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Abstract: Single image super-resolution (SISR) aims to reconstruct a high-resolution (HR) image
from a low-resolution (LR) image. In order to address the SISR problem, recently, deep convolutional
neural networks (CNNs) have achieved remarkable progress in terms of accuracy and efficiency.
In this paper, an innovative technique, namely a multi-scale inception-based super-resolution (SR)
using deep learning approach, or MSISRD, was proposed for fast and accurate reconstruction of SISR.
The proposed network employs the deconvolution layer to upsample the LR image to the desired
HR image. The proposed method is in contrast to existing approaches that use the interpolation
techniques to upscale the LR image. Primarily, interpolation techniques are not designed for this
purpose, which results in the creation of undesired noise in the model. Moreover, the existing
methods mainly focus on the shallow network or stacking multiple layers in the model with the
aim of creating a deeper network architecture. The technique based on the aforementioned design
creates the vanishing gradients problem during the training and increases the computational cost
of the model. Our proposed method does not use any hand-designed pre-processing steps, such as
the bicubic interpolation technique. Furthermore, an asymmetric convolution block is employed
to reduce the number of parameters, in addition to the inception block adopted from GoogLeNet,
to reconstruct the multiscale information. Experimental results demonstrate that the proposed model
exhibits an enhanced performance compared to twelve state-of-the-art methods in terms of the
average peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) with a reduced number
of parameters for the scale factor of 2×, 4×, and 8×.

Keywords: deep learning; multi-scale information; asymmetric convolution; residual skip connection;
inception module

1. Introduction

Super-resolution (SR) is an image, video, and computer vision task that reconstruct the high
quality or high-resolution (HR) image with large texture detail information from a single or multiple
low quality or low-resolution (LR) image [1,2], under the limited conditional environment and low-cost
imaging system. Despite its difficulty and limitations, SR could be applied in real world applications,
such as security and surveillance imaging systems [3], face recognition [4], and medical [5] and satellite
imaging systems [6].

However, SR is a classical challenging ill-posed problem. To handle the ill-posed problem in
SR reconstruction, different algorithms have been proposed by the researchers in the area of image
and video recognition. Earlier methods include interpolation and reconstruction-based techniques.
Examples of interpolation-based techniques are cubic interpolation [7], nearest neighbor-based
interpolation [8], and edge-guided-based interpolation [9]. Usually the performance of these methods
is very good, and its implementation is very easy, but still, they generate ringing jagged artifacts and
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blurry results in smooth region areas. Furthermore, reconstruction-based methods are very efficient in
preserving sharp edges or boundaries and suppressing the jagged ringing artifacts [10]. To reconstruct
HR images with complex scenes, prior methods fail to reconstruct the high-frequency information
details. Recently, approaches have been used to learn the nonlinear mapping of image space between
LR to HR images through millions of image pair co-occurrences, comprising linear regression [11],
spare based dictionary learning [12], random forest [13], and neural networks [14,15].

Among them, the neural networks have marked-out significant consideration due to easy, simple
elements and excellent performance, but there are still some limitations. First, this type of model is a
fully deep neural network and is used to limit the contextual information over all the global image
region. Although some methods [16–21] have revised and improved the image restoration quality
by stacking side by side convolution layers to display contextual information over a large region but
increase the computational cost, as well as memory usage. Second, existing approaches only optimize
the network model in the loss function, due to the increase in the blurry edges in the recovered image.
Several algorithms [18–20] have concentrated attention on improving the loss function to reconstruct
the HR images. However, blurred sharp edges still exist to recover the HR images. In order to
handle such issues and to further improve the recent existing methods, we proposed the multi-scale
inception-based SR using deep learning approach (MSISRD) to restore the desired high-quality and
HR images from observed low quality and LR input images.

In summary, our major contributions through the paper are mainly focused on three aspects:

• We proposed a residual asymmetric convolution block to ease the training complexity, as well as
reduce the dimensionality of the intermediate layers.

• We also proposed a multi-scale inception block that can extract the multi-scale feature to restore
the HR image.

• Based on the inception block, we designed asymmetric convolution deep model that outperforms
the traditional convolutional neural networks (CNNs) model on both effectiveness and efficiency.

The remaining parts of our work are arranged in the following sections. In Section 2, we discuss
the literature survey of image SR-related works. Section 3 discusses the proposed network model
architecture and training procedure. Experimental evaluation and comparison with existing algorithms
are discussed in Section 4. Finally, our work is concluded in Section 5.

2. Related Works

Many single image super-resolution (SISR) methods have been reviewed in the literature
to solve the image SR problem. There are three main approaches in SISR. Interpolation-based,
sparse coding-based, and deep learning-based methods. We will briefly discuss the first two
approaches and focus our discussions on the recent deep CNN-based methods that are related to our
work. Earlier algorithms have utilized the interpolation-based techniques [10,22], like bicubic and
linear interpolation, adjusted anchored neighborhood regression (A+) [11], super-resolution Forests
(RFL) [13] and transformed self-examplars super-resolution (SelfExSR) [23] .These algorithms are easy
to implement, and the speed is fast, but they often produce artifacts like pixelization, jagged contours,
and blurry results [24]. Hence, it is difficult to reconstruct the detailed, realistic textures in the SR results.
Sparse coding-based techniques [12,25] are introduced to alleviate these problems and to improve the
performance of previous approaches, but sparsity-based approaches undergo excessive computation
to calculate sparse representation of an LR patch from a pre-trained LR dictionary. The neighborhood
regression algorithm [11,22] uses the combination of HR image patches to reconstruct an HR image.

Recently, the deep CNN has shown significant improvement for the SR task, thus proving the
strong potential for learning a complex non-linear mapping from the LR space domain to the HR
space domain. The first concrete architecture, proposed by Dong et al. [14], is the Super-Resolution
Convolutional Neural Network (SRCNN) [26], which reported a remarkable progress jump over all
previous SR methods. However, there are still some drawbacks. First, the original LR image is upscaled
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by bicubic interpolation to the desired size. Second, the reconstruction details information is still
unsatisfactory. Third, training convergence is too slow. Z et al. [27] proposed the Deep Networks
for Image Super-Resolution with Sparse Prior, named as sparse coding based network (SCN). This
approach is simple and achieves notable performance over SRCNN.

Dong et al. [15] improved the SRCNN [26], further named Fast Super-Resolution Convolutional
Neural Network (FSRCNN) [15], by introducing a deconvolution layer as the last layer of the model
with a stride equal to the size of the scale factor. FSRCNN [15] has a simple network architecture that
consists of four convolution layers with one transpose convolution layer and uses the original LR
image without bicubic interpolation. FSRCNN [15] has better performance and lower computational
cost than SRCNN [26] but has a limited network capacity.

Shi et al. [28] proposed the Efficient Sub Pixel Convolution Neural Network (ESPCN), which uses
the same technique introduced by FSRCNN [15], to reduce the model complexity with a sub pixel
convolution layer to upscale the information.

Kim et al. [16] proposed Very Deep Super Resolution (VDSR) [16] using the global residual
connection to reduce the training complexity, which leads to faster convergence of the model and
achieves great performance. The main purpose of VDSR [16] is to predict the residual, rather than the
actual, pixel value.

Currently, due to the success of UNet [29] architecture, the work in [30] proposed the idea of the
Residual Encoder-Decoder Network (REDNet). REDNet [30] consists of two parts: the encoder network
and decoder network. The convolution layer is used at the encoder side, and the deconvolution layer
is used at the decoder side.

Kim et al. [17] applied the same convolution layers multiple times and proposed the idea of the
Deep Recursive Convolutional Network (DRCN) [17]. The main advantage of this architecture is that
the number of model parameters is fixed, even though there are more recursions.

Lai et al. [18] proposed the Laplacian pyramid super-resolution network (LapSRN) [18], which
reconstructs multiple images progressively with different scale factors. Deconvolution is proposed
in [31–33]. It is observed as pointwise multiplication of each input pixel by a kernel, which could
increase the input size if the stride is greater than one. LapSRN [18] uses three types of layers:
the convolution layers, leaky rectified linear unit (LReLU) layers, and transpose or deconvolution
layers. The training dataset is the same as the SRCNN [26].

The residual neural network (ResNet) [34], proposed by He et al., solves the vanishing/exploding
gradient problem in a very deep neural network during the training. ResNet [34] uses many numbers
of layers, like 34, 50, 101, 152, and also 1202. The most popular version is the ResNet50 contains
50 CNN layers and one fully-connected layer at the end of the network. In [19], the authors proposed
the SRResNet [19] architecture with 16 residual blocks. Each block is made up of two convolution
layers, followed by a batch normalization (BN) layer [35] and parametric rectifying linear unit (PReLU)
activation function. It does not use any pre-processing nor residual learning. Transposed convolution
is used to upscale the LR image. BN [35] is used to stabilize the training procedure.

Ren et al. [36] proposed Context-wise Network Fusion (CNF), in which each model of the
SRCNN [26] is constructed with a different number of layers and, finally, each SRCNN [26] model
output is passed through a single convolution layer and fused with the sum-pooling layer.

The Deep CNN with Skip Connection and Network in Network, abbreviated as DCSCN network
architecture [37], proposed a shallower model than VDSR [16], introducing the skip connections
at different stages and directly using the LR image as an input. The DCSCN [37] model consists
of different modules, such as feature extraction and reconstruction network, which provide better
SR performance.

Han et al. [38] considered the DRCN [17] and the Deep Recursive Residual Network (DRRN) [21]
as the Recurrent Neural Networks (RNNs) employing recurrent states and proposed Dual-State
Recurrent Network (DSRN) [38], which uses dual recurrent states.



Electronics 2019, 8, 892 4 of 19

In [39], super-resolution network for multiple degradations (SRMD) proposed a concatenated LR
image and its degradation mappings. The network architecture is the same as in [14,40,41]. First, a size
of 3 × 3 convolution filter is cascaded and followed by a sequence of convolution, rectified linear unit
(ReLU) [42], and BN [35] layers. The authors also introduce the SR network for multiple degradations
noise-free degradation model (SRMDNF).

Mei at el. [41], inspired by image SR via SRResNet [19] and LapSRN [18], proposed a new
concept—the Super-Resolution Squeeze and Excitation (SrSE) Network (SrSENet) Network [41] for
SISR. Utilizing SrSEBlock with deep residual networks in this approach can provide better feature
extraction due to the channels correlations model between feature mappings from LR image.

In [43], Chu et al. introduced the idea of a multi-objective oriented algorithm, known as
Multi-Objective Reinforced Evolution in Mobile Neural Architecture Search (MOREMNAS) by good
virtue from both evaluation algorithm (EA) and reinforced learning (RL) methods. Authors also
introduced a different version of models, like MOREMNAS-A, -B, -C, and the dominates version,
MOREMNAS-D [43].

Many modern SR networks, such as FSRCNN [15], LapSRN [18], SrSENet [41], and DCSCN [37],
achieved better results by using deconvolution as the upsampling module. However, the computation
complexity of forward and back propagation of deconvolution [44] is still a major concern. They
promise low computational complexity and better perceptual quality, but there possibly exists plenty
of room for improvement in SR performance.

3. Proposed Method

In this section, we describe the design procedure of our proposed MSISRD method in detail.
Initially, input LR image passes through three stacked CNN layers, followed by ReLU [42] using
skip connection. This process produces a summed output that contains detailed feature information.
As such, the number of parameters is thus reduced. Afterword, the information is fed to the
deconvolution layer for upsampling purposes. The upsampled LR information is sent through
two asymmetric residual blocks to reduce the training complexity and reconstruct the middle-level
feature information. The inception block is used in the multi-scale reconstruction stage-II to reconstruct
the final HR image, as shown in Figure 1.

Figure 1. The complete network architecture of our proposed super-resolution (SR) method. Our network
consists of feature extraction, deconvolution, multi-scale reconstruction stage-I, and multi-scale reconstruction
stage-II. LR = low-resolution; HR = high-resolution; ReLU = rectified linear unit; Conv = convolution.
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3.1. Feature Extraction

Inspired by VDSR [16], we proposed three trainable convolution layers of 3 × 3 kernel size with
64 filters, followed by ReLU [42] activation function. ReLU [42] directly extracts the feature information
from the original LR image as Y. Mathematically convolution layer can be represented as,

Fl(Y) = Wl ∗ Gl−1(G), (1)

where l is the lth convolution layer, Wl represents the number of filters of the lth layer, and Gl−1 denotes
the previous layer output feature map. Fl is an output feature map and ‘*‘ represents the convolution
operation. ReLU [42] activation response can be calculated as general activation function as,

ReLU(Y) = max(0, x), (2)

where x is the input of activation on the lth layer and Y is an ReLU [42] activation output of the
feature maps. The final out put of the convolution layer can be defined as,

Gl(Y) = ReLU(Wl ∗ Gl−1(Y) + bl), (3)

where Gl represents the final output of the feature map of the lth layer, and bl , Wl denotes a bias and
weight of the convolution filter of the lth layer, respectively. Inspired by ResNet [34], we applied the first
layer feature map output that is added in the third layer, using skip connection with identity mapping.

3.2. Deconvolution

In order to recover the SR images, the basic concept is to upscale the original LR image using
interpolation techniques to get the HR image. The implementation of such an approach is very easy and
fast. Actually, interpolation techniques were not designed for upscaling the original LR to recover the
HR image. Additionally, the said approaches even damage the important LR information. Furthermore,
it takes more computational time in pre-processing without any obvious advantages. Shi et al. [28]
proposed the idea of a sub-pixel convolution layer to recover the HR image directly, but this approach
does not completely utilize the related information from the LR domain to HR. LapSRN [18] introduced
the concept of multiple transposed convolution layer in a progressive way with different upscale and
obtained relatively faster and more accurate information from LR to HR image.

Based on the common architecture of CNN SR, the deconvolution layer is used to upsample the
previous feature results with a number of convolution kernels. The quality of the LR image is improved
by increasing the kernel size of the deconvolution layer, but a larger kernel size also increases the
computational complexity. In our proposed approach, we apply two 1 × 1 operation of convolution
before and after the deconvolution layer. The first 1 × 1 kernel operation performs the function of
dimension reduction to change the 64 feature maps into 4 feature maps for the upsampling purpose,
and the last convolution kernel is used to recover the feature information back to the 64 number of
channels. The upsampling layer serves as the bridge between two 1 × 1 convolution layers, which
uses the different kernel size for different scale factor like 14 × 14, 16 × 16, and 18 × 18 for enlargement
factor of 2×, 4×, and 8×, respectively.

3.3. Multi-Scale Reconstruction Stage-I

As the depth of network increases, the flow of information becomes weak at the final layers [33].
This leads to the vanishing/exploding gradient issue during the training [45] . The ResNet proposed
by He et al. [34] intends to solve this problem and widely uses the idea of skip connection in [19,20] to
construct a very deeper model for image SR. The residual network blocks [16,19,34,46] are shown to
improve training accuracy on the SR work. In Figure 2, we show the residual network block of original
ResNet [34], SRResNet [19], and our proposed ResNet block. In the original ResNet block [34], their
architecture consists of a direct path and skip connection for propagating the information through
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the residual block. Resultantly, the summed up information finally passes through the ReLU [42]
activation layer. In the SRResNet block [19], the ReLU [42] activation function has been removed to
provide the clean path from one block to the next one. Our proposed block removes two BN [35] layers
to reduce the memory usage of the Graphics Processing Unit (GPU) and minimize the computational
complexity. Compared to the original ResNet block [34] and SRResNet block [19], which use the
standard convolution operation, our proposed block uses the idea of asymmetric convolution operation,
which reduces the size of the model, as well as increases the training efficiency of the model.

For multi-scale reconstruction stage-I, we applied eight asymmetric convolution trainable
layers, which are interleaved followed by ReLU [42] nonlinearity. The asymmetric convolution
(AConv) is to factorize a standard two-dimensional convolution kernel into two one-dimension
convolution kernels. In other words, a 3× 1 convolution, followed by a 1× 3 convolution, is substituted
for a 3 × 3 convolution [47,48]. This mechanism can be expressed as,

M

∑
i=−M

N

∑
j=−N

W(i, j)I(x − i, y − j) =
M

∑
i=−M

wx(i)[
N

∑
i=−N

Wy(j)I(x − i, y − j)], (4)

where I is a 2D image, W is a 2D kernel like 3 × 3, Wx is a 1D kernel along x-dimension as 1 × 3,
and Wy is a 1D kernel along y-dimension as 3 × 1.

(a) (b) (c)

Figure 2. The comparison design of residual connection blocks [49] with our proposed residual block.
(a) Original residual neural network (ResNet) [34]. (b) SRResNet [19]. (c) Proposed. BN = batch
normalization; AConv = asymmetric convolution.

The relationship between standard convolution kernel size and asymmetric convolution kernel
size in terms of a number of parameters is shown in Table 1. For example, we took a single layer of
3 × 3, where the number of filters is 10 and image patch size is 28 × 28, and the calculated number
of parameters is 900. Similarly, after applying asymmetric convolution operation on the 3 × 3 layer
and splitting the same into 3 × 1 and 1 × 3, with the same number of filters and image patch size,
the calculated number of parameters is 600. Results clearly show that asymmetric convolution type
kernel has a lesser number of parameters compared to standard convolution kernel size. This approach
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is considered to be one of the most suitable options due to the fact that it reduces the size of a deeper
model, increases the computational efficiency during the training, and avoids the overfitting problems.

Table 1. Comparison of standard and asymmetric convolution in terms of kernel size and number
of parameters.

Kernel Size No: of Layers No: of Filters Image Patch Size No: of Parameters

3 × 3 1 10 28 × 28 900
3 × 1 and 1 × 3 2 10 28 × 28 600

5 × 5 1 10 28 × 28 2500
5 × 1 and 1 × 5 2 10 28 × 28 1000

7 × 7 1 10 28 × 28 4900
7 × 1 and 1 × 7 2 10 28 × 28 1400

9 × 9 1 10 28 × 28 8100
9 × 1 and 1 × 9 2 10 28 × 28 1800

11 × 11 1 10 28 × 28 12,100
11 × 1 and 1 × 11 2 10 28 × 28 2200

In our proposed architecture, we used four CNN layers of size 3 × 1 and 1 × 3 asymmetric
convolution operation, with each layer taking the previous input feature and generating 16 channels
of the new features. In order to facilitate the flow of training, we used the skip connection after every
two convolution layers and added the input to the next block as output. In order to decrease the
number of parameters we used, we used a 1 × 1 bottleneck CNN layer [50] after the final asymmetric
residual block.

3.4. Multi-Scale Reconstruction Stage-II

At the final stage, we used a multi-scale block adopted from GoogLeNet [51] to select the
appropriate kernel size. The size of the kernel plays a very important role in the model design, as well
as the training procedure, because it is a very close relation to extracting the more useful information.
The smaller size of the kernel is better for capturing the information locally, and the larger size of the
kernel is more preferable for information distributed globally. The inception network [52] uses this
idea and includes many convolutions with a different size kernels. Furthermore, the second and third
version of inception architecture uses the idea of asymmetric convolution. For example, n × n shape
of the kernel can translate into a combination of two 1 × n and n × 1 convolutions, which is the most
efficient convolution kernel, rather than the standard convolution kernel. For example, a convolution
with kernel size is 3 × 3 is equivalent to a 1 × 3 followed by 3 × 1 , which was found to be 33% of the
low computational cost in the standard convolution [52].

Figure 3 shows the comparison between traditional convolution operation with asymmetric
convolution operation. In Figure 3a, plain architecture with many layers is stacked in a single path,
used by SRCNN [26] and FSRCNN [15]. These types of architecture design are very simple, but a
deeper model increases the size of the model and consumes more memory.

In Figure 3b, a conventional inception block is used to extract the multi-scale feature information.
This block allows the extraction of the multi-scale feature information more efficiently.
However, the problem with this type of block is that it has a higher number of parameters, and
so does the higher computational complexity of the model. We proposed the multi-scale asymmetric
convolution block, as shown in Figure 3c, to solve the problem of training complexity. Our proposed
inception block can reduce the computational time and can extract the multi-scale feature information
to reconstruct the SR image.
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(a) (b) (c)

Figure 3. Proposed multi-scale inception block of two successive convolutions [53]. (a) Single Scale
Convolution (b), Multi-Scale Convolution, and (c) proposed.

In Figure 4, we introduced a new module inspired by the idea of a naive version inception
module and inception module with dimension reduction [51]. In the naive version inception module,
the convolution operation is performed on a previous layer output, with three different sizes of the
filters having order 1 × 1, 3 × 3, and 5 × 5. In order to achieve dimension reduction, the max-pooling
operation is also employed. The output of these layers is concatenated and sent to the next inception
module, as shown in Figure 4a. The major problem with the naive version inception module is a larger
number of kernel size. Even the modest number of kernel size can be more expensive on the top of
the convolutional layer. This problem becomes serious after the fusion of max-pooling layer output
with the output of convolutional layers from one stage to another stage. With a view of making it
computationally efficient and reducing the number of input channels, the authors have revised the
naive version inception module with dimension reductions by adding an extra 1 × 1 convolution layer
before the 3 × 3 and 5 × 5 convolution layers, as well as after max-pooling layer, as shown in Figure 4b.
Followed by the aforementioned successful model, we proposed an asymmetric inception block to
learn the multi-scale information for reconstructing the HR image, as shown in Figure 4c.

In the suggested asymmetric inception block, the standard convolution layers are replaced with
asymmetric convolution layers. For multi-scale reconstruction purpose, we used five towers with
four different sizes of the asymmetric convolution filter. These filters are followed by ReLU having
16 features of various asymmetric convolutional filter size. In the first branch/tower 1, we split the two
filters having layers of 3 × 3 and 5 × 5 into four asymmetric convolution filters of the order 3 × 1, 1 × 3,
5 × 1, and 1 × 5 to reduce the number of parameters. Similarly, in tower 2 and tower 3, we applied
the same size of the asymmetric convolution filter operation. In tower 4 and tower 5, we divided the
larger filter size of 7 × 7 and 9 × 9 into an asymmetric convolution filter of size 7 × 1, 1 × 7, 9 × 1,
and 1 × 9. Finally, we concatenated values of all the towers followed by ReLU activation nonlinearity.
With the aim of improving the compactness, achieving the computational efficiency, and experiencing
better performance, we used a 1 × 1 bottleneck CNN layer [50]. Remarkably, the 1 × 1 bottleneck CNN
layer [50] not only reduced the dimensions of the previous layers for higher computational efficiency
but also added more nonlinearity information to enhance the representation of the reconstructed
LR image. The 1 × 1 bottleneck CNN layer [50] has less computational cost as compared to 3 × 3
CNN layer. As a result, our proposed block is relatively lighter, more efficient, and computationally
effective in comparison to the other deep learning-based reconstruction blocks.



Electronics 2019, 8, 892 9 of 19

Figure 4. Inception block with different towers [54] used for multi-scale reconstruction stage-II.
(a) Inception module, naive version; (b) inception module with dimension reductions [55]; and (c) our
proposed module.
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4. Experimental Results

Under the experimental results section, we first explain the construction of the training datasets
and model hyperparameters. Next, we compare the quantitative and qualitative performance on
five benchmark test datasets. Finally, we compare the complexity of the model in terms of peak
signal-to-noise ratio (PSNR) [56] versus a number of parameters.

4.1. Training Datasets

There have been many training datasets available for single image-super resolution, but commonly
used datasets are Yang et al.’s [57] image dataset and the Berkeley Segmentation Dataset (BSDS) [58].
To evaluate the proposed method, we selected 91 images from [57] and another 200 images from [58].
As followed by [21], to take the benefit of the full training dataset and avoid the over-fitting problem,
we applied the data augmentation technique randomly by flipping all images and then performing
the rotation operation to increase the training dataset [59]. All experiments were performed on the
HR ground truth image and randomly cropped and flipped the training sample images as an original
ground truth image. For data processing, we used MATLAB 2018a and the Keras 2.2.1 framework [60],
with TensorFlow as back-end, and LR images were generated by built-in function bicubic. Several loss
functions have been used in deep learning techniques. Most deep neural network based SR methods
have used the mean squared error (MSE) loss function, so we adopted the same loss function with
our proposed model. The end-to-end mapping function required the estimation parameters of the
network θ, which consists of a set of weights and biases. This is obtained by minimizing the objective
loss between the restored image F(Y,θ) and the corresponding original HR ground truth image X.
The set of HR and high-quality images are Xi and their corresponding LR images Yi, and m is the
number of samples in each batch during the training; we used the MSE as a loss function that can be
calculated as:

L(θ) =
1
m

m

∑
i=1

∥∥F(Yi; θ)− Xi
∥∥2 . (5)

To minimize the objective of the loss function, we used the adaptive momentum estimation
(Adam) [61] optimizer, and its initial learning rate set as 0.0003, with 32 mini-batch sizes during the
training. The training takes 100 epochs to converge properly, and all experiments were conducted on
an NVIDIA Titan Xp GPU, under an Ubuntu 18.04 operating system of 3.5 GHz Intel i7-5960x CPU and
64 GB RAM. For a fast training procedure, we trained our model only on single channel, i.e., Y-channel,
so we converted the RGB channel into YCbCr and finally added the enlarged color channel using
bicubic interpolation technique.

4.2. Testing Datasets

We evaluated our model’s performance on five publicly available benchmark datasets, such as the
Set5 [62], Set14 [63], BSDS100 [58], Urban100 [23], and Manga109 [64]. The Set5 [62] dataset consists of
five images with various sizes between 228 × 228 and 512 × 512 pixels. Set14 [63] consists of 14 images,
and the BSDS100 [58] dataset consists of 100 natural scenes of images. The Urban100 [23] dataset
consists of different challenging images with many frequency bands and details of the information
available, and the Manga109 [64] dataset consists of many comic images with fine structure. However,
for fair comparison purposes, our proposed method used the recently published data, such as that
presented by Lai et al. (2017) [18] and Yulun et al. (2018) [65].

4.3. Comparison with Other Existing State-of-the-Art Methods

There are many techniques to validate the effectiveness of the proposed model. In image SR
literature, it is common to use two metrics for quality measurement, i.e., PSNR and structural similarity
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index (SSIM) [56]. Both quality metrics have measured the difference between upscaled or interpolated
LR image and its original high-quality HR image. The higher value of PSNR and SSIM [56] of
two images should correlate to a higher degree of similarity between them and shows the better
reconstruction quality of the image. The value of PSNR [56] is measured in decibels (dB), and the
ranges from 0 to infinity. SSIM means the perfect recovery of the LR image and the ranges from 0 to 1.
The main expression of PSNR and SSIM [56] are shown in Equations (6) and (7), respectively,

PSNR(r, s) = 10 ∗ log10

[
(2k − 1)2

MSE

]
, (6)

where k is the bit depth, and MSE is the mean square error.

SSIM(r, s) =
(2µrµs + C1)(2σrs + C2)

(µr2 + µs2 + C1)(σr2 + σs2 + C2)
, (7)

where µr and µs denote the mean value of r and s. The variance of r and s are denoted by σr
2 and

σs
2. The covariance of r and s represents as σrs. C1 and C2 are the constants to maintain the formula

validity and to avoid the denominator being zero.
Quantitative results of PSNR and SSIM were evaluated on the public benchmark of Set5 [62],

Set14 [63], BSDS100 [58], Urban100 [23], and Manga109 [64] datasets, with scale factor 2×, 4×, and 8×,
as shown in the Table 2.

For qualitative and quantitative comparison, we selected twelve different state-of-the-art
algorithms, along with the baseline. PSNR and SSIM [56] are the most popular reference metrics,
widely used in the image SR tasks, and they directly apply on the intensity of the image. As can been
seen from Table 2, our method achieves, on average, better PSNR and SSIM [56] than all existing
methods. Furthermore, overall on five datasets with upscale factor 2x, our MSISRD can improve
1.33 dB, 1.04 dB. 0.95 dB, 0.42 dB, 0.39 dB, 0.49 dB, 0.32 dB, 0.37 dB, 0.37 dB, 0.32 dB, 0.24 dB, and
0.16 dB on average PSNR, in comparison with SRCNN [26], ESPCN [28], FSRCNN [15], VDSR [16],
DCSCN [37], LapSRN [18], DRCN [17], SrSENet [41], SRMD [39], REDNet [30], DSRN [38], and
CNF [36], respectively.

Table 3 shows the quantitative comparison results for scale 4×, on the Set5 [62] dataset of
PSNR/SSIM [56] versus a number of parameters. Our model yields higher performance with fewer
numbers of parameters than other SR methods, which proves the best efficiency of our proposed model.
Furthermore, the proposed method employs a much fewer number of parameters than REDNet [30],
DRCN [17], and SRMD [39]. For instance, our model uses up to 94% less the number of parameters
than REDNet [30] , 86% less than DSRN [38], and 70% less than LapSRN [18].

Figure 5 shows the relationship between the number of parameters and PSNR [56]; our proposed
model presents a favorable trade-off between the model complexity and the performance of the
SR image.

Figure 6–9 show the perceptual quality performance on the Set5 [56], Set14 [63], BSDS100 [58],
and Urban100 [23] datasets for scale 4× enlargements image SR. Figures 10–13 present the visual
performance of above datasets on scale factor 8×, including one image from the Manga109 [14] dataset.
The results of the Bicubic, SRCNN [26], and FSRCNN [15] look blurry and lack high-frequency details.
Image SR on scale 8× is a very challenging problem, but our method accurately reconstructs the
texture details, suppresses the artifacts, and recovers the details of the LR image with sharp edges.
Figure 10 clearly shows that our method accurately reconstructs the fine texture details, such as the
eyebrow of a baboon, leading to the pleasing visual perceptual quality of the image.
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Table 2. Quantitative evaluation of existing SR algorithms with our proposed approach; reported results
is the average value of peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) [56]
using 2×, 4×, and 8× enlargement scale factors; red color with bold value indicates the best value, and
the blue color with underline indicates the second best value.

Method Factor Params Set5 [62] Set14 [63] BSDS100 [58] Urban100 [23] Manga109 [64]
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic 2× - 33.69/0.931 30.25/0.870 29.57/0.844 26.89/0.841 30.86/0.936
A+ [11] 2× - 36.60/0.955 32.32/0.906 31.24/0.887 29.25/0.895 35.37/0.968
RFL [13] 2× - 36.59/0.954 32.29/0.905 31.18/0.885 29.14/0.891 35.12/0.966

SelfExSR [23] 2× - 36.60/0.955 32.24/0.904 31.20/0.887 29.55/0.898 35.82/0.969
SRCNN [26] 2× 57k 36.72/0.955 32.51/0.908 31.38/0.889 29.53/0.896 35.76/0.968
ESPCN [28] 2× 20k 37.00/0.955 32.75/0.909 31.51/0.893 29.87/0.906 36.21/0.969

FSRCNN [15] 2× 12k 37.05/0.956 32.66/0.909 31.53/0.892 29.88/0.902 36.67/0.971
SCN [27] 2× 42k 36.58/0.954 32.35/0.905 31.26/0.885 29.52/0.897 35.51/0.967

VDSR [16] 2× 665k 37.53/0.959 33.05/0.913 31.90/0.896 30.77/0.914 37.22/0.975
DCSCN [37] 2× 244k 37.62/0.959 33.05/0.912 31.91/0.895 30.77/0.910 37.25/0.974
LapSRN [18] 2× 813k 37.52/0.959 33.08/0.913 31.80/0.895 30.41/0.910 37.27/0.974
DRCN [17] 2× 1774k 37.63/0.959 33.06/0.912 31.85/0.895 30.76/0.914 37.63/0.974

SrSENet [41] 2× - 37.56/0.958 33.14/0.911 31.84/0.896 30.73/0.917 37.43/0.974
MOREMNAS-D [43] 2× 664k 37.57/0.958 33.25/0.914 31.94/0.896 31.25/0.919 37.65/0.975

SRMD [39] 2× 1482 37.53/0.959 33.12/0.914 31.90/0.896 30.89/0.916 37.24/0.974
REDNet [30] 2× 4131k 37.66/0.959 32.94/0.914 31.99/0.897 30.91/0.915 37.45/0.974
DSRN [38] 2× 1200k 37.66/0.959 33.15/0.913 32.10/0.897 30.97/0.916 37.49/0.973
CNF [36] 2× 337k 37.66/0.959 33.38/0.914 31.91/0.896 31.15/0.914 37.64/0.974

MSISRD (ours) 2× 240k 37.80/0.960 33.84/0.920 32.09/0.895 31.10/0.913 37.70/0.975

Bicubic 4× - 28.43/0.811 26.01/0.704 25.97/0.670 23.15/0.660 24.93/0.790
A+ [11] 4× - 30.32/0.860 27.34/0.751 26.83/0.711 24.34/0.721 27.03/0.851
RFL [13] 4× - 30.17/0.855 27.24/0.747 26.76/0.708 24.20/0.712 26.80/0.841

SelfExSR [23] 4× - 30.34/0.862 27.41/0.753 26.84/0.713 24.83/0.740 27.83/0.8663
SRCNN [26] 4× 57k 30.49/0.863 27.52/0.753 26.91/0.712 24.53/0.725 27.66/0.859
ESPCN [28] 4× 20k 30.66/0.864 27.71/0.756 26.98/0.712 24.60/0.736 27.70/0.856

FSRCNN [15] 4× 12k 30.72/0.866 27.61/0.755 26.98/0.715 24.62/0.728 27.90/0.861
SCN [27] 4× 42k 30.41/0.863 27.39/0.751 26.88/0.711 24.52/0.726 27.39/0.857

VDSR [16] 4× 665k 31.35/0.883 28.02/0.768 27.29/0.726 25.18/0.754 28.83/0.887
DCSCN [37] 4× 244k 30.86/0.871 27.74/0.770 27.04/0.725 25.20/0.754 28.99/0.888
LapSRN [18] 4× 813k 31.54/0.885 28.19/0.772 27.32/0.727 25.21/0.756 29.09/0.890
DRCN [17] 4× 1774k 31.54/0.884 28.03/0.768 27.24/0.725 25.14/0.752 28.98/0.887

SrSENet [41] 4× - 31.40/0.881 28.10/0.766 27.29/0.720 25.21/0.762 29.08/0.888
SRMD [39] 4× 1482 31.59/0.887 28.15/0.772 27.34 /0.728 25.34/0.761 30.49/0.890

REDNet [30] 4× 4131k 31.51/0.886 27.86/0.771 27.40/0.728 25.35/0.758 28.96/0.887
DSRN [38] 4× 1200 31.40/0.883 28.07/0.770 27.25/0.724 25.08/0.747 30.15/0.890
CNF [36] 4× 337k 31.55/0.885 28.15/0.768 27.32/0.725 25.32/0.753 30.47/0.890

MSISRD (ours) 4× 240k 31.62/0.886 28.51/0.771 27.33/0.727 25.42/0.757 31.61/0.891

Bicubic 8× - 24.40/0.658 23.10/0.566 23.67/0.548 20.74/0.516 21.47/0.650
A+ [11] 8× - 25.53/0.693 23.89/0.595 24.21/0.569 21.37/0.546 22.39/0.681
RFL [13] 8× - 25.38/0.679 23.79/0.587 24.13/0.563 21.27/0.536 22.28/0.669

SelfExSR [23] 8× - 25.49/0.703 23.92/0.601 24.19/0.568 21.81/0.577 22.99/0.719
SRCNN [26] 8× 57k 25.33/0.690 23.76/0.591 24.13/0.566 21.29/0.544 22.46/0.695
ESPCN [28] 8× 20k 25.75/0.673 24.21/0.510 24.73/0.527 21.59/0.542 22.83/0.671

FSRCNN [15] 8× 12k 25.60/0.697 24.00/0.599 24.31/0.572 21.45/0.550 22.72/0.692
SCN [27] 8× 42k 25.59/0.706 24.02/0.603 24.30/0.573 21.52/0.560 22.68/0.701

VDSR [16] 8× 665k 25.93/0.724 24.26/0.614 24.49/0.583 21.70/0.571 23.16/0.725
DCSCN [37] 8× 244k 24.96/0.673 23.50/0.576 24.00/0.554 21.75/0.571 23.33/0.731
LapSRN [18] 8× 813k 26.15/0.738 24.35/0.620 24.54/0.586 21.81/0.581 23.39/0.735
DRCN [17] 8× 1775k 25.93/0.723 24.25/0.614 24.49/0.582 21.71/0.571 23.20/0.724

SrSENet [41] 8× - 26.10/0.703 24.38/0.586 24.59/0.539 21.88/0.571 23.54/0.722
MSISRD (ours) 8× 240k 26.26/0.737 24.38/0.621 24.73/0.586 22.53/0.582 23.50/0.738

Table 3. Quantitative results of computational complexity in terms of number of parameters versus
PSNR [56] on Set5 [62] with 4× scale enlargement factor [66].

Models PSNR/SSIM [56] Parameters

SRCNN [26] 30.50/0.863 57k
ESPCN [28] 30.66/0.864 20k

FSRCNN [15] 30.72/0.866 12k
SCN [27] 30.41/0.863 42k

VDSR [16] 31.35/0.883 665k
DCSCN [37] 30.86/0.871 244k
LapSRN [50] 31.54/0.885 813k
DRCN [17] 31.54/0.884 1775k
SRMD [39] 31.59/0.887 1482k

REDNet [30] 31.51/0.886 4131k
DSRN [38] 31.40/0.883 1200k
CNF [36] 31.55/0.885 337k

MSISRD (ours) 31.62/0.886 240k



Electronics 2019, 8, 892 13 of 19

Figure 5. The model complexity comparison in number of parameters versus PSNR [56]. The performance
of model complexity are evaluated on Set5 [56] dataset for 4× SR [67].

Figure 6. Visual performance of image “butterfly” of Set5 [56] dataset with 4× scale factor enlargements [68].

Figure 7. Visual performance of image “ppt3” from Set14 [63] dataset with 4× scale factor enlargements [68].

Figure 8. Visual performance of image “253027” from Berkeley Segmentation Dataset (BSDS)100 [58]
dataset with 4× scale factor enlargements [69].
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Figure 9. Visual performance of the image “img-062” from URBAN100 [23] dataset with 4× scale factor
enlargements [70].

Figure 10. Visual performance of the image “baboon” from Set14 [63] dataset with 8× scale factor
enlargements [71].

Figure 11. Visual performance of the image “302008” from BSDS100 [58] dataset with 8× scale factor
enlargements [71].

Figure 12. Visual performance of the “img-001” from URBAN100 [23] dataset with 8× scale factor
enlargements [71].
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Figure 13. Visual performance of the image “Hamlet” from Manga109 [64] dataset with 8× scale factor
enlargements [72].

5. Conclusions

In this paper, we proposed a multi-scale inception-based SR using deep learning approach.
Our model uses the locally residual asymmetric convolution block and inception-based asymmetric
convolution block architecture to directly extract the short and long feature information. For upscaling
purposes, we used the learned transposed convolution layer in the latent feature space. In the
reconstruction part, an asymmetric convolution type kernel is applied for better reconstruction of
vertical and horizontal edges. Furthermore, we used an inception module to obtain better feature
reconstructions with less computational complexity. To our knowledge, this is the first network
in which asymmetric convolution kernel has been used in whole architecture. The results show,
both qualitatively and quantitatively, a large upscaling factor of 2×, 4×, and 8× enlargements, along
with a number of parameters. The proposed method achieves high competitive performance on five
benchmark datasets. In the future, we will stack more residual and inception blocks to further improve
the quality of SISR.
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