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Abstract: In next-generation cars, safety equipment related to assisted driving systems commonly
known as ADAS (advanced driver-assistance systems) are of particular interest for the major
car-makers. When we talk about the “ADAS system”, we mean the devices and sensors having the
precise objective of improving and making car driving safer, and among which it is worth mentioning
rain sensors, the twilight sensor, adaptive cruise control, automatic emergency braking, parking
sensors, automatic signal recognition, and so on. All these devices and sensors are installed on the
new homologated cars to minimize the risk of an accident and make life on board of the car easier.
Some sensors evaluate the movement and the opening of the eyes, the position of the head and its
angle, or some physiological signals of the driver obtainable from the palm of the hands placed in
the steering. In the present contribution, the authors will present an innovative recognition and
monitoring system of the driver’s attention level through the study of the photoplethysmographic
(PPG) signal detectable from the palm of the driver’s hands through special devices housed in the
steering of the car. Through a particular and innovative post-processing algorithm of the PPG signal
through a hyper-filtering framework, then processed by a machine learning framework, the entire
pipeline proposed will be able to recognize and monitor the attention level of the driver with high
accuracy and acceptable timing.
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1. Introduction

The continuous technological progress has seen, in recent years, modern cars become real traveling
laboratories equipped with electronic driver assistance systems developed to protect the safety of
the driver and passenger as much as possible. These electronic aids are indicated with the acronym
ADAS, that is, Advanced Driver Assistance Systems, and with this acronym, identify all the devices
present in the car to increase driving comfort and safety levels. Therefore, in the field of car safety, the
driver drowsiness level monitoring systems are of particular interest for obvious considerations both
in relation to the social impact and in reference to the costs of the automotive industry and in general
for the automotive market.

Drowsiness of a vehicle driver (before and during driving) may adversely affect driving safety.
Driver’s drowsiness may cause serious road traffic accidents involving vehicles. The possibility to
detect an attention state of a driver may facilitate evaluation of his/her fitness to drive a vehicle,
facilitating the prevention of road accidents. It is known that a correlation exists between drowsiness
and heart rate variability (HRV), that is, a measure of heart activity over a beat-to-beat interval, so that
estimating HRV of, for example, a driver, may permit obtaining useful information concerning possible
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drowsiness [1]. The scientific studies of drowsiness allowed to understand that it is reflected in the
activity of the central nervous system as well as of the autonomic nervous system (ANS). Thus, a simple
method to estimate drowsiness is to monitor ANS activity. Specifically, heart rate variability (HRV),
which recent studies confirmed having high signal-to-noise ratio in biological signals, besides the
fact that its measurement is non-invasive, reflects ANS activity [1]. Many researchers have over time
deepened the study and the correlation between HRV and the level of human attention. In the work
of [2], the authors proposed an interesting pipeline for monitoring drowsiness of a car-driver by means
of ElectroCardioGraphic (ECG) signal alterations analysis, which clearly has a repercussion in the
measure of HRV. Through a pipeline composed by filters, ECG signal stabilization, and classificatory
based on classical linear discriminant analysis, the authors of [2] were able to discriminate the drowsy
driver from wakeful ones. The authors of [3] proposed an interesting approach for detecting fatigue
and sleep onset. Specifically, the authors showed a method to discriminate activity, drowsiness,
and sleep starting from the LF/HF ratio detected over the R-R tachogram computed from frequency
analysis of the ECG. The results obtained by the authors in [3] are interesting and can be used to
develop a drowsiness detection system for ADAS applications. A very interesting approach has been
proposed by the authors of [4]. The authors monitored specific changes in sleep condition reflected
over the ANS and then on the related HRV. In order to detect specific HRV dynamics, the authors
proposed eight hand-crafted HRV signal features to be processed using a multivariate statistical process
framework for ad hoc anomaly detection. The authors confirmed their ability on the drowsiness
detection by means of standard confirmation based on the usage of electroencephalographic signal
(EEG) [4]. Anyway, the main issue of the drowsiness detection approaches based on HRV detection is
the ECG sampling inside the passenger compartment of the car, as it is widely known in the medical
literature that in order to correctly acquire a subject’s ECG signal, it is necessary to have at least
three electrodes in contact with the human skin according to the minimum configuration known as
Einthoven’s Triangle [5]. This requires the driver to always have the two hands placed in the steering
wheel where the two electrodes of the ECG signal sampling system are usually placed. Then, there
is always the problem of the third electrode that is usually placed in the driver’s seat. This clearly
involves a problem of driver ergonomics as well as the robustness of the ECG signal sampling system
from which the HRV signal descends [5]. For this reasons, many authors have proposed the adoption
of methods based on the photoplethysmgraphic (PPG) signal analysis rather than on ECG. The PPG
signal can be considered as a non-invasive method to monitor cardiovascular system, in particular,
the heart pulse rate. Both heart pulse and respiratory rate as well as vascular and cardiac disorders may
be monitored by means of ad hoc analysis of such PPG signal features [6]. Through the PPG signal,
we are able to have a non-invasive measure of the blood volume changes. A classical PPG waveform
comprises a pulsatile (‘AC’) physiological signal, which is correlated to cardiac-synchronous changes
in the blood volume (in sync with heart-beat) superimposed with a slowly varying (‘DC’) component
containing lower frequency sub-signals, which is correlated to respiration, thermoregulation, and skin
tissues (in which the PPG sensor is adapted). For each cardiac cycle, the heart pumps blood to the
periphery with a specific pressure enough to distend the arteries and arterioles in the subcutaneous
tissue. By means of a device composed by a light-emitter and a detector attached over the skin,
a pressure pulse can also be seen from the venous plexus, as a small secondary peak. The change
in volume caused by the heart pressure pulse can be detected by illuminating the skin and then by
measuring the amount of light either transmitted or reflected to a detector [6]. More detail about PPG
signal formation can be found in the work of [6]. Figure 1 shows a classical PPG compliant waveform.
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Figure 1. Compliant standard normalized photoplethysmgraphic (PPG) waveform in which some key 
points related to cardiac activity have been highlighted: systolic, diastolic, and dicrotic peak. 

Figure 2 shows the physiological phenomena underlying PPG waveform(s) formation, as 
previously described. 
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The authors of [7] proposed a solution for determining HRV from the PPG signal in order to 
analyze parasympathetic nervous activities and classify drowsiness level of the subjects. The results 
confirmed the effectiveness of the proposed approach based on the use of a low-power PPG probe. 
In the work of [8], an interesting indicator coming from the PPG signal has been analyzed and 
proposed. The authors [8] proposed an algorithm based on PRV (pulse rate variability) data 
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Figure 1. Compliant standard normalized photoplethysmgraphic (PPG) waveform in which some key
points related to cardiac activity have been highlighted: systolic, diastolic, and dicrotic peak.

Figure 2 shows the physiological phenomena underlying PPG waveform(s) formation,
as previously described.
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Figure 2. The physiological phenomena underlying photoplethysmgraphic (PPG) pattern formation.

The authors of [7] proposed a solution for determining HRV from the PPG signal in order to
analyze parasympathetic nervous activities and classify drowsiness level of the subjects. The results
confirmed the effectiveness of the proposed approach based on the use of a low-power PPG probe.
In the work of [8], an interesting indicator coming from the PPG signal has been analyzed and proposed.
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The authors [8] proposed an algorithm based on PRV (pulse rate variability) data processing as
measure of the ANS activity, and then the drowsiness of the subject. The results reported [8] seem
very promising. An interesting approach has been proposed in the work of [9], in which the authors
projected a flexible sensor array composed of red organic light-emitting diodes (OLEDs) and organic
photodiodes (OPDs) for detection of the photoplethysmographic (PPG) signal. The reported test
benchmarks in the work of [9] confirmed that the proposed flexible PPG sensor was able to estimate
the drowsiness with more accuracy with respect to the classical PPG probe. Anyway, for drowsiness
detection, the authors also had to acquire the ECG signal as well as perform such a complex analysis in
the frequency domain.

Anyway, recent approaches based on the use of deep learning have been proposed in the literature
in order to estimate the drowsiness of a subject from his/her bio-signals and imaging. In the works
of [10,11], such similar pipelines have been proposed in order to estimate the car-driver drowsiness
by analyzing the “eye states” or “face expressions” of the driver through such image processing
methods. The approach seems fine, but like all methods based on the acquisition of video frames,
it requires sufficient illumination of the passenger compartment as well as eye-tracking problems if,
as in the case of the algorithm proposed in the works of [10,11], the driver should wear dark glasses.
As introduced, recent deep learning advances in automotive applications allow such innovation in
the field of drowsiness detection systems, as confirmed by the pipeline proposed in the work of [12].
The authors proposed an intelligent algorithm that combined the wavelet packet transform (WPT)
and a functional-link-based fuzzy neural network (FLFNN) to provide early detection of car-driver
drowsiness. As for the proposed approach, the bio-sensors are supposed to be placed over the car
steering. The drowsiness analysis is based on the HF/LF analysis [12]. A similar approach was
proposed in another paper [13], where a support vector machine (SVM) approach has been successfully
used to classify the car-driver physiological data coming from an array of bio-sensors placed over
the steering. However, recent advances in the field of deep learning have prompted some authors to
study algorithms for recognizing drowsiness by means of “data fusion”, specifically, by processing
both visual and physiological data coming from the car-driver. In this sense, an interesting work has
been published in the work of [14]. The authors in this work proposed a system based on multimodal
deep learning that recognizes both visual and physiological changes in the state of attention of the
driver. As it uses different kinds of data, the authors proposed the usage of a generative model to
homogeneously represent the data to be processed. After that, they used a deep learning framework
consisting of long short-term memory (LSTM) to classify the driver’s condition based on both visual
and physiological data properly pre-processed. The results confirmed the robustness of the proposed
approach even though it requires also visual information of the car driver, which, as we have previously
mentioned, requires adequate lighting conditions in order to have adequate information content.

In order to properly address the limitations of the methodologies described up to now
(computational load, integration of visual and physiological data, analysis in the frequency domain,
sampling difficulty in the passenger compartment of the car), based on the use of the ECG signal or of
the PPG and ECG signal or visual data often combined with physiological data, the authors intend to
propose a methodology based on the sampling of the PPG signal only, which is able to discriminate
the driver’s drowsiness through an appropriate analysis in the time domain and without the need to
match visual data. The results that we will show in the following paragraphs confirm the robustness
of the proposed method. The article will be organized in the following way. Preliminarily, we will
present the hardware framework that we have realized to be able to acquire the PPG signal, as well as
the sensor probe we have installed in the steering of the car in order to acquire the PPG signal while
driving (from the palm of the driver’s hand). Then, we will present the processing pipeline of the
acquired PPG data, and finally, the machine learning framework that will deal with classifying the
appropriately processed PPG waveforms will be described. Thereafter, we will describe the results
of the validation of our system conducted under strict control of expert physiologists in a dataset of
suitably selected subjects.
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2. Materials and Methods

For the proposed pipeline, the authors used the PPG sampling device based on the usage of a
silicon photomultiplier sensor [15,16]. The proposed PPG probes includes large area n-on-p silicon
photomultipliers (SiPMs) fabricated at STMicroelectronics (Catania, Italy) [17]. The SiPMs array device
used has a total area of 4.0 × 4.5 mm2 and 4871 square microcells with a 60 µm pitch. The devices
have a geometrical fill factor of 67.4% and are packaged in a surface mount housing (SMD) with about
5.1 × 5.1 mm2 total area [6]. We propose the usage of Pixelteq dichroic band-pass filter with a pass
band centered at about 540 nm with a full width at half maximum (FWHM) of 70 nm, and an optical
transmission higher than 90%–95% in the pass band range was glued on the SMD package using a
Loctite 352 TM adhesive.

With the dichroic filter at 3V-OV, the SiPM has a maximum detection efficiency of about 30% at
565 nm and a PDE of about 27.5% at 540 nm (central wavelength in the filter pass band). Furthermore,
a careful analysis confirmed that the dichroic filter reduces the absorption of environmental light by
more than 60% when the detector works in the linear range in Geiger mode above its breakdown
voltage (~27 V). As described, the PPG detector needs a light emitter together with the introduced
detector based on SiPM technology. We successfully used the OSRAM LT M673 LEDs in SMD package
emitting at 529 nm and based on InGaN technology [6].

The used LEDs devices have an area of 2.3× 1.5 mm2, viewing angle of 120◦, spectral bandwidth of
33 nm, and lower power emission (mW) in the standard operation range. The authors, in order to make
the PPG probe easy to use, have designed a printed circuit board (PCB) handled by a user-interface by
means of NI (national instruments) instrumentation.

The PCB is populated by a 4 V portable battery, a power management circuits, a conditioning
circuit for output SiPMs signals, several USB connectors for PPG probes, and related SMA output
connectors. Regarding the hardware used, more implementation details can be found in the works
of [6,17]. The following figure shows some details of the proposed hardware system for sampling the
PPG signal.

In Figure 3, an overview of the used PPG acquisition system is shown. The PPG sensor probe is
composed by the SiPM sensor with the described LEDs. The PPG sensor probes were placed in the
steering of the car at positions where statistically it is more likely that the driver rests his/her hands.
Please note that to acquire the PPG signal, it is necessary that a single driver’s hand is placed on top
of the PPG sensor probe in order to trigger the detecting of the signal. In this way, we have already
overcome the first issue related to the use of the ECG signal, which—as widely known in the medical
literature—requires at least three points of contact according to the configuration of the Einthoven
Triangle. As showed in Figure 3, the acquired PPG raw signal trough the implemented hardware
motherboard will be processed by a national instrument (NI) based framework, in which we have
several ADC (Analog to Digital Converter) with 24 bits of precision. Specifically, in the following
figure, more details about the used hardware motherboard for sampling the PPG signal are presented.

In Figure 4, we report a snapshot of the implemented PPG data acquisition motherboard. The PPG
sensor probe will be managed by USB connectors, while an ad hoc power management circuit will
be able to manage the power consumption of the SiPM device. More details about that can be found
in the literature [15–17]. The acquired PPG raw data will be fed into the NI device through the SMA
connectors. The following figure shows the implemented hardware framework based on the use of the
NI device.
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In Figure 5, we report an overview of the proposed PPG sampling hardware/software pipeline.
The data acquired on the PPG sensor probes placed on the car steering will be processed by the
NI device, which internally includes a Windows-based operating system with a LabView software
framework [6]. A pipeline for acquiring and processing raw PGG data through the 24 bits ADC plugged
into the NI device was developed as schematized in Figure 5. After the PPG raw data are acquired
through the 24 bits ADC, the LabView algorithm we implemented is able to perform some preliminary
pre-processing of the PPG raw data; specifically, we apply ad hoc FIR (finite impulse response) filtering,
both low-pass and high-pass. Moreover, we perform such a pre-processing operation in the filtered
PPG signal, such as the first and second derivatives for computing minimum and maximum values for
each waveforms and so on. This operation is suitable to prepare the PPG signal to be rendered on the
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monitor attached to the NI device, as shown in Figure 5. More implementation details regarding the
NI-LabView framework can be found in the works of [6,15].
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The PPG waveforms (raw data) of the car driver will be collected as per the scheme reported in
Figure 5. Each of the blocks of the pipeline reported in Figure 6 will be described in the next paragraphs.

2.1. The Hyper Filtering Layers

As described in the work carried out by the authors in [6], the PPG signal in raw format requires a
frequency filtering that allows us to filter the components that are not very useful for our objective
(in addition to the classic harmonics of electronic noise and due to power). Moreover, considering
the real scenario related to driving on the road, it is plausible to assume the presence of disturbances
due to the movement of the driver’s hands or to the vibrations due to the road mandate or to the car
engine. To this end, both in terms of frequency filtering and signal stabilization, the authors proposed
a bio-inspired pipeline that allows excellent results to be obtained, as widely documented in the work
reported in [6] and then later in [15–17]. Taking up only what is of interest for the pipeline objective
described here, the following is the range of filter frequencies that are usually proposed in scientific
literature in relation to the PPG signal [6].

Specifically, a set of FIR filters are configured to work as low/high-pass filters for filtering at the
range of 1–10 Hz, allowing the removal of the 50 Hz power line frequency noise, as well as such
artifacts previously mentioned. A bio-inspired algorithm completes the stabilization of the PPG signal,
as described in the work of [6]. In detail, the authors developed a near real-time stabilization system
of the filtered PPG signal. The FIR filters used both for low frequencies (low pass) and for high
frequencies (high pass) perform a classic filtering (with frequency values similar to those shown in
Table 1) represented by the following classical discrete-time equation:

yPPG[n] =
No∑
i=0

δi·x[n− i], (1)

in which we have defined N0 as the order of the used filter, while δi represents the filter coefficients and
n the number of samples of the processed raw PPG signal x[k]. Clearly, the signal yPPG[n] represents
the filtered PPG waveforms.

Table 1. Low-pass and high-pass filter design for the photoplethysmgraphic (PPG) raw signal.

Type Frequency Pass
(Hz)

Frequency Stop
(Hz)

Passband
Attenuation (dB)

Stopband
Attenuation (dB)

Low-pass 3.8 7.21 0.001 100

High-pass 1 0.3 0.01 40

Obviously, this is not enough to make the PPG signal stable for subsequent processing. It was
necessary to stabilize the signal using an innovative bio-inspired model. As mentioned, the activity of
the ANS correlated to the subject’s attention level influences cardiac activity, specifically the two phases
of the cardiac cycle, namely the systole and the diastole, which are reflected in the PPG signal patterns
(see Figure 1). The authors hypothesized to model the two phases of the systole–diastole cardiac cycle
at the phases of a physical reaction-diffusion (RD) model, that is, the reaction phase combined with the
diastole phase and the diffusion phase with the systolic phase. For this purpose, the authors proposed
the following mathematical model for the mentioned RD system:

∂x1
∂t = −x1 + (1 + µ)y1 − βy2 + ρ1
∂x2
∂t = −x2 + (1 + µ)y2 + βy1 + ρ2

y j =
1
2

(
|x j + 1| − |x j − 1|

)
; j = 1, 2

µ = 0.5; ρ1 = −0.3; ρ2 = 0.3; β = 1; x1(0) = 0.1; x2(0) = 0.08

(2)
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in which the variables x1 and x2 represent the reaction-diffusion (RD) dynamic properly characterized
by the parameters β,ρ1,ρ2 [6]. The following figure shows the dynamic of the x2 variable of the
model reported in (2). It is clear that the dynamics of the variable x2 shown in Figure 7 is very similar
to a classical PPG time series, confirming that the adopted RD model is well suited to modeling
this dynamic.
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Through the analytical study of the dynamics of the first and second derivative of the PPG signal
combined with the correlation study between the PPG waveforms of the filtered signal and that of
the RD model (variable x2), we were able to stabilize the acquired PPG signal, obtaining a robust
time series that contains only PPG waveforms that conform to the photoplethysmographic signal
standard. A more detailed description of the adopted stabilization pipeline is reported in the work
of [6]. This stabilization pipeline is needed to confirm that the PPG signal being acquired is correct,
and thus can be used for further processing related to the driver’s analysis of drowsiness.

Filtering with FIR filters using the frequencies shown in Table 1 is in fact the de-facto standard for
the PPG signal. In this contribution, the authors intend to propose a different solution in relation to the
filtering of the raw PPG signal. This idea will be better described in the next sections.

In the pipeline described herein, we replace this filters setup with another set of properly configured
hyper-filtering layers. The idea that we intend to propose in this work takes hold of the already
established idea of hyper-spectral processing usually applied to 2D imaging [18]. Hyperspectral
imaging, like other spectral imaging, collects visual information from across the electromagnetic
spectrum. The goal of hyperspectral imaging methodology is to retrieve the so-called “frequency
spectrum of each pixel” in order to address the classical imaging issues such as objects recognition,
materials identification, and so on [18]. Well, trying to imitate the same approach, the authors
investigated the utility of applying the same approach to the study and analysis of 1D signals.
In concrete terms, the authors investigated whether, by collecting the information deriving from
a “hyper-filtering” to more than one frequency range of the original 1D signal (PPG, in this case),
we could obtain useful information to characterize the “frequency spectrum of each signal sample”,
that is, the information useful to address the problem for which the signal is analyzed—in our case,
the detection of the driver’s level of attention (drowsiness monitoring).
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For this reason, instead of applying a single filter set (low pass and high pass) to a well-defined
frequency, we analyzed a range of frequencies that would allow us to better characterize the value of
the single signal-sample as the filtering frequency varies. Considering that the useful frequency range,
which allows to obtain an information component of the PPG signal, is included in the 1–10 Hz set,
we have investigated the possibility of appropriately subdividing this frequency range in sub-intervals
determining the frequencies cutting to be applied to simulate the phenomenon of hyper-filtering.
Considering that, in the case of the PPG signal, it is necessary to apply both a low-pass and a
high-pass filtering (therefore, a band-pass filter is required to be exact), we opted for two layers of
hyper-filtering—one that varied the frequencies in the low-pass regime maintaining instead the cut-off

frequency of the high-pass filter (hyper low-pass filtering layer) and, vice versa, one that varied the
cut-off frequencies of the high-pass filter while maintaining constant the frequency of the low pass
filter (hyper high-pass filtering layer). When we refer to the static filter setup, we will refer to the
setup of frequencies shown in Table 1. Furthermore, considering the need to have filters that do not
create distortions or modulations in the bandwidth, we decided to opt for the use of Butterworth filters
in both layers of hyper-filtering. As is known, Butterworth filters are the simplest electronic filters
usable for signal processing applications. The strength of the Butterworth filter is precisely to keep the
frequency response module in the passband as flat as possible—exactly the feature we are looking for.
Butterworth filters are all systems whose transfer function H(jω) contains a Butterworth polynomial
both in the denominator and/or numerator:

H(jω) =
B(n)

( jω
ω0

)
B(m)

( jω
ω0

) , (3)

where B(k)
( jω
ω0

)
represents a Butterworth polynomial of k-order andω0 the related cut-off frequency.

More details about Butterworth filters can be found in the work of [19].
At this point, we used a classical “trial-and-error” approach that would first search for the

best number of sub-intervals in the 1–10 Hz frequency range. Specifically, after a series of heuristic
tests in which we verified the detecting ability of the driver’s drowsiness depending on the number
of filter sub-bands, we reached a value equal to 11 sub-intervals as the best trade-off between
computational load and discriminative capacity. In practice, in our experiments, we found that
when using a smaller number of frequency sub-bands (<11), the detection performance of the
drowsiness level of the entire system decreased a lot. Meanwhile, increasing the number of sub-bands
(>11), the performances remained almost stable, although the computational load of the whole
algorithm obviously increased. Therefore, in order to find a correct trade-off between performance and
computational load, we established that 11 sub-bands were enough to properly discriminate the level
of attention of the driver.

Therefore, for each hyper-filtering layer, we proceeded to subdivide the range of applicable
frequency in 11 specific sub-bands. Once the number of sub-bands was set, we put together a
reinforcement learning algorithm structured as follows:

• We defined an action at as the sub-band frequency value between 0 Hz and cut-off frequency
(frequency pass on Table 1) according to the type of filtering (low-pass or high-pass);

• We defined an Agent select the action at;
• We defined a next state St+1 as a set of pre-processed signals obtained collecting the value of

each input PPG samples (in a windows of 5 sec sampling at 1 KHz as sampling frequency) of the
filtered PPG raw signal at specific sub-band frequency of the action at;

• We define an environment Reward as R(.|st,at), i.e., a measure of drowsiness of the car driver.
We defined as R(.|st,at) the distance of the output of the machine learning system (regression layer
plus SoftMax classification as per Figure 6) with respect to the actual level of attention of the
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car-driver (confirmed by the analysis of the simultaneously acquired EEG signal, as described in
the next sections of the paper)

We are interested to determine the optimal policy Po that minimizes the cumulative discount reward:

Po = argmaxPo E

∑
t≥0

γtR(.|st, at)|Po

, (4)

where γ is a proper discounted coefficient in (0, 1). In order to evaluate the the goodness of a state
st and the goodness of a state-action couple (st, at), we defined the value function and the Q-value
function, respectively, as follows:

VP0(st) = E

∑
t≥0

γtR(.|st)|Po

, (5)

QP0(st, at) = E

∑
t≥0

γtR(.|st, at)|Po

. (6)

By solving the above models through classical Q-learning algorithms [20], we found the following
set of sub-band frequency for each hyper-filtering layer.

Once we have identified the optimal frequency setup using the described RL algorithm in order
to proceed to the hyper filtering of the PPG signal, the latter will be disconnected from the pipeline
as it is no longer needed for the operation of the proposed system concerning the discrimination
and monitoring of the driver’s level of drowsiness. Therefore, the RL algorithm served us simply as
a “one-spot” optimization algorithm to be used only in the search phase of the filtering frequency
setup, and thus it will no longer be used by the proposed pipeline. Obviously, we could have used
different optimization methods to find the optimal frequency values (genetic algorithms, multi-objective
optimization, and so on), although we decided to use RL as we believe it is more easily extensible if we
decide to revise to the proposed pipeline.

At this point, once the frequency sets of the two hyper-filtering layers have been identified,
the PPG raw signal that is gradually acquired will be processed accordingly.

Formally, if we indicate with x(k) the acquired raw PPG signal, for each frequency setup, we obtain
the following hyper-filtered time series:

ϕi
HLP

(k) = FButterworth
(
fi
L , fH , x(k)

)
i = 1, 2, . . . 11 ; k = 1, 2, . . . .n, (7)

ϕi
HHP

(k) = FButterworth
(
fL , fi

H , x(k)
)

i = 1, 2, . . . 11 ; k = 1, 2, . . . .n, (8)

whereϕi
HHP

(k) andϕi
HLP

(k) represent the set of hyper-filtered time series coming from hyper-filtering
high-pass and low-pass layers, respectively. The function FButterworth represents the filter processing
performed by the configured Butterworth filter, while fL, fH represent the fixed cut-off frequencies and
fi

H ,f
i
L the variable ones as per Tables 2 and 3. Now, for each sample of the single waveform of the

source PPG, a dataset of signals will be created, each having a temporal dynamics represented by the
value of the single sample of the PPG waveform after the relative filtering, that is, by the corresponding
sample value of the each hyper-filtered signal ϕi

HHP
(k) and ϕi

HLP
(k) for i = 1, 2, . . . , 11. Figure 8

shows the further processing performed by the proposed pipeline.
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Table 2. Hyper low-pass filtering setup (in Hz).

Filter Fc-pass-1 Fc-pass-2 Fc-pass-3 Fc-pass-4 Fc-pass-5 Fc-pass-6 Fc-pass-7 Fc-pass-8 Fc-pass-9 Fc-pass-10 Fc-pass-11

High-pass 0.5 / / / / / / / / / /
Low-pass 1.00 1.34 2.09 2.321 3.09 3.44 4.2 4.23 5.2 5.52 6.87

Table 3. Hyper High-pass filtering setup (in Hz).

Filter Fc-pass-1 Fc-pass-2 Fc-pass-3 Fc-pass-4 Fc-pass-5 Fc-pass-6 Fc-pass-7 Fc-pass-8 Fc-pass-9 Fc-pass-10 Fc-pass-11

High-pass 0.50 1.5 2.2 2.75 3.12 3.65 4.1 4.487 5.23 5.3 6.11
Low-pass 7 / / / / / / / / / /
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Formally, if we indicate with Wi
PPG(tk) the single segmented waveform of each hyper-filtered PPG

time series, we proceed computing for each sample s(tk) of the waveform a signal-pattern depending
on how that signal sample s(tk) varies in intensity in the various hyper-filtered time series ϕi

HHP
(k)

andϕi
HLP

(k) for i = 1, 2, . . . 11. In this way, we will obtain a fairly large dataset of signals whose length
will thus be equal precisely to the number of filtering frequencies, that is, 11 in this case. The following
equations show how we obtain the signal-patterns ζk

HP(s(tk)) and ζk
LP(s(tk)) for each sample of the

acquired PPG waveforms:

ζk
HP(s(tk)) =

[
ϕ1

HHP
(tk),ϕ2

HHP
(tk), . . .ϕ11

HHP
(tk)

]
k = 1, 2, . . . .n, (9)

ζk
LP(s(tk)) =

[
ϕ1

HLP
(tk),ϕ2

HLP
(tk), . . .ϕ11

HLP
(tk)

]
k = 1, 2, . . . .n. (10)

The following figures show some instances of the hyper-filtering PPG time series ϕi
HHP

(k) and

ϕi
HLP

(k), as well as related generated signal pattern ζk
HP(s(tk)) and ζk

LP(s(tk)).
In Figure 9, we report some instances of the hyper-filtered PPG time series, both high and low-pass

configuration, as per Tables 2 and 3, that is, some instance of the time-series ϕi
HHP

(k) and ϕi
HLP

(k).
It is clear that varying the frequency setup of the used filters the dynamic is quite different with respect
to classical PPG dynamic, so that it is suitable to highlight further information of the source raw
signal. In Figure 10, some instances of the generated signal-patterns ζk

HP(s(tk)) and ζk
LP(s(tk)) are

reported. The dynamic of the signal-patterns ζk
HP(s(tk)) and ζk

LP(s(tk)) shows how the single sample
of the acquired PPG time series varies according to the applied frequency filtering. The study of these
generated signal-patterns allows us to characterize with extreme precision the variations in dynamics
of the source PPG signal and, therefore, of the level of attention related to it. We collected several
signal-patterns as we performed the analysis of each sample of the hyper-filtered PPG time series in a
proper timing window after the car-driver placed their hand over the steering wheel in the part where
the PPG sensor probe is positioned. The below figures report the data acquired by the proposed system
hardware (described in the previous paragraphs) which will be imported on a software framework as
described in Figures 5 and 6. The generated signal-patterns will be fed into the machine learning block,
as described in the following sub-section.
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2.2. The Machine Learning Block

As described in the overall scheme of the proposed pipeline reported in Figure 6, the signal-patterns
generated by the previous block will be fed into a regression network learned through a modified
back-propagation (BP) method, known as the scaled conjugate gradient (SCG) BP algorithm.

The core idea of the SCG algorithm is included on the classical conjugate gradient methods (CGM),
that is, a class of optimization techniques that allow for minimizing the second derivative of the used
learning performance error function [21,22]. From a general point of view, the neural network learning
procedure is similar to minimize such performance error function dependent on the weights of the
network. Depending on the number of layers and thus on weights, the algorithmic complexity of the
learning phase can be high, which is why optimization algorithms are needed. Most of the mentioned
optimization methods are based on the same strategy, that is, they try to minimize the performance
error function by means of a local iterative process suitable to search a minimum of the performance
error function. Basically, for each interaction “k”, the learning algorithm determines a search direction
for which the global performance error function, at interaction “k”, is lower with respect to the previous
value at interaction “k-1”.

Once the search direction was found, the optimization algorithm determines how far to go in the
specified search direction, that is, a step size for the next iteration. Some algorithms propose to set
the search direction to the negative gradient direction, as applied in the classical back-propagation
learning algorithms [22].

The recalled conjugate gradient methods (CGM) are also based on the above general strategy, with
the only exception being the choice of the search direction and step size are performed using information
from the second order Taylor expansion approximation of the performance error (Hessian matrix).
This means that the performance error is basically a quadratic function. The CGM algorithms assures
that the global minimum is detected in a reduced number of iterations with respect to a classical gradient
descent-BP algorithm. Anyway, for each learning iteration, the Hessian matrix has to be computed.

In the SCG algorithm, the complexity related to the Hessian computation is reduced by means of
an estimation and approximation of the Hessian matrix, for which it will no longer be necessary to
calculate each matrix coefficients at each iteration, but rather it will be possible to proceed with an
estimation, evaluating in any case the goodness of this approximation by means of some heuristic
parameters and checks. This result can be obtained by applying the Levenberg-Marquardt [23]
approach to the conjugate gradient methods [21,22]. Obviously, for these reasons, the SCG algorithm
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requires only O(N) memory usage and O(NlogN) of learning complexity (against O(N2) and O(N
logN) of classical BP algorithm, respectively), where N is the number of used neural weights in the
network [22].

For the pipeline herein proposed, a SCG BP neural network composed of 11 neurons in the input
layer (the length of each signal-pattern), 360 neurons in the hidden layer, and 1 classification layer
based on the usage of a SoftMax architecture. About the classification layers based on the use of
SoftMax, more details can be found in the work of [24].

The neural network framework output is the predicted drowsiness level of the car-driver,
from which the pipeline acquires the PPG. Consequently, it generates the signal-patterns used as the
input for the neural learning framework. To be precise, the classification layer has one output whose
value will be considered indicative of adequate attention if it is included in the range [0–0.5], while on
the other hand, it will be considered indicative of a low attention level in the case that the value will be
in the range [0.51–1].

As confirmed by the results reported in the next section, the proposed deep learning framework is
able to correctly estimate the level of drowsiness of the driver with high precision.

3. Results

In order to test and validate the proposed pipeline, we collected several PPG measurements of
different subjects in different scenarios: drowsy driver versus wakeful driver. The PPG acquisitions
were made under physiologists’ directive. We collected data from more than 70 patients with different
ages, sex, and so on. During the testing acquisition of the PPG signals of the subject, we also collect the
EEG signal simultaneously in order to confirm the attention level (drowsy subject versus wakeful ones).
Specifically, through the simultaneous acquisition of the EEG signal, we had precise confirmation
of the subject’s attention level by searching for the presence of alpha and beta waves, respectively,
as known in the literature and moreover illustrated in the previous work carried out by the authors in
relation to their correlation between EEG and drowsiness [24].

As described in the work of [24], in order to confirm that the subject is in a state of drowsiness or
attention, we analyzed the EEG signal acquired simultaneously to the PPG one. This analysis is rooted
in the classical approach of searching for the presence of alpha waves (typically centered in a frequency
range 8–14 Hz) to confirm the state of drowsiness or beta waves (typically aperiodic) in the case of a
high level of attention. Therefore, for each sampling session of the PPG signal, we simultaneously
post-processed the corresponding acquired EEG signal to confirm the state of attention associated
with each time series of acquired PPG signal. To confirm the presence or not of alpha/beta waves,
we analyzed the EEG frequency spectrum [24]. The following figure shows the frequency spectrum of
an EEG signal of a drowsy subject with respect to a wakeful one.

A comparison between Figure 11a,b shows the discriminative use of the EEG signal in confirming
whether or not the corresponding PPG signal was acquired in a state of high attention or drowsiness.
In Figure 11a, the presence in the acquired EEG signal of alpha waves is evident as the spectrum exposes
a peak in the area 10.8–10.9 Hz, which characterizes a low level of attention, and thus drowsiness.
In Figure 11b, a frequency spectrum of an aperiodic EEG signal is instead showed in which it is evident
a typical dynamic of the presence of beta waves characterizing high level of attention.

We sampled the PPG signal of the subject using the hardware setup described in this paper with a
sampling frequency of 1 KHz. For each condition (drowsy versus wakeful), we collected 5 minutes of
PPG signals. All acquired PPG time-series for each level of attention and subject were collected and
divided as 70% for the training phase of the machine learning framework, with the remaining 15%
being used for validation and 15% for the final testing of the proposed pipeline. Obviously, the data
used for testing the proposed pipeline were never fed to the network nor in the training session nor
in validation. The method for improving generalization of the neural network used is the classical
early stopping method. As said, the dataset is divided into three subsets (70% training, 15% validation,
and 15% testing). In the training set, the proposed SCG algorithm performs the gradient and updating
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of the weights and biases (with fixed learning rate), while concurrently, the error on the validation set
is monitored. The validation error normally decreases during the initial phase of training, but when
the network begins to show overfitting behavior, the error on the validation set typically begins to
rise. When the validation error increases for a specified number of iterations (we set 30 iterations),
the learning is stopped, and the weights and biases at the minimum of the validation error are frozen
and then used for the testing phase.Electronics 2019, 8, x FOR PEER REVIEW 18 of 26 
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Moreover, in order to validate the robustness of the proposed approach, we built ad hoc PPG signals
composed of parts of the signal acquired in a state of low attention and signal pieces corresponding
to adequate attention levels. In this way, we were able to verify whether the algorithm was able to
discriminate the attention levels in a robust and efficient way.

The following figures show the performance of the proposed pipeline in a scenario composed
as described by time intervals in which the driver showed little attention (drowsy driver) from
temporal moments in which instead the driver showed an adequate level of attention (wakeful driver).
We consider such an interval of about 8 sec of PPG acquisition in order to show the high-speed
capability of the proposed approach in discriminating a drowsy driver from wakeful ones.

Figures 12 and 13 report two classification instances performed by the proposed method on two
driver-subjects belonging to the dataset used to train the system. Specifically, Figure 12 shows the
confusion matrix of the entire training/validation phase and subsequent testing of a PPG signal of about
8 sec (sampling frequency equal to 1 KHz) composed of various pieces of the PPG signal of the same
subject acquired both during drowsiness and attention; similarly for the confusion matrices shown in
Figure 13, although referring to another subject belonging to the dataset of patients monitored for this
research. As it is possible to see from the overall performance (all confusion matrix and test confusion
matrix) of the two analyzed subjects, the performances oscillate in the range 94%–97%, thus confirming
the high discriminative capability of the proposed algorithm. In Figure 14, we report an instance of the
ROC (Receiver operating characteristic) curve (for the subject reported in Figure 12) confirming the
generalization capability of the proposed neural framework.Electronics 2019, 8, x FOR PEER REVIEW 20 of 26 
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Figure 12. Confusion matrices for the tested scenario: drowsy driver (0) versus wakeful ones (1).
Each of the confusion matrices report the performance of the proposed pipeline in discriminating
drowsy/wakeful drivers for a selected subject from the collected dataset. For this subject-driver,
the pipeline showed 94.5% of discrimination accuracy during the testing phase.
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Each of the confusion matrices report the performance of the proposed pipeline in discriminating
drowsy/wakeful drivers for a selected subject from the collected dataset. For this subject-driver, the
pipeline showed 97.5% of discrimination accuracy during the testing phase.
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The overall average accuracy of the proposed approach tested in all the collected dataset is about
95.21%, confirming the high effectiveness of the proposed method in recognizing and discriminating
the attention level of the driver. Moreover, considering the time interval selected for the tested scenarios
(8 s), the obtained results confirm the robustness of the method in providing an estimate of the attention
level in adequate times for the automotive sector.

The testing and validation phase was performed over a Intel 16-Cores Server with MATLAB
release 2018b full-toolboxes running with a CUDA support provided by a NVIDIA GeForce RTX 2080
GPU included in the graphics card of the server used. While the learning and training phase required
a few minutes, the testing and validation performed in feed-forward mode was able to provide results
(estimation of car-driver drowsiness) in a time range near to real time.

4. Discussion and Conclusions

The results reported in the previous section confirmed, beyond any reasonable doubt, the capability
of the proposed method in the early discrimination of the level of attention of the driver. The competitive
advantage of the method herein described with respect to the methods proposed in the literature lies in
the fact that it does not require any data analysis in the frequency domain, as it happens in the methods
based on the use of the HRV indicator. In fact, as known in the literature, to obtain an estimation of the
HRV indicator, it is necessary to process the original signal (usually ECG) both in the time domain
and subsequently in the frequency domain. In particular, it is necessary to preliminary acquire and
filter the ECG signal and then identify the dynamics of the R-R peaks intervals of the sampled ECG
signal. Finally, it is needed to switch to the frequency domain and perform a frequency analysis usually
through the calculation of the power spectral density (PSD) or, better still, of the Lomb–Scargle (LS)
periodogram. This processing, although it allows obtaining a good estimation of the subject’s level of
attention, is nevertheless computationally expensive as it requires the computation of the PSD or the
LS periodogram, as well as considerable buffering data, as confirmed by the works reported in the
scientific literature [1–3]. The proposed approach does not require any post-processing in the frequency
domain nor any calculation of the PSD or the LS periodogram, drastically reducing the computational
load needed to obtain an estimation of the driver’s drowsiness level. At the same sampling frequency
(fs = 1KHz), we found that to determine the level of attention of the driver subject from the analysis of
his/her HRV by means of the LS periodogram, it takes a few minutes of ECG buffering/processing [1–3],
against a considerably reduced time needed for the proposed system.

Furthermore, the proposed method does not require sampling of the ECG nor EEG signals of
the driver, which in fact are particularly difficult to acquire inside the car’s passenger compartment.
It is true that the main method for determining the level of attention is certainly the analysis of the
EEG signal, but this is not easily sampled inside a vehicle. In fact, to acquire the EEG signal even
from a single channel, it is necessary to position electrodes in the subject’s head, and it is thus clear
that its sampling is rather invasive and not very comfortable for the driver. Moreover, EEG sampling
through electrodes placed in the subject’s head of the driver would require a series of safety checks
and compatibility with automotive standards for the car and for the driver, not making it easy to use
inside a car. In addition, some drivers may be reluctant to wear helmets or sensors for sampling the
EEG signal. For these reasons, we prefer to use a method that is non-invasive for the driver and that
allows obtaining an excellent level of estimation of drowsiness.

As described, the proposed method requires sampling only the PPG signal, which can be easily
sampled by the described hardware system positioned in the steering of the car. As demonstrated
by the performed tests, the proposed pipeline requires only a few seconds of acquisition to correctly
discriminate the attention level of the driver. The level of accuracy achieved is optimal if one considers
that the method must obviously be combined with other methods of recognition of the level of attention,
such as the imaging methods in the visible and infrared spectrum. The machine learning framework
with which the proposed method is equipped has proven to be adequate for the task of learning data
(signal-patterns) generated by the pre-processing of the waveforms of the acquired PPG signal. In fact,
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the ability to discriminate the attention level has proven to be high in the large training set, which,
as mentioned, included several minutes of PPG signal acquisition in more than 70 subjects in both
scenarios (drowsy versus wakeful). The basic idea of discriminating the level of attention of the driver
through an hyper-filtering technique of the PPG signal originated, as anticipated in the introductory
section, from the intuition to contextualize the hyper-spectral approach successfully applied in the
solution of problems in the imaging/video field. Moreover, the authors wanted to better investigate the
variation of the information content of the PPG signal for different frequency filtering sets, trying to
understand if these dynamics could be useful in the characterization of the “naked” variations that
are anyway present in the PPG signal every time a variation of attention occurs in the analyzed
subject. In practice, with this method, we wanted to emulate another approach widely known in the
video/imaging field, that is, “motion magnification”, in which the authors are able to highlight the
dynamics of motion that best characterize the analyzed scenario, opportunely amplifying some range
of frequencies apparently not visible to the naked eye. Similarly, through the generation of the various
signal-patterns in the proposed article, we tried to study the “micro-variations” of the information
content of the PPG signal, thus determining if these patterns could be predictive of variations in the
level of drowsiness. The excellent results obtained and reported in the confusion matrixes shown
in Figures 12 and 13 confirmed that both intuitions were correct and well suited for monitoring the
driver’s level of drowsiness by analyzing only the PPG signal.

We prefer to use the machine learning approach instead of classical methods (such as K-nearest
approach, support vector machine, or random forest), because the authors believe it performs better
than these classic methods and because it is more easily extendable as well as portable in the embedded
devices with which the latest generation cars are equipped.

The machine learning algorithm is currently being ported to an embedded system based on the
SoC STA1295 ACCORDO 5 based platform produced by STMicroelectronics (software environment
with embedded Linux), which is equipped with several ARM Cortex cores as well as a GPU for
3D graphics and a video and image dedicated pipeline [25]. Moreover, the part of the proposed
pipeline that takes care of acquiring and processing the PPG signal appropriately is being ported to a
hardware/software environment based on SPC5x CHORUS microcontroller technology released by
STMIcroelectronics [26].

Figure 15 shows the hardware setup on which the pipeline is being ported.
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Currently, the authors are investigating further extending the pipeline produced, including the
use of modern convolutional neural networks with dilation (D-CNNs), especially for applications in
the medical sector, where promising results have already been obtained [27,28]. Interesting results
(increase in the drowsiness monitoring performance and further reduction of the computational load)
were obtained by the authors by combining the features obtained through the hyper-filtering system
proposed in this article with ad hoc hand-crafted features [29] combined with a study of the PPG signal
auto-correlation [30]; both have already been successfully used in other applications in the medical field.
These results will be presented in a future article on the same subject. Moreover, we are investigating
the approach described in the work of [31], which offers a solution to acquire the ECG signal through a
single point of contact, being able to integrate the information of the electrocardiographic signal in the
pipeline proposed by us.
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102019000000133, 07 January 2019
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