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Abstract: Heart condition diagnosis based on electrocardiogram signal analysis is the basic method
used in prevention of cardiovascular diseases, which are recognized as the leading cause of
death globally. To anticipate the occurrence of ventricular arrhythmia, the detection of Ventricular
Late Potentials (VLPs) is clinically worthwhile. VLPs are low-amplitude and high-frequency signals
appearing at the end part of QRS complexes in the electrocardiogram, which can be considered
as a robust feature for arrhythmia risk stratification in patients with cardiac diseases. This paper
proposes a beat-to-beat VLP detection method based on the the marginal component analysis and
investigates its performance taking into account different ratios between QRS and VLP power.
After a denoising phase, performed adopting the singular vector decomposition technique, heartbeats
characterized by VLP onsets are identified and extracted taking into account the vector magnitude of
each high resolution ECG (HR-ECG) record. To evaluate the proposed method performance, a 15-lead
HR-ECG database consisting of real VLP-negative and simulated VLP-positive patterns was used.
The achieved results highlight the method validity for VLP detection.

Keywords: HR-ECG; electrocardiography; high resolution cardiography; ventricular late potentials;
VLP; detection; beat-to-beat; singular value decomposition; marginal component analysis;
signal processing; parameter estimation; computer aided detection (CAD)

1. Introduction

The shape of electrocardiographic signal is considered by cardiologists as representative of
the heart state and, therefore, is useful in detecting cardiac pathologies such as arrhythmia [1,2].
Many types of arrhythmias have been classified based on heart rate and mechanism or site of origin.
Some of them are benign but others may indicate the presence of serious heart disease, stroke or
sudden cardiac death [3].

To prevent malignant ventricular arrhythmias in patients with arrhythmogenic right ventricular
cardiomyopathy, the detection of ventricular late potential (VLP) signals is useful and helpful [4].
In fact, they are used as non-invasive markers for the prognosis of sudden cardiac death risk
in patients recovering from myocardial infarction [5,6]. Detection of VLP occurrences means
that additional information about patient heart conditions is provided to physicians. In fact,
VLP occurrences in cardiac signal is useful not only to identify post myocardial infarction patients
prone to sudden cardiac death but also to evaluate thrombolytic and coronary angioplasty therapy,
to follow patient progress after some kind of heart surgery, to evaluate the evolution of cardiac
conditions (such as cardiomyopathy, ischemia, and angina pectoris) and to study patients with risk
factors for cardiovascular disease (i.e., hypertension, diabetes mellitus, and smoking).

VLPs are cardiac signals of high frequency content (in the range of 40–250 Hz) and very low
voltage (between 1 and 20 µV) that are located at the end of the QRS complex but may also extend
into the early part of the ST segment (Figure 1). They are considered non-stationary and non-Gaussian
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signals and are generated in cardiac tissue zones whose architecture has been altered as a result
of necrosis, fibrosis or dystrophy. The resulting delayed and fragmented depolarization causes the
occurrence of high-resistivity areas where the speed of cardiac impulse decreases. By giving rise to
ventricular late potentials, such heterogeneous areas represent electrophysiological substrate for the
development of re-entrant ventricular tachycardia [7].

As VLP signals are covered by both low-frequency, high-amplitude deflections of ECG and by
high-frequency interference arising from biomedical instrumentation and muscular activity signals,
their detection and quantification are hard tasks. It follows that noise reduction is an essential and
delicate phase when cardiac signal is processed for VLP detection and localization [8].

Figure 1. (a) Characteristic shape of an ECG heartbeat; and (b) VLP onset representation.

The Simson amplitude–time procedure [9] is the best known method for VLP detection.
It is based on ensemble averaging of a multitude of identical cardio-cycles both to reduce random
noise in ECGs and to enhance the detection of low-amplitude signals. To characterize VLPs through
time and amplitude measurements of QRS complexes, the three bipolar orthogonal XYZ leads are
normally combined and a mean of several tens of beats per lead are averaged.

Several signal processing techniques for VLP detection implement a time-domain analysis. Due to
VLP low amplitude and VLP continuity with QRS complex, the detection of these microvolt waveforms
requires high amplification and suitable filtering for the rejection of low frequencies associated
with repolarization phases of action potential, ST segment and T wave. The performance of these
methods are dependent on the characteristics of the selected filter. Most often, a linear, shift-invariant
(time-invariant) digital filter is implemented in the time domain as a convolution sum to avoid phase
distortion in a single processing step. A bi-directional four-pole Butterworth high-pass digital filter is
generally adopted to prevent the ringing effect and to ensure the invariance of QRS complex onset and
offset in the filtered ECG and in the original signal. In addition, the localization of the QRS complex
endpoint position is a hard task because of the noise occurrence that makes the portion of the signal
following the QRS unstable. Standards propose the automatic estimation of the initial and final points
of the filtered QRS complex [9].

Moreover, the incomplete characterization of re-entrant activity, the poor accuracy of positive
prediction [10], and the impossibility to detect VLPs in patients with bundle branch block
pathology [11] are the major limitations of time-domain analysis.

Unlike time analysis, a standard for a frequency domain approach has not yet been defined.
Several studies have considered the Fourier transformation [12] and the Short Time Fourier transform,
while other methods have used the maximum entropy spectrum estimation [13,14], the time
variant auto-regressive spectral study [15], the spectral turbulence analysis [6,16] and the Wigner
distribution [17]. Some evident limits of the aforementioned methods concern the fixed duration of the
window adopted for the selection of QRS complex segments, the generation of interference terms and
the fixed time–frequency resolution that is a poor choice for the analysis of non-stationary signals such
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as VLPs. The wavelet transform is also adopted because it makes possible a good tracking of sudden
changes in the analyzed signal [18–20].

The averaging of a large number of QRS complexes, the so-called Signal Averaged
Electrocardiogram (SAECG), improves the signal to noise ratio (SNR) in High Resolution-ECG
(HR-ECG) signals, but decreases the sensitivity of the VLP detection and may give rise to waveform
smoothing as consequence of the alignment jitter [21]. In fact, the adoption of SAECG signal makes
impossible the detection of the existence of ventricular variance from beat to beat.

Several efforts were carried out by researchers for noise reduction but the unknown characteristics
of VLPs and their behavior similar to noise have not allowed reaching results widely accepted
by physicians.

To preserve the variability from beat to beat, as well as late potential onsets, as much as
possible, a beat-to-beat correlation based denoising approach is proposed in this paper. The time
alignment of heartbeat signals acquired by each lead (up to 15) of the HR-ECG monitoring system
and the Singular Value Decomposition (SVD) technique characterize the denoising procedure of the
implemented method.

As the paper aim is the detection of VLP occurrences in the ST segment of each heartbeat, the most
significant singular values are retained in the reconstruction of HR-ECG signals; the reconstructed
signals are summed to identify the peak to be analyzed. Moreover, a visual inspection allows
VLP detections.

The confusion matrix is adopted for the performance evaluation of the proposed heuristic
approach, taking into account different ratios between QRS and VLP powers.

Due to the lack of referred databases containing multi-leads HR-ECGs with VLPs, a simulated
injection of VLP-like signals was used. Each VLP was simulated as multifrequency signal in
Gaussian noise.

This approach is common in the scientific literature [22,23] and has the benefit of scoring the
detectability of added signals with varying VLP levels, as the beats affected by the injected VLP
are known.

The paper is organized as follows. In Section 2, the technique used for the analysis phase
is presented. In Section 3, the implemented method is detailed. In Section 4, the database adopted as
test bench of the proposed approach is presented. Experimental results and discussion close the paper.

2. Adopted Technique

In the proposed system, the Singular Value Decomposition (SVD) method is employed for
VLP detection. The aforementioned technique is widely used in several applications of signal
processing such as compressing, denoising, data reduction and so on.

The SVD technique is a matrix decomposition method for reducing a matrix to its
constituent parts [24].

Denoting X the data matrix of size m × n; U and V orthonormal matrices of size m × n and
n × n, respectively; and S a diagonal matrix of size n × n, the SVD decomposition can be written
simply as:

X = U × S × VH (1)

where the superscript ()H represents the transpose and conjugate operator (Hilbert operator).
The columns of U and V are named the le f t and right singular vector matrices of X, respectively,

while the values along the diagonal of S are the singular values of X sorted from the highest value to
the lowest one. The U and V matrices satisfy the following relations:

UH × U = In (2)

and
VH × V = In (3)
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where I is the identity matrix.
Since matrix V is orthogonal and considering Equation (3), the SVD equation can be rewritten as:

X × V = U × S = E (4)

V is the matrix which performs the linear combinations of X matrix columns to obtain an
orthogonal matrix named E. Instead, the right multiplication of matrix U with S only scales the vector
columns in U without affecting the orthogonality property. The E matrix is thus obtained as a simple
linear combination of matrix X columns.

The modulus of each column vector in E represents the singular values; it is easy to demonstrate
that it represents the estimate of the standard deviations of the signal in each column of E.

This procedure tends to accumulate all the strongly correlated information on columns in the first
left singular vector. It follows that all the signal’s highest energy terms in X columns are joined within
the first singular vector of U, leaving all the uncorrelated components in the remaining columns.

This SVD ability to extract the uncorrelated marginal component of a signal has been appropriately
exploited for reducing significantly the noise effect in the cardiac signal.

3. Implemented Method

Unlike most published studies, the method implemented in this paper carries out the VLP
detection on the cardiac signal and not on the mean amplitudes of the signal (SAECG), as usually
performed. It follows that the signal phase information is preserved and a better cross correlation
among different acquisitions of beats is allowed.

Assuming one HR-ECG record composed of several lead signals, the implemented method detects
VLP occurrences by carrying out a beat-to-beat analysis of the HR-ECG record under test. To pursue
this aim, the following phases have been implemented:

Input • Signal record acquisition

Pre-processing phase
• Filtering
• SVD application for HR-ECG record denoising

Detection phase

• Orthogonal decomposition of denoised HR-ECG record
• Vector magnitude evaluation for each beat and for all the leads composing the denoised HR-ECG record
• Data dimension reduction
• Processed record assignment to the class of VLP positive signal or of normal HR-ECG

Output • Highlight of suspected zone inside the original signal

In the next sections, all phases are detailed.

3.1. Pre-Processing Phase

For each lead of a generic HR-ECG record, a band pass filtering was carried out both to exclude
signal wandering due to low frequency terms and to limit the observation bandwidth to the properly
selected frequency occupancy. In fact, as the VLP signal contains only frequency terms below 300 Hz,
the filter bandwidth upper and lower limits were chosen at fH = 330 Hz and fL = 5 Hz, respectively,
to avoid neglecting some VLPs or some cardiac signal useful information.

A subsequent comb filter was used to reduce the misleading effects on tested signals arising from
the 50 Hz noise and all its harmonics caused by the power supply section of the acquisition system.
The cascaded impulse response of the used filter is a 1000 taps linear phase Finite Impulse Response
(FIR) filter whose transfer function is represented in Figure 2.
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Figure 2. FIR filter used in the pre-processing phase.

The VLP detection on a beat-to-beat study requires a preliminary signal analysis. In fact, for each
lead of every HR-ECG record, all R-peak positions were detected and a beat-to-beat segmentation was
carried out. The above-mentioned operations made it possible to construct P matrices with P equal
to the number of heartbeats in one lead. These matrices, named Bi (for i = 1, ..., P), have size M × Q
where M is the number of samples composing each heartbeat of the cardiac signal and Q is the number
of leads composing one HR-ECG record.

If ~bi
j=[b

i
1j, bi

2j, ..., bi
Mj]

T (j = 1, ..., Q) is a column vector that represents the ith heartbeat of the
jth lead, the B matrix for the generic ith heartbeat is composed as indicated in Figure 3a.

For the analysis of the whole HR-ECG, the lead beat matrix (LBM) was constructed by
concatenating all the Bi matrices as follows:

LBM = [B1, B2, ..., BP] (5)

The obtained matrix has size M × Nleads, where Nleads is equal to P × Q (Figure 3b).
For each HR-ECG record to be tested, one LBM matrix was created. The LBM matrix was

constructed using the analytic signal associated to each beat of each lead. The analytic signal complex
description is reported in Equation (6).

xc(t) = x(t) + j × x̂(t) (6)

In Equation (6), x(t) is the generic acquired lead signal, x̂(t) is its Hilbert transform, j is the
imaginary unit and xc(t) is the analytic signal in its complex representation. The purpose of this
transformation is to take care of the signal phase information.

The conceived method decomposes each LBM matrix into orthogonal components adopting the
SVD technique so the main correlated part of the lead signals composing one HR-ECG record is
retained in the first few left singular vectors of the decomposition. Therefore, the first singular vector
represents the heartbeat expected signal, while the signal differences among different beats are stored
in subsequent singular vectors.
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Figure 3. (a) Schematic representation of the Bi matrix composition; and (b) schematic representation
of the LBM matrix for one generic HR-ECG record.

As the SVD decomposition is an energy based method and the singular values are sorted in
descending order, the largest part of the lead signal energy is contained in the first few left singular
vectors, which correspond to the highest singular values (Figure 4).

Figure 4. Singular values of a generic LBM.

As a result of the VLP low energy amount, its occurrence may not be detected in each LBM
decomposition because the VLP presence in the left singular matrix is dependent on the VLP power
amount with respect to the power of the difference signals of each LBM column vectors. As can be seen,
the largest part of the lead signal energy is contained in a few singular vectors. To define the minimum
number of left singular matrix vectors that can ensure an accurate signal representation, the highest
singular values were considered. By thresholding the singular values, two distinct subspaces can
be defined, namely the signal subspace and the noise subspace.
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To obtain a denoised LBM matrix, the recomposition of the matrix from its SVD decomposition
was performed, retaining only the higher singular values and setting to zero the singular values
corresponding to the noise subspace in the diagonal matrix of Equation (1).

Because the energy of the VLP signal is unknown, to separate the signal subspace from the
noise subspace in the LBM SVD decomposition, only the first fifteen singular values were retained.
In fact, the highest singular values are the most energetic terms in the signal orthogonal decomposition
and correspond to the vectors able to accurately represent the signal. The singular value flat zone
can be considered mainly due to the background noise, which is always present in acquired signals.
Figure 2 shows the plot of the singular vectors of a LBM decomposition.

A Denoised LBM matrix (named DLBM) was obtained after making the recomposition of the
LBM matrix by Equation (1). Therefore, the DLBM is expressed as follows:

DLBM = [DB1, DB2, ..., DBP]. (7)

where the generic DBi is the denoised Bi whose generic element is denoted by dbi
m,j with m = 1, ..., M

and j = 1, ..., Q.

3.2. Detection Phase

As the method aims to both detect and evaluate the frequency occurrence of VLPs, a beat-to-beat
detection algorithm is required.

The output of the pre-processing phase, namely the DLBM matrix of one HR-ECG record,
represents the input of the detection phase.

Assuming that heartbeats and VLP onsets are uncorrelated (or marginally correlated), the SVD
decomposition was performed to confine the VLPs in the secondary singular values. In particular,
the implemented procedure adopts the marginal component analysis for the identification and
extraction of heartbeats characterized by VLP occurrences. The procedure discards the first singular
vector and adopts the other vectors for the DLBM matrix reconstruction. The last not neglected vectors
include details on VLP onsets such as the mutual differences among corresponding heartbeats of all
the leads composing one HR-ECG record.

The plot of the singular vectors after the SVD decomposition of a generic DLBM matrix shows
noticeable VLP onsets in the third left singular vectors of the decomposition (Figure 5).

The spectral analysis of some ST segments extracted from the DLBM shows that the obtained
peaks take place in correspondence of the VLP frequency components (Figure 6).

To separate the VLP contribution from the cardiac signal, the Vector Magnitude (VM) of each
HR-ECG record was evaluated, which quantifies the total energy of the above-mentioned record.
The VM is recognized as a standard for this type of analysis by the Task Force Committee of the
European Society of Cardiology, the American Heart Association, and the American College of
Cardiology [25].

For the generic ith heartbeat (1 ≤ i ≤ P), the VMi = [VMi
1, VMi

2, ...VMi
M]T is a column vector

whose elements were evaluated adopting the following formula:

VMi
m =

√√√√ Q

∑
j=1

(dbi
m,j)

2, 1 ≤ m ≤ M (8)

A VM matrix of (M × P) size was constructed by concatenating the above-mentioned column
vectors:

VM = [VM1, VM2, ..., VMP] (9)

The extraction of all the ST segments from each VMi, (1 ≤ i ≤ P) makes the identification of
VLP onsets possible. In fact, by plotting the ST segments composing each VMi arranged in columns,
the VLP occurrences are highlighted by longer vertical light gray segments in Figure 7.
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Figure 5. The first, second and third left singular vectors obtained by the SVD decomposition of a
generic DLBM.

The method results in terms of VLP detections, as reported in Figure 8. Circles represent the
presence of true VLP signals while peaks are the computed standard deviation in the ST segment of
each beat.

Adopting the proposed algorithm, a perfect match between real VLP locations and detected VLP
positions can be obtained with high probability when the VLP peak magnitude is 40 dB below the
R peak.

Figure 6. Spectrogram of some ST segments extracted from the DLBM.
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Figure 7. ST segments of each heartbeat showing the presence of VLPs on some of the recorded beats.

Figure 8. An example of VLP detection adopting the proposed beat-to-beat method in presence of VLP
peak amplitude 40 dB below the R peak.

4. Adopted Database

The method was validated using real electrocardiographic signals provided by the PhysioNet
database. In particular, the PTB Diagnostic ECG Database, a collection of real ECGs acquired by
the Physikalisch Technische Bundesanstalt (PTB), the German national metrology institute, was
selected [26]. Signals that make it up are characterized by sampling frequency of 1000 Hz, resolution
of 16 bit with 0.5 µV/LSB and total duration of about 2 min. Each HR-ECG acquisition is composed of
15 signals: 12 acquired by conventional leads and 3 orthogonal (Frank leads). The 15-lead HR-ECG
data were named HR-ECG record.

Sixty HR-ECG records, each composed of acquisition in absence of VLP signals coming from the
PTB Diagnostic ECG Database, were used. To evaluate the algorithm accuracy, 60 HR-ECG records
with VLPs were synthesized by adding on the ST segment of healthy HR-ECG signals, VLP signals
properly generated in Matlab. For each record, a number of VLPs randomly selected in the range 1–30
was added to the VLP-free acquisitions in haphazard (but known) positions. This approach is shared
with other studies in the literature concerning the VLP detection [23,27,28].

As HR-ECG records were corrupted by adding VLPs in known positions, the ground truth
of VLP localizations was available and the detection process performance could be verified and
accurately evaluated.

Low amplitude (1–10 µV), short duration (5–50 ms) and broad spectrum (40–250 Hz) are VLP
characteristics taken into account for the simulation [29].

Based on the aforementioned features, a model was properly developed for VLP signal generation
as the sum of sinusoids in accordance with Equation (10) :

VLP(t) =
N

∑
n=1

[αn · sin (2π fnt + φn)] (10)
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where αn, φn and fn are parameters randomly selected inside the ranges [0, 1], [0, 2π] and
[40–250 Hz], respectively.

For each heartbeat, the generated signal has fixed frequency terms but different peak amplitudes,
which depend on the phase composition of the frequency components in each ST segment.
Therefore, the VLP peak amplitude may be considered as a random variable with a uniform distribution
ranging in a random interval that is related to the VLP frequency component amplitudes. In addition,
the position of additive VLP signals was slightly randomly varied from beat to beat with respect to the
R peak but it was the same for corresponding heartbeats of all 15 leads composing one HR-ECG record.
In this way, the VLP variability due to physiological causes was reproduced.

The block diagram of the VLP signal generation is represented in Figure 9.

Figure 9. VLP schematic signal generation block diagram.

After the VLP signal generation, a normalization was carried out to set the ratio between the
amplitude of the highest R peak present in the lead under test and the amplitude of the most elevated
VLP equal to a pre-established value.

5. Performance Evaluation and Results

5.1. Evaluation Parameters

The performance of the implemented diagnostic system was evaluated using sensitivity, specificity
and accuracy. Sensitivity (Se) is defined as the probability of detecting a VLP when a VLP exists really.
Specificity (Sp) represents the probability of obtaining a negative HR-ECG record when VLP is
not present. Accuracy (Ac) is defined as the observed agreement between the procedure results and
the physicians opinion about the HR-ECG record under test [30]. They were computed as follows:

Se =
TP

TP + FN
(11)

Sp =
TN

TN + FP
(12)

Ac =
TP + TN

TP + FN + FP + TN
(13)

where TP (number of true positives) is the number of correct identifications of VLPs inside the HR-ECG
record under test; FN (the number of false negatives) is the number of VLPs present in the HR-ECG
record that the algorithm is not able to detect; FP (the number of false positives) is the number of VLPs
detected by the algorithm but are not really present in the HR-ECG record; and TN (the number of
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true negatives) is the number of HR-ECG records that the procedure considers without VLPs that
really do not have VLPs.

In general, high values of both parameters are to be hoped for CAD systems. Really, a trade-off
between Sp and Se is necessary both on the basis of impact of FP and FN diagnoses and on the
prevalence of disease in the subjects under test [31].

5.2. Results of the Implemented Method

The entire collection of healthy records of the PTB database was processed. Since each HR-ECG
was recorded adopting 15 leads and is 2 min long, 1800 cardiac tracings for a total of about 90,000
heartbeats were tested for the system evaluation.

Denoting with AQRS/AVLP the ratio between the R peak amplitude and the VLP amplitude of
the same heartbeat, the conceived system reached a sensitivity, specificity and accuracy of about 95.3%,
94.5% and 94.3%, respectively, at a rate of AQRS/AVLP equal to 40 dB.

In Figure 10, the achieved SE, Sp and Ac trends in terms of different AQRS/AVLP values are
plotted. It is shown that accuracy not lower than 90% was achieved up to AQRS/AVLP = 45 dB (Table 1).

Figure 10. CAD performance plot in terms of HR-ECG peak to VLP peak ratio.

Table 1. Achieved performance.

HR-ECG Peak/VLP Peak (dB) Sensitivity (%) Specificity (%) Accuracy (%)

20.00 94.04 99.71 98.82
25.00 98.28 99.77 99.55
30.00 98.35 99.19 98.99
35.00 99.25 97.79 97.85
40.00 95.23 94.51 94.29
45.00 75.69 91.75 90.24
50.00 47.67 83.18 79.58
55.00 33.41 82.07 75.86
60.00 27.24 82.71 76.14
65.00 24.78 82.34 76.60
70.00 23.41 81.43 77.93

Comparisons of the obtained performance with other methods indicated in the literature show
the procedure’s validity (Table 2).
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Table 2. Performance comparison of different CAD systems.

Paper Brief Description Se Sp Ac

Wu S. et al. [32] The method, after QRS detection, adopts a time-sequence adaptive
filter to enhance the SNR in the VLP beat-to-beat detection. Eight
features are extracted using wavelet transform, from the VLP
time-frequency distribution of the filtered ECG signals, and used
as inputs of an artificial neural network for VLP recognition

80 77 78

Bunluechokchai S. [33] The method performs a time domain analysis adopting the
Continuous Wavelet Transform and the approximate entropy is
used to classify patients with and without VLPs

85 96 −

Zandi A.S. et al. [28] The method adopts SAECG signals for the SNR improvement
and processes the terminal part of the QRS complex in the
Vector Magnitude adopting the Continuous Wavelet Transform.
Principal component analysis and a suitable Multi-Layer
Perceptron neural network are applied to identify VLPs

95 90 92

Zandi A.S. et al. [23] In this method, a modified vector magnitude is obtained using
discrete wavelet transform and then a feature vector is extracted
from the resultant time-scale plot adopting the continuous wavelet
transform to the QRS complex end part. The wavelet-based
feature vector is processed by principle component analysis and a
supervised feedforward artificial neural network is employed as
a classifier.

96 95 95.5

Orosco L. et al. [34] The procedure analyzes signal average HR-ECG record and
defines a diagnostic index as a combination between the best
of temporal parameters and the most significant time-frequency
index of VLP analysis.

86.44 93.15 −

6. Discussion and Conclusions

Technological innovations have contributed both to human health (improving people quality
of life) and to management of diagnostic institutes (making the diagnostic process efficient by increasing
the productivity of each physician). In particular, new systems have been implemented that are able to
detect illness signs even if diagnostic signals are complex and difficult to analyze.

In this paper, a computer aided detection system is employed for automatic detection of
ventricular late potentials (VLPs) in high resolution ECG signals. The implemented method adopts
the marginal component analysis implemented by the singular value decomposition to perform a
beat-to-beat analysis. Due to VLP low amplitude, the detection of their occurrences is a challenge
because they are masked by noise, interference and cardiac signal components.

For the procedure performance evaluation, a database composed of real and semi-simulated
HR-ECG records was used, which provided a realistic and controllable environment for algorithm
assessment. In particular, random generated sequences resembling the VLP characteristics were added
to non-VLP records in random positions.

Even though our method exhibits quite similar performance to Zandi et al.’s [23] algorithm,
it shows many distinctive characteristics, which improve the performance not only in regards to
characteristic parameters (sensitivity, specificity and accuracy) but especially in terms of signal
processing, tool applicability and application conditions. In fact, the implemented method shows that
a careful use of marginal component analysis in the implementation of a suitable pre-processing phase
of a CAD aimed to VLP detection makes it possible to reach performance in line with the best methods
indicated in the literature without the recourse to complex detection/classification systems (based on
neural networks, heuristic or probabilistic approaches). Moreover, since the implemented method has
the benefit of being an open architecture where each block is an object-oriented module, in future
work, the detection/classification section might be upgraded individually to improve the CAD system
performance. Additionally, even if the obtained performance is comparable with that achieved in [23],
the application conditions are quite different. In fact:
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• The databases selected to test the procedures are different: the authors of [23] used a private
database composed of HR-ECG records lacking in VLPs with a sampling frequency of 2000 Hz
and a 16-bit A/D converter, while a freely available public database composed of HR-ECG records
lacking in VLPs with a sampling frequency of 1000 Hz and a 16-bit A/D was adopted here.
The decision of using a public database was motivated by the intention of obtaining results
comparable with some other procedures present in the literature that use the same database.
It is well known that database characteristics influence the achieved performance of a CAD
method and, therefore, the same procedure could produce different results when changing the
signal dataset. Most studies in the literature test the VLP detection adopting private dataset.

• The procedures for VLP generation and insertion in HR-ECG signals are different in [23] and in
the proposed method. In [23], the basic VLP waveform is simulated as a colored Gaussian process
and added to the QRS complex end part of every heartbeat. The position of the additive VLP
waveforms is varied randomly from beat to beat and the amplitude of the VLP waveforms is
modified for each heartbeat as the R wave absolute peak value is 100 times (40 dB) more than that
of the VLP waveform in that heartbeat. In the proposed method, for each heartbeat, the generated
signal has fixed frequency terms but different peak amplitudes, which depend on the phase
composition of the frequency components in each ST segment. Therefore, the VLP peak amplitude
may be considered as a random variable with an almost uniform distribution ranging in a random
interval that is related to the VLP frequency component amplitudes. In addition, the position
of additive VLP signals is slightly randomly varied from beat to beat with respect to the R peak
but it is the same for corresponding heartbeats of all the leads composing one HR-ECG record.
In the proposed tool, there is no guarantee that, for each heartbeat, a ratio not greater than 100
is preserved between the R and the VLP peak values in that heartbeat (i.e., the VLP amplitude
might be lower, making its detection more difficult), giving rise to a more critical situation in
comparison with the method in [23].

Concluding and summarizing, the following benefits characterize the implemented method:

• an open architecture where each block is an object-oriented module, which can be upgraded
individually to improve the CAD system;

• able to achieve better, or at least comparable, performance than other procedures detailed in
the literature;

• able to preserve the beat-to-beat variability information;
• able to achieve satisfactory results up to a ratio of R peak amplitude to VLP amplitude equal to

45 dB;
• a heuristic approach that needs no training and subsequent validation for the test procedure; and
• an efficient approach with respect to the required computational load.

Obviously, the acceptance of a CAD system in diagnostic environment would depend not only on
the performance of the method alone, but also on how well a physician performs the task when the
computer output is used as an aid.
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