.doc/topics/com.btc.tcatg.user.doc.html
https://ece.osu.edu/courses/introduction-microcontroller-based-systems-2560
https://ece.osu.edu/courses/introduction-microcontroller-based-systems-2560
https://www2.eecs.berkeley.edu/Courses/EEC145M/
https://www2.eecs.berkeley.edu/Courses/EEC145M/
http://eecs.umich.edu/eecs/academics/courses/eecs-373.html
http://eecs.umich.edu/eecs/academics/courses/eecs-373.html
https://sites.google.com/colorado.edu/ecen5013/home
https://sites.google.com/colorado.edu/ecen5013/home
https://my.eng.utah.edu/~{}cs5785/
https://cs.brown.edu/courses/csci1600/
http://dx.doi.org/10.1109/MS.2003.1231145
http://dx.doi.org/10.1109/MS.2003.1231146
http://dx.doi.org/10.1145/1121812.1121819
http://dx.doi.org/10.1109/MBD-MOMPES.2006.21
http://dx.doi.org/10.1109/DSD.2008.106
http://dx.doi.org/10.1109/MC.2009.294
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.4.0/com.ibm.rhp.homepage.doc/helpindex_rhapsody.html
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.4.0/com.ibm.rhp.homepage.doc/helpindex_rhapsody.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Embedded Platforms and the Software Modeling Tool 
	Course Overview and Lab Assignments 
	Student Feedback 
	Conclusions 
	References

