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Abstract: With the increase in on-orbit maintenance and support requirements, the application of
space manipulator is becoming more promising. However, how to control the vibration generated by
the space manipulator has been a difficult problem to be solved. The advent of variable stiffness joint
(VSJ) has brought about a dawn in solving this problem. But how to achieve coordinated control of
joint angle and stiffness is still a problem to be solved, especially when considering system model
parameter uncertainty, unknown disturbance and control input saturation. In order to realize the
controllable attenuation of the vibration of the space flexible manipulator based on the variable
stiffness joint, the dynamic model of the variable stiffness joint was constructed. Then the linear
transformation and feedback linearization method are used to transform its complex nonlinear
dynamic model system into a pseudo-linear system containing aggregate disturbance and input
saturation constraints. This paper constructs a linear extended state observer (LESO) for estimating
the state of unknown systems in pseudo-linear systems. Based on the idea of state feedback control,
a Neural State Feedback Adaptive Robust (NSFAR) control is constructed by using Radial Basis
Function Neural Network. The adaptive input saturation compensation control law is also designed
by using Radial Basis Function Neural Network to deal with the input saturation compensation
problem. The ultimate uniform bounded stability of the constructed system is proved by the stability
analysis based on Lyapunov function. Finally, the effectiveness and superiority of the constructed
tracking algorithm are verified by compared simulation and semi-physical experiment.

Keywords: space manipulator; variable stiffness joint; feedback linearization; cooperative control
algorithms for joint angle and stiffness; input saturation compensation; linear extended state observer;
RBF Neural Network; state feedback control

1. Introduction

Nowadays, with the increasing frequency of space activities, the impact of spacecraft being hit by
space debris has occurred. A large amount of space debris has already seriously threatened the safety
of on-orbit spacecraft. The large number of large-scale space debris may change the attitude and orbit
of spacecraft and even cause the spacecraft to be completely destroyed. For example, the large-capacity
communication satellite named IS-29e, manufactured by Boeing, unfortunately exploded in space
more than 35 million kilometers from the Earth in April, disintegrating into hundreds of fragments
which are likely to collide with other spacecraft on the corresponding track during the offset [1].

In order to solve such problems, the development of space debris removal technology has become
particularly urgent. Among the many active space removal technologies, the technology of space
manipulator removal in orbit has received extensive attention. The ETS-VII of Japan, the Orbital Express
of the United States, and the SY-7 of China have successively conducted verification experiments on
this technology in space, and are still intensifying their research [2,3].
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Related studies [4–6] have shown that when using the traditional multi-rigid manipulator to
carry out space debris removal tasks, collisions from non-cooperative target contacts such as space
debris may lead to large pulse momentum, which may cause problems such as space manipulator
tumbling. The space manipulator equipped with a flexible mechanism can better achieve the collision
force buffering and unloading during the contact with the non-cooperative target. It can solve the
problem of energy shock and disturbance caused by satellites contact, make the contact process softer,
reduce the various risks brought by the current rigid arm contact, and expand the practicality of space
operation. At present, there is no real flexible manipulator to test or apply on orbit, but the research
on space flexible manipulators has been extensive. Deshan et al. [7] established a dynamic model of
the multi-link multi-DOF flexible manipulator and studied the vibration responses of the tip under
different elastic modulus, damping and joint stiffness. Dong et al. [8] conducted a comprehensive study
on the dynamics, kinematics modeling and rigid-flexible composite control of space manipulators
based on soft contacts, and conducted comparative experiments using experimental data from existing
the space manipulator. The above models are only applicable to the mechanical arm system with large
joint stiffness, and the stiffness and damping of the joint are linear. The effects of nonlinear factors
such as gap and friction are not considered. In order to meet the accuracy requirements of space
work, it is necessary to establish a more accurate dynamic model of the manipulator for response
characteristics analysis and controller design. OWAIS et al. [9] derived a Lagrangian-based dynamic
model which lies in consideration of both viscous damping and gravity and proposed two Control
algorithms based on Linear Quadratic Regulator (LQR) and nonlinear backstepping, respectively.
Guo et al. [10] established the dynamic model in the presence of parametric uncertainties, unknown
bounded friction torques, unknown bounded external disturbance, and input saturation constraints,
by using the coordinate transformations and the static state feedback linearization, and designed a
robust tracking controller by a combination of a disturbance observer, sliding mode control, and an
adaptive input saturation compensation law.

We can find in this study that the inevitable vibration problem of the flexible manipulator makes
it difficult to accurately control the actuator of the flexible arm. This situation is particularly serious
in space, because the atmosphere is thin, and once the vibration is excited, it will be difficult to
attenuate itself.

The appearance of variable stiffness joint (VSJ) solves this problem very well. When a space
manipulator with variable stiffness joints comes into contact with the target, the joint can flex flexibly
within a certain range to achieve the purpose of buffering the impact momentum while absorbing and
storing the energy of the target. So that the base would not be overturned by a large disturbance, and
the energy absorbed is stored in the elastic element of the variable stiffness joint, and can be released
with control in the next step to maintain the entire space robot-target complex stable after contact [11].

The variable stiffness principle and configuration of the existing VSJ are numerous [12]. The related
research work of VSJ is meanly on the following three types. Including: The VSJ whose joint stiffness
is varied through the combination of two antagonistic serial elastic actuators (SEAs) controlled by two
separate motors [13,14]. Other realizations for stiffness altering are achieved through the principle of
lever mechanism [14–18], or else adjusting the preload of the linear spring by a nonlinear connector
between the output link and the spring element [18–21]. VSJ has many advantages, mainly in the
passive adaptability, inherent flexibility, and the ability to adapt to the task needs to adjust the joint
output stiffness.

With the development of VSJ configuration research, research on the tracking control algorithm of
VSJ has gradually emerged. Due to the different VSJ variable stiffness mechanisms, these studies are
carried out for different structural types of VSJ or VSJ-driven multi-degree-of-freedom robot systems,
all with different research objectives. It can be divided into separate tracking control for joint output
angle and joint output stiffness of VSJ, and cooperative tracking control for joint output angle and joint
output stiffness of VSJ. In terms of stiffness tracking control, the existing VSJ joint stiffness tracking
control methods can be divided into two types: one is based on the VSJ joint stiffness mathematical
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model to obtain the stiffness tracking control torque, and the other is to use the stiffness estimator to
estimate the joint output stiffness.

PID or PD control algorithms are often used for tracking control of VSJ. Sun et al. used two PID
controllers [22] or two PD controllers with feedforward compensation [16] to achieve tracking control
of the output link angular position and joint output stiffness of SVSA.

Because of the nonlinearity of the stiffness adjustment of VSJ, the dynamic system is more
complicated to construct. The feedback linearization method can transform the nonlinear system into
a linear system while maintaining high precision. Therefore, the method is much more prominent is
tracking control research of VSJ. Grebenstein et al. [23] designed a VSJ sliding mode tracking controller
with an integral term based on feedback linearization, which uses the integral term to eliminate
the impact of system model uncertainty, friction and unknown disturbance to the VSJ position and
stiffness tracking control. Gabriele et al. [24] designed a recursive numerical algorithm based on
the Newton–Eulerian dynamic equation, and a variant of the algorithm can be used to implement
the feedback linearization control law to achieve the desired output link angular position trajectory
and precise tracking control of joint output stiffness. In order to control the position and stiffness
of bidirectional antagonistic drives independently, Kosta et al. [25] decoupled the systems in two
linear single-input-single-output subsystems, position subsystem and stiffness subsystem, by feedback
linearization. Sun [26] introduced the feedback linearization method into the walking control of the
variable stiffness ankle joint and obtains a good control effect.

In addition, there are other control algorithms that are also used for tracking control of the VSJ’s link
output angle and joint output stiffness. For the tracking control problem of multi-degree-of-freedom
robot based on VSJ, Petit et al. [27] designed the backstepping tracking controller, and used the
instruction filter to deal with the state measurement noise and high-order state derivatives. And the
effectiveness of the designed backstep controller is shown through the simulation and test based
on BAVS-Joint and DLR hand arm system. Zhang et al. [28] designed a quasi-finite time tracking
control law for the output link angular position tracking of an antagonistic VSJ based on wire rope
transmission. The control law can achieve fast state response, high tracking accuracy, and good
interference suppression performance. They [29] also designed a dynamic surface tracking control law
based on forwarding technology to apply to the asymptotic tracking control of the output link angular
position of the wire rope transmission antagonist type VSJ with non-matching disturbance.

There are not many related literatures on the robust control of VSJ, but there are different control
objectives for different types of VSJ. For example, Branko Z. Lukiü et al. [30] introduced the feedforward
neural network into the joint position and joint stiffness control of VSJ. The simulation results show that
the feedforward neural network is significantly better than the open loop control, which significantly
improves the trajectory tracking accuracy of joint stiffness. Huh and Bien [31] proposed a neuro-sliding
mode approach based on model reference adaptive control (MRAC). The proposed MRAC control
structure induces the VSJ to follow its nominal dynamics with help of sliding mode control efforts.
The sliding gain, implemented by a simple neural network (NN), is adaptively updated based on
the Lyapunov criterion. The simulation results show that this algorithm has advantages over the
traditional PID control algorithm. Aiming at the tracking control problem of SVSA link output angle
and joint output stiffness, Guo et al. [32] designed a neural network adaptive control algorithm based on
feedback linearization. The simulation shows that the designed controller can cope with system model
uncertainty and achieve link output angle and joint output stiffness tracking control. But it does not
consider controlling input saturation constraints and controlling input saturation compensation issues
during the design process. Psomopoulou et al. [33] designed a state feedback controller that achieves
the desired tracking performance and is robust against internal and external disturbances in the motor.
However, it does not consider the influence of other parameters of the system dynamics model such as
inertia parameter and damping coefficient, on the tracking performance in the simulation, and the
controller needs to consider the feasibility between the actuation characteristics of the actuator and the
expected tracking performance of the closed-loop system. Zhang et al. [34] proposed an adaptive neural
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network control scheme based on high-dimensional integral Lyapunov function, in order to achieve
the desired output link angular position tracking performance, Radical Basis Function Neural Network
(RBFNN) is used to approximate the unknown nonlinear function in the control law. Simulation and
experiments show the effectiveness of the control method.

For the joint output stiffness control problem of VSJ, the nonlinear time-varying joint stiffness
cannot be directly measured in real time, and the joint output stiffness derived from the VSJ mathematical
model is prone to error. Therefore, Liu et al. [35] proposed to use the neural network observer control
system design to solve the above unmeasurable problem. An observer based on RBFNN is used to
estimate state variables of the normal system, with a controller based on dynamic surface control
method for a single link flexible joint manipulator whose model is unknown. The unknown model of
the manipulator is constructed by RBFNN. The effectiveness of the proposed controller is proved by
the simulation. Jia [36] proposed a controller based on dynamic surface control and observer by using
motor state feedback for trajectory tracking of flexible joint robot with uncertain link dynamic model.
The simulation results show that the designed controller has a good trajectory tracking effect, which
effectively suppresses the residual vibration of the flexible joint robot.

Although there are many studies on the method of VSJ’s link output angle and joint output
stiffness tracking control, there are still some problems. For example, the nonlinearity of the system
dynamics model is high. The coupling between the link output angle tracking and the joint output
stiffness tracking is strong. And there may be system dynamics model parameter uncertainty, unknown
disturbance and control input saturation constraints. Therefore, it is necessary to study the robust
control algorithm for joint angle and stiffness tracking of VSJ. The linear extended state observer (LESO)
can effectively deal with the disturbance in the system. At present, there are few related studies on the
VSJ’s link output angle and joint output stiffness tracking control using this disturbance processing
method [37]. Therefore, it is necessary to further study the cooperative tracking control method of the
VSJ’s link output angle and joint output stiffness based on this method. At the same time, it is found
that in the tracking control of VSJ, the saturation of the control input amplitude may occur. If not
considered in the design of the controller, it may affect the tracking performance or even the stability of
the system. Therefore, it is necessary to consider the input saturation constraint problem in the design
of the controller to reduce the system output tracking error.

In this paper, considering the model parameter uncertainty, the unknown bounded friction torque,
the unknown bounded external disturbance and the control input saturation constraint problem,
the dynamic equation of the variable stiffness joint is constructed. The coordinate transformation and
feedback linearization method are used to transform the complex uncertain nonlinear system state
space model into a pseudo linearized system model. The linear extended state observer is used to
estimate the system state of the VSJ output link angular position and joint output stiffness. At the same
time, a new adaptive controller based on neural state feedback method and robust control for adaptive
input saturation compensation control are designed by RBFNN. This reduces the tracking error of
the system and optimizes the VSJ output link angular position and joint output stiffness cooperative
tracking control algorithm. Finally, the stability analysis based on Lyapunov function proves the final
uniform bounded stability of the closed-loop system. The effectiveness of the proposed algorithm is
verified by compare simulation and semi-physical experiments.

The paper is organized as follows: Section 2 presents the design of the space manipulator VSJ,
its nonlinear dynamic model and its linear transformation with the feedback linearization result.
The design of LESO, and the adaptive neural state feedback robust control algorithm with input
saturation constraint based on RBFNN are depicted in Section 3, as well as the proof of stability and
robustness. The simulation results are shown in Section 4, and the semi-physical experimental results
are shown in Section 5. The discussions of the results of simulation and semi-physical experiments are
shown in Section 6. Conclusions, discussions, and future works are provided in Section 7.
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2. Structural Design and Dynamic Model Construction of Space Manipulator VSJ

2.1. Space Manipulator VSJ Design

The simplified model of the space manipulator is shown in Figure 1. The joints of the model have
three degrees of freedom, called pitch, yaw, and roll, respectively. Together with the six degrees of
freedom possessed by the base, the space robots with three joints in Figure 1 have a total 15 degrees of
freedom. In order to reduce the model dimension and focus on the VSJ, only the single joint single
degree of freedom model is dynamically modeled, when constructing the dynamic model by the
Lagrange equation. In this paper, the VSJ model is constructed with reference to the VSJ model with
link angle control motor and stiffness control motor mounted in series [16]. The prototype model of
this model is shown in Figure 2.
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2.2. Dynamic Model Construction

Consider the parameter uncertainty, the unknown friction torque, the unknown external
disturbance, and the input saturation constraint in the VSJ dynamics model. The actual system
dynamics model is shown in (1).


Ht

..
q + Ct

.
q + τk = τe

Jpt
..
θp + Cpt

.
θp − τk + τp f = τp

Jst
..
θs + Cst

.
θs + τs f + τR = τs

; τR =
2ksn2θsφ2Ω3

(Ω−nθs)
3 ; τk = Kφ =

2ksδ2
1Ω2φ

(Ω−δ1)
2 ; K =

2ksδ2
1Ω2

(Ω−δ1)
2 ; δ1 = nθs; (1)

The first row of the equations represents the dynamic equation of the space manipulator, the second
row represents the dynamic equation of the joint angle control motor of VSJ, and the third row represents
the dynamic equation of the joint stiffness control motor of VSJ. Where H, C,Jp, Cp, Js, Cs represent the
system equivalent moment of inertia and equivalent friction damping coefficient of the joint of the
space manipulator, the system equivalent moment of inertia and the equivalent friction coefficient of
the joint angle control motor and the system equivalent moment of inertia and equivalent friction of the
joint stiffness control motor Damping coefficient. Ht, Ct, Jpt, Cpt, Jst, Cst represent the actual moment of
inertia and the actual frictional damping coefficient of the joint of the space manipulator joint, the actual
moment of inertia and the actual frictional damping coefficient of the joint angle control motor, and the
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actual moment of inertia and the actual frictional damping coefficient of the joint stiffness control motor.
We have ∆H =Ht −H, ∆C =Ct − C, ∆Jp = Jpt − Jp, ∆Cp = Cpt − Cp, ∆Js = Jst − Js, ∆Cs = Cst − Cs. q
represents the joint output angle. θp represents the joint main motor rotation angle. τk is the elastic
moment, and τR is a reaction torque acting on the stiffness control unit due to elastic transfer. τp is the
input torque provided by the joint angle control drive unit. τs is the input torque provided by the joint
stiffness control drive unit. τp f and τs f is the parameter uncertainty, unknown bounded friction torque.
τe is an unknown bounded external disturbance. ks is the stiffness coefficient of the stiffness control
motor. K is the output stiffness coefficient matrix of the joints Ω is a fixed value for the length of the
chute in the internal lever of the joint. δ1 = nθs is the distance from the pivot position to the center of
rotation of the joint. φ= q− θp is the amount of deformation for the elastic transmission, whose range
is [−0.35 rad, 0.35 rad ] according to the reference [15]. θs is the rotation angle of the stiffness control
motor, and n is the gear ratio of the rack and pinion.

It can be seen from (1) that when the stiffness of the antagonist spring is selected, the relationship
between the joint stiffness and the pivot position can be obtained. It can be seen that the joint stiffness
has a large variation range when the pivot range is small. The joint stiffness can be continuously
adjusted to meet different requirements in actual work. The system state-space model of the space
manipulator VSJ is as follows.

{ .
x = f (x) + g(x)u + dw(x)

y = h(x)
; u =

[
up

us

]
; y =

[
h1(x)
h2(x)

]
=

[
q
k

]
=

 x1
2ksδ2

1Ω2

(Ω−δ1)
2

 (2)

x = [x1, x2, x3, x4, x5, x6]
T =

[
q,

.
q,θp,

.
θp,θs,

.
θs

]T
(3)

f (x) =
[
x2,− C

H x2 −
τk
H , x4,−

Cp
Jp

x4 +
τk
Jp

, x6,−Cs
Js

x6 −
τR
Js

]T
;

g(x) =
[

gp(x) gs(x)
]
=

[
0 0 0 1/Jp 0 0
0 0 0 0 0 1/Js

]T (4)

Considering the existence of input saturation constraints, the system’s control input variables
need to be improved as follows.

sat(u) =

 sat
(
up

)
sat(us)

 = [
up + ∆up

us + ∆us

]
; sat

(
up

)
=


upmax; i f up ≥ upmax

up; i f upmin < up < upmax

upmin; i f up ≤ upmin

; sat(us) =


usmax; i f us ≥ usmax

us; i f usmin < us < usmax

usmin; i f us ≤ usmin

(5)

The composite disturbance in the VSJ’s state space model is:

dw(x) = [d1, d2, d3, d4, d5, d6]
T

=
[
0,−∆H

H
.
x2 −

∆Cp
H x2 +

τe

H̃
, 0,−

∆Jp
Jp

.
x4 −

∆Cp
Jp

x4 +
τp f
Jp

, 0,−∆Js
Js

.
x6 −

∆Cs
Js

x6 −
τs f
Js

]T (6)

Assumption 1. Model parameter uncertainty in VSJ’s system dynamics model, unknown friction torque and
unknown external disturbances are bounded. Since the composite disturbance d(x) ∈ R6 is a composite function
of system state, unknown parameter perturbation, unknown friction torque, and unknown external disturbance,
the composite disturbance d(x) ∈ R6 is also bounded.

The nonlinear system model constructed by (2) can be transformed into a linearized system model

by coordinate transformation. Make z =
[
zq, zk

]T
, zq =

[
zq1, zq2, zq3, zq4

]
, zk = [zk1, zk2].

The nonlinear coordinate transformation of the high-order derivative containing the disturbance
is performed in (7), so that the nonlinear system state-space model of the VSJ including the composite
disturbance and the input saturation constraint is transformed into an integral linear chain of
pseudo-linear systems with the matched aggregate disturbance and input saturation constraint.
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Ln
YX represents the n th Li derivative of the function X with respect to the function Y, where X can be

hi(x), i = 1, 2 and the Li derivative of them while, Y can be f (x), gp(x), gs(x), and d(x).

zq =


zq1

zq2

zq3

zq4

 =


h1(x)
L f h1(x) + Ldh1(x)

L2
f h1(x) + LdL f h1(x) + d

dt [Ldh1(x)]

L3
f h1(x) + LdL2

f h1(x) + d
dt

[
LdL f h1(x)

]
+ d2

dt2 [Ldh1(x)]


zk =

[
zk1
zk2

]
=

[
h2(x)

L f h2(x) + Ldh2(x)

]
; z =

[
zq

zk

]
;
{ .

z = Az + Bsat(v) + Bvd
yo = Cz

; vd =

[
vdq
vdk

] (7)

where
vdq = LdL3

f h1(x) + d
dt

[
LdL2

f h1(x)
]
+ d2

dt2

[
LdL f h1(x)

]
+ d3

dt3 [Ldh1(x)]

vdk = LdL f h2(x) + d
dt [Ldh1(x)]

where the state matrix A, the input matrix B, and the output matrix C are as follows:

A =



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0


; B =



0 0
0 0
0 0
1 0
0 0
0 1


; C =

[
1 0 0 0 0 0
0 0 0 0 1 0

]
(8)

rank
[
C, CA, . . . , CA5

]T
= rank

[
B, AB, . . . , A5B

]
= 6 (9)

The system {A, B} is controllable and the system {A, C} is observable.
Combined with the feedback linearization method, in the case of input saturation constraints,

the system’s control input variables is shown in (10).

v =

[
vq

vk

]
; ∆v =

[
∆vq

∆vk

]
; sat(v) = v + ∆v vq = L4

f h1(x) + LgpL3
f h1(x)up + LgsL3

f h1(x)us

vk = L2
f h2(x) + LgpL f h2(x)up + LgsL f h2(x)us ∆vq = LgpL3

f h1(x)∆up + LgsL3
f h1(x)∆us

∆vk = LgpL f h2(x)∆up + LgsL f h2(x)∆us

sat(v) =

 LgkL3
f h1(x) LgsL3

f h1(x)

LgkL f h2(x) LgsL f h2(x)


 sat

(
uq

)
sat(us)

+
 L4

f h1(x)

L2
f h2(x)



(10)

The determinant of the feedback linearization decoupling matrix G(x) of the VSJ constructed in
(10) is as shown in equation (11).

G(x) =

 LgpL3
f h1(x) LgsL3

f h1(x)

LgpL f h2(x) LgsL f h2(x)

; det(G(x)) =
8k2

s n4x3
5Ω5

Jp JsH(Ω − nx5)
2 (11)

The joint output stiffness defined in this paper can be adjusted as 0 <K< +∞. According to the
description of (5), it can be seen that the determinant of the decoupling matrix G(x) will always be
non-zero, that is, the decoupling matrix is always non-singular.
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3. Control Algorithm Construction

3.1. The Linear Extended State Observer Design

The Linear Extended State Observer is used to estimate unknown system states, that is zq2, zq3, zq4,
and zk2, and also the matched aggregate disturbance vdq and vdk.

Assumption 2. The expanded state variables set as zq5 = vdq, zk3 = vdk are bounded and differentiable, which
are the functions of system state variables and unknown variables in the system. That is, there are Vdq > 0
and Vdk > 0, so that

∣∣∣vdq
∣∣∣ ≤ Vdq and |vdk| ≤ Vdk are established. The variables dzq5 and dzk3 represent the first

derivative of zq5 and zk5 with respect to time t, respectively. They are also bounded.

The resulting extended pseudo linear system is shown as follows.

{ .
ze = Aeze + Besat(v) + Bdede

ye = Ceze
; (12)

The related matrix description of (12) is as follows.

de =

[
dzq5

dzk3

]
; Ce =

[
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0

]
(13)

ze =



zq1

zq2

zq3

zq4

zk1
zk2
zq5

zk3


; Ae =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


; Be =



0 0
0 0
0 0
1 0
0 0
0 1
0 0
0 0


; Bde =



0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 1


(14)

The designed linear extended state observer (LESO) is shown below.

 .
ẑe = Aeẑe + Besat(v) + LeCe(ze − ẑe)

ŷe = Ceẑe
;

ẑq1(0) = zq1(0); ẑk1(0) = zk1(0)

ẑe =
[
ẑq1, ẑq2, ẑq3, ẑq4, ẑk1, ẑk2, ẑq5, ẑk3

]T

Le =

[
l1 l2 l3 l4 0 0 l5 0
0 0 0 0 l6 l7 0 l8

]T (15)

where ẑe represents the estimate of ze, and Le ∈ R8×2 is the observed gain matrix of LESO.
The characteristic equation of LESO is described as follows:

{
ξ5

q + l1ξ4
q + l2ξ3

q + l3ξ2
q + l4ξq + l5= 0

ξ3
k + l6ξ2

k + l7ξk + l8= 0
(16)

The choice of LESO’s observation gain can be determined by the pole placement theory. In order
to obtain a good dynamic process and noise suppression capability, the characteristic equation is set
as shown in the following equation, where λq and λk are both negative values. Their values can be
selected using the bandwidth concept [38].

(
ξq − λq

)5
= 0;(ξk − λk)

3= 0 (17)

The state estimation error of LESO is defined as:

elo =

[
eqk
eqke

]
; eqk =



eq1

eq2

eq3

eq4

ek1
ek2


=



zq1 − ẑq1

zq2 − ẑq2

zq3 − ẑq3

zq4 − ẑq4

zk1 − ẑk1
zk2 − ẑk2


; eqke =

[
eq5

ek3

]
=

[
zq5 − ẑq5

zk3 − ẑk3

]
(18)
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The LESO state estimation error system is as follows:

.
elo = (Ae − LeCe)elo + Bleule = (Ae − LeCe)elo + dle (19)

where Ble ∈ R8×4, ule ∈ R4×1, dle ∈ R8×1 are shown in (20).

Ble =


0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


T

; ule =


0
0

dzq5

dzk3

; dle =
[
0, 0, 0, 0, 0, 0, dzq5, dzk3

]T (20)

Since System {A, C} is observable, System {Ae, Ce} is also observable. dle is bounded.

Assumption 3. If Ae − LeCe is Hurwitz, then (19) will have BIBO stability. That is, there are εdp ≥ 0 and
εdk ≥ 0, so that z̃q5 =

∣∣∣zq5 − ẑq5
∣∣∣ ≤ εdp and z̃k3 = |zk3 − ẑk3| ≤ εdk are established.

3.2. Neural State Feedback Adaptive Robust Control Based on RBFNN

3.2.1. Design of Neural State Feedback Adaptive Robust Control Based on RBFNN

Assumption 4. The reference joint rotation angle qd and stiffness kd and their derivative are smooth bounded.

Define the tracking error vector as:

E =
[
Eq, Ek

]
=

[
eq,

.
eq,

..
eq,

...
e q, ek,

.
ek
]T (21)

where eq and ek are the output errors of joint angle and joint stiffness as follows:

{
eq = zq1 − qd
ek = zk1 − kd

(22)

According to (7), when the disturbance term vd is not considered, the tracking error system can be
expressed as follows:

.
E = AET + B

(
v f − z(n)d

)
;

e =
[

eq

ek

]
= C

[
Eq

Ek

] (23)

where v f =
[
vq f , vk f

]T
, z(n)d =

[
q(4)d , k(2)d

]T
. The feedback controller v f can be expressed as:

v f = z(n)d −ΛE (24)

where Λ =

[
Λq 0
0 Λk

]
, Λq =

[
Λq1, Λq2, Λq3, Λq4

]T
, Λk = [Λk1, Λk2]

T. The choice of Λq and Λk should

make sure that the corresponding characteristic polynomial is Hurwitz. Substituting (24) into (23),
the tracking error system can be expressed as follows:

.
E =

 .
Eq.
Ek

 = (
A− BΛT

)[ Eq

Ek

]
(25)

Lemma 1. Assume a positive definite symmetry matrix P1 is given. There must be a positive definite matrix Q1

that satisfies (26) as follows: (
A− BΛT

)T
P1 + P1

(
A− BΛT

)
= −Q1 (26)
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where A =

[
Aq1 0

0 Ak1

]
∈ R6×6, Aq =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

, Ak =

[
0 1
0 0

]
, B =

[
Bq1 0
0 Bk1

]
∈ R2×6,

Bq =


0
0
0
1

, Bk =

[
0
1

]
, P1 =

[
Pq1 0
0 Pk1

]
∈ R6×6, Pq1 ∈ R4×4, Pk1 ∈ R2×2, Q1 =

[
Qq1 0

0 Qk1

]
∈ R6×6,

Qq1 ∈ R4×4, Qk1 ∈ R2×2.

Define the Lyapunov function as:

V1 = 1
2 Eq

TPq1Eq; V2 = 1
2 Ek

TPk1Ek (27)

The derivatives of V1 and V2 with respect to time t are as follows:

.
V1 = 1

2

.
Eq

TPq1Eq +
1
2 Eq

TPq1
.
Eq;

.
V2 = 1

2

.
Ek

TPk1Ek +
1
2 Ek

TPk1
.
Ek (28)

Substituting (25) and into (28), The derivatives of V1 and V2 can be changed into:

.
V1 = 1

2

.
Eq

TPq1Eq +
1
2 Eq

TPq1
.
Eq

= 1
2

((
Aq − BqΛq

T
)
Eq

)T
Pq1Eq +

1
2 Eq

TPq1
((

Aq − BqΛq
T
)
Eq

)
= 1

2 ET
q

[(
Aq − BqΛq

T
)T

Pq1 + Pq1
(
Aq − BqΛq

T
)]

Eq
.

V2 = 1
2

.
Ek

TPk1Ek +
1
2 Ek

TPk1
.
Ek

= 1
2

((
Ak − BkΛk

T
)
Ek

)T
Pk1Ek +

1
2 Ek

TPk1

((
Ak − BkΛk

T
)
Ek

)
= 1

2 ET
k

[(
Ak − BkΛk

T
)T

Pk1 + Pk1

(
Ak − BkΛk

T
)]

Ek

(29)

As can be seen from (26), the above formula can be expressed as:

.
V1 = − 1

2

.
Eq

TQq1Eq ≤ 0;
.

V2 = − 1
2

.
Ek

TQk1Ek ≤ 0 (30)

Thus, the above system is Lyapunov stable.
The control input can be rewritten when considering controller robustness and input

saturation compensation:
v = v f + v f ns + vr + vn − vs (31)

where v f ns is the output of the state feedback controller. vr is a robust controller. vs is the input saturation
compensator. vn is the compensation function for unknown external disturbances. According to (10),
vq = vq f + vq f ns + vqn + vqr − vqs and vk = vk f + vk f ns + vkn + vkr − vks.

As can be seen from the LESO, the compensation function for unknown external disturbances can
be written as:

vn =
[
−v̂qn,−v̂kn

]T
= −ẑn =

[
−ẑq5,−ẑk3

]T (32)

The output of the state feedback controller v f ns can be designed as follows:

v f ns = −Tz = − T
[
zq, zk

]T
, T =

[
Tq1(z), Tq2(z), Tq3(z), Tq4(z), Tk1(z), Tk2(z)

]
(33)

T is a state feedback gain matrix.
The RBFNN has a simple structure, fast convergence, better generalization ability, and can

approximate any continuous nonlinear function with higher precision. The structure adopts parallel
processing mechanism and has strong fault tolerance. Based on the better approximation characteristics
of RBFNN, the unknown function can be approximated with arbitrary precision. Therefore, RBFNN
can better meet the requirements of system control with uncertainties.
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Using the RBFNN approximates the state feedback gain matrix, as shown in (34):

T̂ = ŴTφ(z) (34)

where Ŵ =
[
Ŵq, Ŵk

]
∈ R6×n is the estimated value of the weight matrix of the RBFNN.

φ(z) =
[
φ
(
zq

)
,φ(zk)

]T
is also chosen to be Gaussian RBFs just like above:

φ j
(
zqi

)
= exp

(
‖zqi−cφqj‖

2b2
φqj

)
,φ j(zki) = exp

(
‖zki−cφkj‖

2b2
φkj

)
;

qi = q1, q2, q3, q4, ki = k1, k2; j = 1, · · · , n;
(35)

where zqi and zki are just the same as above. cφqj and cφkj are the are centers of the Gaussian functions.
bφqj and b

φkj are the are widths of the Gaussian functions.
The ideal approximation of the state feedback gain matrix T by the RBFNN can be expressed

as follows:
T = WTφ(z) + εk (36)

Assumption 5. For any given sufficiently small positive number εkm =
[
εkmq, εkmk

]
, the optimal weight matrix

W∗ =
[
W∗q, W∗k

]
can always be found. the approximation error should satisfy:

sup
zq∈Ωzq

∣∣∣∣WT
q φ

(
zq

)
−W∗qTφ

(
zq

)∣∣∣∣ = ‖εkq‖ ≤ εkmq

sup
zk∈Ωzk

∣∣∣WT
k φ(zk) −W∗k

Tφ(zk)
∣∣∣ = ‖εkk‖ ≤ εkmk

(37)

where zq ∈ Ωzq =
{
zq

∣∣∣‖zq‖ ≤Mq, Mq > 0
}
, zk ∈ Ωzk = {zk|‖zk‖ ≤Mk, Mk > 0 }.

ŴTφ(z) −W∗Tφ(z) = εk, εk =
[
εkq, εkk

]T
is the neural network approximation error, and the optimal

weight vector W∗ is defined as follows:

W∗= arg min
W∈ΩW

sup
z∈Ωz

∣∣∣WTφ(z) − ŴTφ(z)
∣∣∣= arg min

W∈ΩW

sup
z∈Ωz

∣∣∣W̃Tφ(z)
∣∣∣ (38)

According to Assumption 5, (39) can be obtained as follows:

W̃Tφ(z) = WTφ(z) − ŴTφ(z) (39)

Using the RBFNN to approximate the state feedback gain matrix, the output of the state feedback
controller can be obtained as:

v f ns = −Tz = −
[
Ŵq

Tφq, Ŵk
Tφk

][ zq

zk

]
(40)

Combined with (7), (31), and (33), (41) can be obtained:

.
z = (A− BT)z + Bvc (41)

where vc = v f + vr + vn − vs. The characteristic equation of A− BT is as follows:

|A− BT − λI| = 0 (42)

where λ = [λ1,λ2, . . . ,λ6] is a feature vector. According to the design principle of the state feedback
gain matrix, T should satisfy with (43)



Electronics 2019, 8, 893 12 of 25

|A− BT − λI| = |A− λI| (43)

(41) can be rewritten as

.
z = Az + Bvc + Bvd = Az + Bv (44)

According to, (44) can be expressed as:

.
z = Az + BT̃z + Bv∗c (45)

where ṽd = vn + vd, v∗c = ṽd + v f + vr.
And then, The tracking error system (25) can be rewritten as follows:

.
E = AE + B

(
ṽd −ΛTE + vr

)
(46)

Considering (15), there is:
.
ẑ = Aẑ + Bv∗c + LlC(z− ẑ) (47)

where Ll =

[
Llq
Llk

]
=

[
l1 l2 l3 l4 0 0
0 0 0 0 l6 l7

]T

. According to (45) and (47), the state error can be

defined as:

Em =
[
Eqm, Ekm

]T
= z− ẑ =

[
zq − ẑq, zk − ẑk

]T
=

[̃
zq1, l1z̃q1, l2z̃q1, l3z̃q1, z̃k1, l6z̃k1

]T
(48)

It can be seen that the state error equation can be expressed as follows:

.
Em =

.
z−

.
ẑ = (A− LlC)Em + BT̃z = (A− LlC)ẑ + B

(
W̃Tφ(z)

)
z (49)

where C =

[
Cq 0
0 Ck

]
∈ R2×6, Cq = [1, 0, 0, 0], Ck = [1, 0].

Lemma 2. Assuming that a positive definite symmetric matrix P2 is given, there must be a positive definite
matrix Q2 that satisfies:

ATP2 + P2A = −Q2 (50)

where P2 =

[
Pq2 0
0 Pk2

]
∈ R6×6, Q2 =

[
Qq2 0

0 Qk2

]
∈ R6×6.

The adaptive laws of Ŵ is:
.

Ŵ = γwφ(z)
TBTP2Emz (51)

where
.

Ŵ =
[ .
Ŵq,

.
Ŵk

]
, γw =

[
γqw,γkw

]
is a positive constants matrix.

The output of the robust controller is:

vr = vvs + vrc (52)

vvs = −κssgn
(
BTP1E

)
(53)

vrc = −ηBTP1E (54)

where vvs =
[
vvsp, vvsk

]T
, κs =

[
κqs,κks

]T
;κqs ≥ ‖εdp + εqs‖;κks ≥ ‖εdk + εks‖, vrc =

[
vrcp, vrck

]T
,

η =
[
ηq, ηk

]T
; ηq > 0, ηk > 0. vvs is used to eliminate the influence of neural network approximation

errors and the effects of external disturbances. vrc is used to improve the robust performance of the
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system. The saturation compensation vs, which is also an estimate of the saturation function, can be
written as:

v̂s = ÛTϕ(ξ) (55)

The saturation function can be expressed as

vs = UTϕ(ξ) + εs (56)

UTϕ(ξ) =
[
UT

pϕ
(
ξp

)
, UT

k ϕ(ξk)
]
∈ Rn×n is the unknown ideal weight vector.

vs =
[
vs, vp

]T
, ξ =

[
ξq

ξk

]
=

[
qd Eq

kd Ek

]
. ϕ(ξ) = [ϕ1(ξ),ϕ2(ξ), . . . ,ϕn(ξ)]

T
∈ Rn is the basis

function vector. Select the Gaussian function:

ϕ j
(
ξqi

)
= exp

(
‖ξqi−cϕqj‖

2

2b2
ϕqj

)
,ϕ j(ξki)= exp

(
‖ξki−cϕkj‖

2

2b2
ϕkj

)
;

qi = q1, q2, q3, q4, q5, ki = k1, k2, k3; j = 1, 2, · · · , n
(57)

where cϕqj and cϕkj are the are centers of the Gaussian functions. bϕqj and b
ϕkj are the are widths of

the Gaussian functions. εs is the reconstruction error. If n is large enough, RBFNN can approximate
any continuous nonlinear function with arbitrary precision. According to Assumption 5, there is
Ũ = U − Û. Define the approximation error as:

ṽs = ŨTϕ(ξ) + εs = UTϕ(ξ) − ÛTϕ(ξ) + εs (58)

where εs =
[
εps, εks

]
. The adaptive laws of Û is:

.
Û = γqϕ(ξ)

TBTP1E (59)

where
.

Û =
[ .
Ûq,

.
Ûk

]
, γq =

[
γqu,γqu

]
is a positive constants matrix. (60) can be rewritten as:

.
z =

(
A− BT̂

)
z + B

(
ṽd −ΛTE + vr + ŨTϕ(ξ) + εs

)
=

(
A− BT̂

)
z + Bv∗c (60)

In summary, the control design is as follows:

v =

[
vq

vk

]
=

 −Ŵq
Tφq(z)zq − ẑq5 + q(4)d −ΛT

q Eq − ηqBq
TPq1Eq − κqssgn

(
Bq

TPq1Eq
)
− Ûq

Tϕq
(
ξq

)
−Ŵk

Tφk(z)zk − ẑk3 + k(2)d −Λk
TEk − ηkBk

TPk1Ek − κkssgn
(
Bk

TPk1Ek
)
− Ûk

Tϕk(ξk)

 (61)

(62) can be obtained by the feedback linearization method.

[
up

us

]
=

 LgpL3
f h1(x) LgsL3

f h1(x)

LgpL f h2(x) LgsL f h2(x)


−1[

vq

vk

]
−

 L4
f h1(x)

L2
f h2(x)

 (62)

Adding the anti-saturation measures, the control law can be:

 sat
(
up

)
sat(us)

 =
 LgpL3

f h1(x) LgsL3
f h1(x)

LgpL f h2(x) LgsL f h2(x)


−1 sat

(
vq

)
sat(vk)

−
 L4

f h1(x)

L2
f h2(x)

 (63)

3.2.2. Stability Analysis of State Feedback Adaptive Robust Controller Based on RBFNN

Defining the Lyapunov function as:

V3 =
1
2

Eq
TPq1Eq +

1
2

Eqm
TPq2Eqm +

1
2γqw

W̃q
TW̃q +

1
2γqu

Ũq
TŨq (64)
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The derivatives of V3 with respect to time t is as follows:

.
V3 = 1

2

.
Eq

TPq1Eq +
1
2 Eq

TPq1
.
Eq +

1
2

.
Eqm

TPq2Eqm + 1
2 Eqm

TPq2
.
Eqm + 1

γqw
W̃q

T
.

W̃q +
1
γqu

Ũq
TŨq

= 1
2

(
AqEq + Bq

(
ṽdp −ΛTE+Ũq

Tϕp(ξ) + εqs + vqr
))T

Pq1Eq

+ 1
2 Eq

TPq1
(
AqEq + Bq

(
ṽdp −ΛTE+Ũq

Tϕp(ξ) + εqs + vqr
))

+ 1
2

(
AqEqm + Bq

(
W̃q

Tφq(z)
)
zq

)T
Pq2Eqm

+ 1
2 Eqm

TPq2
(
AqEqm + Bq

(
W̃q

Tφq(z)
)
zq

)
+ 1

γqw
W̃q

T
.

W̃q +
1
γqu

Ũq
TŨq

= 1
2 Eq

T
[(

Aq − BqΛq
T
)T

Pq1 + Pq1
(
Aq − BqΛq

T
)]

Eq +
1
2 Eqm

T
(
Aq

TPq2 + Pq2Aq
)
Eqm

+ φq(z)
TW̃qBq

TPq2Eqmzq + ϕq(ξ)
TŨqBq

TPq1Eq +
(
ṽdp + vvsq + εqs

)
Bq

TPq1Eq

+ vrcqBq
TPq1Eq +

1
γqw

W̃q
T

.

W̃q +
1
γqu

Ũq
TŨq

= −
1
2

.
Eq

TQq1Eq −
1
2

.
Eqm

TQq2Eqm + ϕq(ξ)
TŨqBq

TPq1Eq

+ φq(z)
TW̃qBq

TPq2Eqmzq +
(
ṽdp + vvsq + εqs

)
Bq

TPq1Eq

+ vrcqBq
TPq1Eq +

1
γqw

W̃q
T

.

W̃q +
1
γqu

Ũq
T

.

Ũq

(65)

Since
.

W̃q = −
.

W̃q and
.

Ũq = −
.

Ũq, combined with the adaptive law, and substituting (53) and (54)
into the above formula, the following conclusions can be drawn:

.
V3 = − 1

2

.
Eq

TQq1Eq −
1
2

.
Eqm

TQq2Eqm +
(
vvsq + ṽdp + εqs

)
Bq

TPq1Eq + vrcqBq
TPq1Eq

≤ −
1
2

.
Eq

TQq1Eq −
1
2

.
Eqm

TQq2Eqm

+
(
εdp + εqs − κqvd

)
sgn

(
Bq

TPq1Eq
)
Bq

TPq1Eq − ηqBq
TPq1Eq

(
Bq

TPq1Eq
)

≤ −
1
2

.
Eq

TQq1Eq −
1
2

.
Eqm

TQq2Eqm ≤ 0

(66)

So V3 > 0,
.

V3 ≤ 0. Defining the Lyapunov function as:

V4 =
1
2

Ek
TPk1Ek +

1
2

Ekm
TPk2Ekm +

1
2γkw

W̃k
TW̃k +

1
2γku

Ũk
TŨk (67)

The derivatives of V4 with respect to time t is as follows:

.
V4 =

1
2

.
Ek

TPk1Ek +
1
2

Ek
TPk1

.
Ek +

1
2

.
Ekm

TPk2Ekm +
1
2

Ekm
TPk2

.
Ekm +

1
2γkw

W̃k
T

.

W̃k +
1

2γku
Ũk

TŨk (68)

According to the same proof process as (65) and (66), V4 > 0,
.

V4 ≤ 0. Thus, the above system is
Lyapunov stable.

3.2.3. Schematic Diagram of the Control Algorithm

Based on the LESO constructed in this paper, this section uses the state variables estimated by LESO
to design a state feedback robust controller. When constructing the state feedback robust controller,
based on the construction of the feedback controller, the aggregate disturbance estimates ẑq5 and ẑk3
obtained by the LESO are used to compensate the unknown disturbance term. The adaptive RBFNN
WTφ(z) is used to approximate the state feedback gain matrix, while the adaptive RBFNN UTϕ(ξ)

is used for input saturation compensation (ISC). The robust controllers vvs and vrc are constructed to
eliminate the influence of neural network approximation error and external disturbance, and improve
the robust performance of the system. Finally, the feedback control input of the VSJ state-space
model is obtained by the feedback linearization (FL) method. The control scheme of the designed
FL+LESO+RBFNN+ISC controller is shown in the Figure 3.
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5qẑ 3kẑ
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Figure 3. The scheme diagram of the FL+LESO+RBFNN+ISC controller. FL: feedback linearization; 
LESO: linear extended state observer; RBFNN: Radical Basis Function Neural Network; ISC: input 
saturation compensation. 

4. Simulation 

This section simulates the tracking performance of joint angle and joint stiffness of the VSJ on 
MATLAB-Simulink.  

4.1. Simulation Setting 

The space manipulator structure model designed by the modeling software NX in this paper is 
shown in Figure 4. From the model, the equivalent moment of inertia and equivalent friction damping 
coefficient of the VSJ can be obtained as shown in Table 1 by choosing the similar materials and 
structures as the experimental system. And other system parameters shown in Table 1 are setting 
according to the physical parameters of the hardwares of the experimental system below. 

Figure 3. The scheme diagram of the FL+LESO+RBFNN+ISC controller. FL: feedback linearization;
LESO: linear extended state observer; RBFNN: Radical Basis Function Neural Network; ISC: input
saturation compensation.

4. Simulation

This section simulates the tracking performance of joint angle and joint stiffness of the VSJ
on MATLAB-Simulink.

4.1. Simulation Setting

The space manipulator structure model designed by the modeling software NX in this paper is
shown in Figure 4. From the model, the equivalent moment of inertia and equivalent friction damping
coefficient of the VSJ can be obtained as shown in Table 1 by choosing the similar materials and
structures as the experimental system. And other system parameters shown in Table 1 are setting
according to the physical parameters of the hardwares of the experimental system below.
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Figure 4. The space manipulator structure model.

Table 1. VSJ system parameters.

Parameters Value Unit

VSJ Equivalent Moment of Inertia H 0.09 Kg m2

VSJ Equivalent Friction Damping Coefficient C 0.2 N m/rad
VSJ Angle Control Motor Equivalent Moment Of Inertia Jp 0.105 Kg m2

VSJ Stiffness Control Motor Equivalent Moment Of Inertia Js 0.00082 Kg m2

VSJ Angle Control Motor Equivalent Damping Coefficient Cp 10.255 N m/rad
VSJ Stiffness Control Motor Equivalent Damping Coefficient Cs 0.158 N m/rad

Stiffness coefficient of the internal spring of the joint ks 10,000 N/m
Length of the inner lever chute of the joint Ω 0.015 m

Gear rack gear ratio n 0.006 m/rad

The range of joint angle deviation of the VSJ is limited to φ = ±0.35rad.

After the VSJ-based space manipulator is in contact with the target, the joint angle can be oscillated
and attenuated under controlled conditions until it is stable, and the joint stiffness also needs to be
adjusted by oscillation. Therefore, the expected trajectory of the joint angle and joint stiffness of the
VSJ designed in this paper are designed as follows:

qd(t) = 2− 2 sin(6t)e−0.5t

kd(t) =
(
20 sin(6t)e−0.5t + 20 sin(6t)

)
sign

(
sin(6t)e−0.5t + sin(6t) + 24.5

) (69)

The system state disturbances, parameter uncertainties and unknown bounded frictional torques,
as well as unknown bounded external disturbances are shown in the Table 2.

Table 2. VSJ system compound disturbances.

Parameters Value Parameters Value

∆H 0.4 × H ∆Cs 0.5 × Cs
∆C 0.4 × C τp f 0.3 N m
∆Jp 0.5 × Jp τs f 0.2 N m
∆Js 0.5 × Js τe 5 N m
∆Cp 0.5 × Cp

Comparing the algorithm of this paper with the FL-LESO-SMC-ISC algorithm in [37] by simulation.
The control parameter settings of the two algorithms are shown in Table 3.
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Table 3. VSJ system control algorithm parameters.

Algorithm Parameters Value Parameters Value

FL-LESO-SMC-ISC

Le

[
200 16000 6.4× 105 1.28× 107

0 0 0 0

0 0 1.024× 108 0
120 4800 0 6.4× 104

]T
(
γq,γk

)
(150,150)

cq (2000,500,40)
(
pq, pk

)
(1/15, 1/15)

ck 50
(
ρq,ρk

)
(50,30)(

rq, rk
)

(5,5) sat
(
up

)
[−40.0 N m, 40.0 N m](

µq,µk
)

(5,5) sat(uk) [−10.0 N m, 10.0 N m]

FL-LESO-RBFNN- ISC

Le

[
200 16000 6.4× 105 1.28× 107

0 0 0 0

0 0 1.024× 108 0
120 4800 0 6.4× 104

]T bϕqj 2

Λq (10000,5000,800,50) b
ϕkj 20

Λk (100,20)
(
γqu,γqw

)
(0.3, 0.35)

cφqj [−5,−4,−3,−2,−1,0,1,2,3,4,5] (γku,γkw) (0.3, 0.35)
cφkj [−40,−30,−20,−10,−0,10,20,30,40]

(
κqs,κks

)
(0.5, 0.5)

bφqj 2
(
ηq, ηk

)
(0.1,0.1)

b
φkj 20 sat

(
up

)
[−40.0 N m, 40.0 N m]

cϕqj [−5,−4,−3,−2,−1,0,1,2,3,4,5] sat(uk) [−10.0 N m, 10.0 N m]
cϕkj [−40,−30,−20,−10,−0,10,20,30,40]

The positive definite symmetric matrix used by the FL-LESO-RBFNN-ISC algorithm is calculated
by (26) and (50) as follows:

Pq1 =


16848.0 8418.0 1168.4 0.0005
8418.0 4388.1 668.4047 1.6846
1168.4 668.4047 133.8713 1.6846
0.0005 1.6846 0.8418 0.1168

;

Pq2 =


0.0341 1.8188 36.375 3.9062× 10−7

1.8188 872.875 2.9095× 104 4.364× 105

36.375 2.9095× 104 1.3096× 106 2.328× 107

3.9062× 10−7 4.364× 105 2.328× 107 4.656× 108


(70)

Pk1 =

[
26.25 0.05
0.05 0.2525

]
; Pk2 =

[
0.0417 0.001
0.001 200.1667

]
(71)

Qq1 =


10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10

; Qq2 =


10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10

; Qk1 =

[
10 0
0 10

]
; Qk2 =

[
10 0
0 10

]
(72)

4.2. Simulation Results

Figures 5–7 are the simulation results, where Figure 5 includes the VSJ angle and stiffness tracking
output responses, the VSJ angle and stiffness tracking error VSJ angle tracking errors and the VSJ angle
and stiffness tracking control torque. Figure 6 shows the length of VSJ lever arm, while Figure 7 shows
VSJ angle deviation between q and θp.
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5. Experiment

5.1. Experimental Setting

The semi-physical experiment system of the space robot VSJ single joint principle prototype is
constructed with system parameters shown in Table 1, although there will be some deviation. The main
hardware architecture includes: a computer for data processing, an FPGA control card as the core
control module, and a space robot VSJ single joint prototype. The communication module of joint
control system adopts CAN bus. The single joint prototype is placed on air floating platform supported
by four air feet and has a yaw freedom. It is constructed mainly by the joint motor (Kollmorgen
TBM(S)-12955-X, Radford, VA., USA) and the stiffness motor (Kollmorgen TBM(S)-12913-X, Radford, VA.,
USA). The six-dimensional force sensor (ATI-Nano17, ATI INDUSTRIAL AUTOMATION, Goodworth,
NC., USA) is used for measuring the axial forces and moments. The encoder (EAC58P, ELCO Industrie
Automation GmbH, Oberstenfeld, Bayern., Germany) is used for measuring the angular displacement
and speed. The motor drive (HAR-5/60, Elmo Motion Control, Petah Tiqwa, Hamerkaz, Israel) is used for
controlling motor motion. The diagram of the experimental system is shown in Figure 8. The workflow of
the semi-physical experiment system is as follows: the operator operates on the PC and issues commands
to the joint control system. The joint control system then sends the command to the motor drive, which
rotates to change the joint angle and stiffness. At the same time, the joint control system uses the motor
encoder to monitor the movement of the motor, and the position and speed information of the feedback
motor are transmitted to the joint control module and the driver respectively, and the motor movement
is adjusted according to the error, thereby adjusting the movement of the joint to achieve the purpose
of movement and precision. Requirements to make the joints have better positioning. The experiment
system uses a single pendulum to strike the end of the joint to produce an external disturbance force.
In order to be able to generate the force in the yaw direction, the experiment was designed to strike the
end of the joint at a certain angle to the pitch axis of the joint. The method of calculating the end impact
force is as follows:

fyaw= Fsinθ =
m · (v0 − vt)

4t
sinθ (73)

where F is the total collision force, fyaw is the collision force in the yaw direction, m is the mass of the
pendulum block, 4t is the collision duration, v0 is the initial velocity of the pendulum block during the
collision, and vt is the velocity of the pendulum block after the collision, and have:

v0 =
√

2gl(1− cosα0); vt =
√

2gl(1− cosαt) (74)

where g is the acceleration of gravity, l is the distance from the fixed end of the inelastic light rope to the
centroid of the pendulum block, α0 is the angle between the rope and the vertical direction at the starting
position of the pendulum block, and αt is the angle with the vertical direction when the pendulum
block reaches the highest position after the collision. In this experiment, the parameters setting are
as follows: θ = 30◦, α0 = 10◦, l = 0.2 m , g = 9.8 m × s−2, m = 5 kg, t = 0.01 s, the experimental
measurements obtains that αt ≈ 3.8◦, so F ≈ 10 N and fyaw ≈ 5 N.

At the same time, There are deviations between the actual values of the system parameters of the
experiment system and the theoretical value in the kinetic equation of the system, which makes the
system unknown uncertainty. This can be used to test the effectiveness of the algorithm.

The control algorithms used in the experiment system are written by MATLAB. The control
algorithm parameter settings are shown in Table 3. The joint angle and stiffness curve tracked by the
system are also shown in (75).

qd(t) = −2 sin(6t)e−0.5t

kd(t) =
(
12 sin(6t)e−0.5t + 12 sin(6t)

)
sign

(
sin(6t)e−0.5t + sin(6t)+24.5

) (75)
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Figure 8. The diagram of the experimental system. Figure 8. The diagram of the experimental system.

5.2. Experimental Results

Figures 9–15 are the experiment results, where Figure 9 includes the VSJ angle and stiffness
tracking output responses, the VSJ angle and stiffness tracking error VSJ angle tracking errors and the
VSJ angle and stiffness tracking control torque. Figure 10 shows the VSJ joint motor angle. Figure 11
shows the VSJ stiffness motor angle. Figure 12 shows the length of VSJ lever arm. Figure 13 shows the
VSJ angle deviation between q and θp. Figure 14 shows the joint motor elastic torque and Figure 15
shows the stiffness motor resistant torque.
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Figure 9. The experiment results. (a) VSJ angle tracking output response of two control algorithm.
(b) VSJ stiffness tracking output response of two control algorithm. (c) VSJ angle tracking error VSJ
angle tracking error of two control algorithm. (d) VSJ stiffness tracking error VSJ angle tracking error of
two control algorithm. (e) VSJ angle tracking control torque of two control algorithm. (f) VSJ stiffness
tracking control torque of two control algorithm.
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6. Discussion

In the previous section, the effectiveness of the proposed algorithm is verified by comparative
simulation and semi-physical experiments. It can be seen from Figure 5a,b that both control algorithms
can achieve coordinated tracking control of joint angle and joint stiffness during the simulation process.
It can be seen from Figure 5c,d that the tracking error of the proposed algorithm is larger at the beginning
of the simulation, but the convergence speed is much faster than the FL-LESO-SMC-ISC algorithm.
This shows that the FL-LESO-RBFNN-ISC algorithm can better approximate the tracking object through
the “universal approximation” feature of the RBFNN. It shows that the FL-LESO-RBFNN-ISC algorithm
has better influence on unknown interference than the FL-LESO-SMC-ISC algorithm. Figure 5e,f are
the control torque input response curves of the simulation system. It can be seen from the curve
that the input torques of the two control algorithms are within the allowable range. At the initial
moment after the end of the collision (i.e., near zero), the control inputs of the two algorithms reach a
maximum. This indicates that the input saturation compensation measures in both algorithms are
valid. Figures 6 and 7 show the length of the lever arm and the joint angle deviation in VSJ during the
simulation, respectively. It can be seen from the curves in the figure that the changes are within the
allowable range of the joint model used in this paper, and the simulation results are effective.

In the semi-physical experiment to verify the two control algorithms, the stiffness of the joint
can be obtained by (2) based on the measured motor and joint attitude data. As can be seen from
Figure 9a,b, both control algorithms can achieve coordinated tracking control of joint angle and joint
stiffness during semi-physical testing. However, as can be seen from Figure 9c,d, in the initial stage
of the experiment, since the initial reference value is different from the actual value, the tracking
result has a “peak phenomenon”. However, as the experiment progressed, the phenomenon gradually
disappeared. The error of the entire experiment is slightly larger than the simulation error, which is
caused by many unknown disturbances in the process of constructing the experiment system. From
the comparison results of the error, the error convergence speed of the proposed algorithm is much
faster than the FL-LESO-SMC-ISC tracking algorithm, and its tracking performance is better, especially
in the case of spikes in the tracking curve. Figure 9e,f are the control torque input response curves of
the experiment system. The curves show that, at the initial stage of the experiment, the joint angle
control torque is saturated, and the anti-saturation and saturation compensation measures play a
role. As the experiment progresses, the control torque gradually decreases. At the same time, the
joint stiffness control torque is also close to saturation at the beginning and then gradually decreases.
In addition, this experiment measured angular changes in the joint motor and the stiffness motor,
as shown in Figures 10 and 11. Using the measured attitude parameters, the lever arm in Figure 12
and the angle deviation in Figure 13 can be obtained, and the values of both parameters are within
the normal working range. Figures 14 and 15 show the calculated joint motor elastic torque and the
stiffness motor resistant torque which is much smaller than the control torque during the experiment.
All within the range of normal operation. The conclusion can be drawn from the experiment: the
proposed algorithm has better trajectory tracking and anti-disturbances ability.
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7. Conclusions

In order to solve the problem of controllable attenuation of the vibration of the flexible space
manipulator after collision with the target, the VSJ is introduced to construct the flexible space
manipulator and its dynamic model. Because its dynamic model is a complex nonlinear system, the
original dynamic equation is transformed into a pseudo-linear system with integral chain type of input
saturation constraint and matching lumped disturbance by means of coordinate transformation and
feedback linearization. In order to realize the cooperative control of the angle and stiffness of the VSJ,
this paper expands the matched lumped disturbance into a new system state and obtains an extended
integral chain pseudo-linear system and constructs a LESO to estimate the unknown system state in the
pseudo-linear system. Based on the idea of state feedback control, the neural state feedback controller,
the neural network compensator for compensating unknown external time-varying interference and
the neural network compensator with input saturation compensation are constructed by RBFNN.
Then the stability analysis based on Lyapunov candidate function is used to prove the final uniform
bounded stability of the constructed system. In this paper, the proposed algorithm is compared with
the FL-LESO-SMC-ISC algorithm which uses the LESO for state estimation. The simulation and
experiment on the semi-physical experiment platform prove the effectiveness and superiority of the
proposed algorithm. The simulation and experimental results show that the proposed algorithm
can track the target curve with higher precision. The algorithm proposed in this paper can better
compensate the error when there is unknown disturbance. At the same time, the designed input
saturation compensation controller can ensure that the output control torque is within its threshold
range. The shortcoming of this paper is that for good position and stiffness tracking control, manual
adjustment of controller parameters is required, and there is a trade-off between the tracking response
performance of the system output and the response performance of the control input. Therefore
parameter adaptive adjustment is needed. Then, since LESO is a high gain observer, a good estimate of
the state of the unknown system is obtained. However, this can lead to an amplification effect of the
state measurement noise and may affect the tracking performance of the controller or even the stability
of the system. So estimation error compensation is required for this.
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