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Abstract: Smart meter roll-out in photovoltaic (PV) household-prosumers provides easy access to
granular meter measurements, which enables advanced energy services. The design of these services
is based on the training and validation of models. However, this requires temporal high-resolution
data for generation/load profiles collected in real-world household facilities. For this purpose, this
research developed and successfully calibrated a new prototype for an accurate low-cost On-time
Single-Phase Power Smart Meter (OSPPSM), which corresponded to these profiles. This OSPPSM is
based on the Arduino open-source electronic platform. Not only can it locally store information, but
can also wirelessly send these data to cloud storage in real-time. This paper describes the hardware
and software design and its implementation. The experimental results are presented and discussed.
The OSPPSM demonstrated that it was capable of in situ real-time processing. Moreover, the OSPPSM
was able to meet all of the calibration standard tests in terms of accuracy class 1 (measurement
error ≤1%) included in the International Electrotechnical Commission (IEC) standards for smart
meters. In addition, the evaluation of the uncertainty of electrical variables is provided within the
context of the law of propagation of uncertainty. The approximate cost of the prototype was 60 €
from eBay stores.

Keywords: advanced metering infrastructure; data acquisition; IEC standards; low-cost; open source;
power measurement; smart meter; uncertainty evaluation

1. Introduction

Smart meter roll-out in households with PV distributed generation, hereafter known as PV
household-prosumers, provides easy access to on-time detailed meter measurements, which enable
advanced energy services. The range of services provided include the application of demand response
measures [1–6], smart home/building automation [7,8], and the provision of balancing services such as
frequency control services (frequency containment reserve [9–12] and frequency restoration reserve [13]).
The design of these services is based on the training and validation of models. However, this requires
temporal high-resolution data for generation/load profiles collected in real-world household facilities.
The optimal sizing of storage and generation facilities for these PV household-prosumers [3,14–17]
also depends on the availability of reliable PV household profile data. The criteria for this sizing
are based on technical, economical, and hybrid indicators [18]. Furthermore, the monitoring of PV
household generation/load profiles has experienced an exponential growth in recent years [19–31]. PV]

household-prosumers generally include a battery energy storage system (BESS) [18,32].
BESSs, which manage household appliances [17,33,34] and/or renewable generation (e.g., PV [17,33–37]),

often experience significant power fluctuations (range of 0.01−5 Hz [35,36,38–40]). These involve
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high charge/discharge powers. These rapid fluctuations should be taken into account in the design
and assessment of advanced energy services and/or their sizing. For example, when longer time
frames are envisaged in profile data (e.g., 1 or 5 min vs. 1 s), the sizing of storage and generation
facilities for PV household-prosumers can lead to the miscalculation of costs [41]. In this context,
the results may overestimate self-consumption and self-sufficiency ratios of these PV prosumers [3,18]
and underestimate battery aging [42].

Regarding the availability of household consumption profile data, there are currently a small
number of open-source datasets with varying levels of detail and scale. The projects in References [19,20]
provided active power data at a sampling rate of 6 s and 8 s, respectively. Certain datasets, such
as those in References [21,22], sampled data at 10 kHz, but only for a few weeks. Others, such as
References [23–26], recorded data for at least a year, but at sampling intervals of 1 min or more.
In addition, Reference [27] aggregated current and voltage at 6 s. Some publicly available datasets
focused on capturing many individual appliance signatures [28,29], whereas other datasets offered
aggregate and submetering measurements, sampled at 1 Hz, such as References [27,30,31].

The absence of reliable household consumption profile data, namely, data of temporal
high-resolution (timeframe for data availability about 4 Hz or 0.25 s) was evidently a problem.
To overcome this obstacle, this research study developed and calibrated a prototype of an accurate
low-cost OSPPSM. In short, major contributions of the prototype (see Section 2) are the following:
(i) it is able to monitor and store the fundamental AC electrical variables (v, i, PF (cos ϕ)) and the
derived variables (active and reactive power p, q) within an non-intrusive load monitoring (NILM)
scheme, (ii) it is able to monitor at temporal high-resolution (4 Hz, 0.25 s), and to store data both
locally and in the cloud. In this way, PV household-prosumer profiles are available to accurately assess
different advanced energy services provided by PV household-prosumers.

The rest of the paper is structured as follows. Section 2 overviews the state of the art regarding
prototypes of power smart meters for households. Section 3 reviews the theoretical framework
for electrical measurements. Section 4 describes the prototype from both a hardware and software
perspective. Section 5 outlines the standard procedure for calibrating the prototype and describes the
uncertainty assessment. Section 6 presents the results and discusses them. Lastly, the conclusions
derived from this study as well as plans for future research are given in Section 7.

2. Research on Power Smart Meter Prototypes for Households

This section assesses the state of the art regarding prototypes of power smart meters for households.
Depending on the support platform, these prototypes can be classified as follows: (i) Arduino
open-source platform [3,7,14,43–57], (ii) field-programmable gate array (FPGA) technology [4,41],
(iii) Lopy [5], and (iv) others [6,8,51,52].

The following research studies on the Arduino platform are presented in ascending order,
depending on the number of functions offered by each prototype. Reference [43] developed a
general–purpose voltage and current monitoring system designed for mobile devices via Bluetooth
communication. It used an Arduino Nano board [53] to monitor instantaneous values. The research in
Reference [47] developed a prototype for a power factor (PF) compensation monitoring system, capable
of compensating at the industry or household level. This involved the measurement of voltage, current,
and active power by means of a D1R1 Arduino microcontroller, based on an ESP-8266EX platform.
The study in Reference [48] remotely controlled an energy meter by disconnecting and reconnecting the
service of a particular consumer, based on an ATMega328P microcontroller. Reference [49] designed a
meter that monitored energy and also sent data to the Internet by means of a wireless transmission
system. The meter used global system mobile (GSM) and ZigBee wireless communication protocols.
The study in Reference [44] developed a low-cost system for monitoring and remotely controlling
greenhouses. The system used fuzzy logic to adapt to environmental conditions by means of an
Arduino Mega board [54].
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On the other hand, focusing on applications for PV systems on the Arduino platform, the research
in Reference [45] developed a household monitoring system with a data logger, based on an Arduino
platform. Hall-effect sensors with an analogical to digital converter (ADC) (LTS-15NP) were planned
for currents. Reference [3] arranged a set of sensors based on an Arduino platform for monitoring and
controlling household appliances with PV and BESS, which provided significant insights into their
respective benefits. The monitoring system in Reference [46] had an Arduino Mega 2560 microcontroller
board [58] and different sensors, with a clock speed of 16 MHz. It offered considerable flexibility
to acquire data, and interface with the computer. The current, from the INA 219 DC [55] sensor,
had a resolution of 0.1 mA and 1% accuracy.

Concerning FPGA technology, the smart meter developed in Reference [4] permitted a
reconfigurable architecture. It allowed users to select the proper processing modules, depending
on their application. The meter had voltage and current signals at a high sampling rate under a
non-intrusive load-monitoring (NILM) scheme.

With regard to Lopy technology, the research in Reference [5] presented the proof-of-principle of
a user-friendly monitoring system for household power consumption that made consumers aware
of its consumption and impact. It was designed with a Lopy 4 module based on ESP32, and Wi-Fi
connection to upload data to the Internet.

As for other platforms, the study in Reference [51] designed a monitoring system for stand-alone
PV systems that provided pulse width modulation (PWM) signals for the battery charge controller.
Reference [8] developed the prototype of a low-cost power smart meter, based on an ADE7913 chip.
This meter was able to adapt its behavior to the grid with a high level of accuracy. Reference [6]
designed an open-source, low-cost single-phase energy smart meter and power quality (PQ) analyzer
that could be easily set up and used by inexperienced users at home. This instrument was able
to retrieve a large amount of information related to energy consumption and PQ variables, which
complied with national and international standards.

Regarding the calibration of meter prototypes, only Reference [52] addressed this issue with a PQ
meter, according to the IEC standard 61000-4-7 [56]. Reference [50] devised a method for calibrating a
ZMPT101B voltage sensor, using polynomial regression.

Concerning the evaluation of uncertainty, Reference [57] compared three methods to assess
uncertainty in impedance monitoring. Moreover, Reference [58] applied a method to evaluate the
uncertainty of data aggregation for root mean square (R.M.S) voltage [59].

This literature review [3–8,43–51] reflects that an accurate low-cost prototype for monitoring PV
household-prosumers at temporal high-resolution has still not been developed and validated. Major
shortcomings found in the prototypes proposed thus far include the following.

• Timeframes for monitoring were not adjusted to a temporal high-resolution [59], i.e., in the range
0.25 s [35,36,38–40], namely, 300 milliseconds [44], 0.5 s [47], 3 s [58], 5 s [49], 30 s [45], 1 min [3,44],
10 min [58], and 0.5 h [39].

• With the exception of References [6,8,42,47], data were not uploaded to the Internet. Even though
Bluetooth communication provided an alternative communication channel, it was rarely
planned [4,43]. Other researchers used GSM technology [48,49].

• If the prototype design included a data upload to the Internet, its cadence was low, e.g., 1 s [47],
3 s [6], 5 s [5], 10 s [4], and 5 min [49].

• Redundant storage means were rarely considered, e.g., local storage and upload to the Internet in
Reference [4] even though the storage capacity was limited to two days.

• Even when the NILM scheme was included [4,6,8,47], it was inaccurately designed.
• Open source software was only used in References [6,43].
• None of the prototypes were calibrated according to standard calibration tests, and the uncertainty

evaluation was only partially carried out in References [45,51].
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• The analysis window for the stationary analysis was not frequently discussed, except for
Reference [8] with 200 ms.

• Most of the meter prototypes measured DC variables, with the exception of the AC prototypes in
References [4–6,8,43,47,57].

• Although various references [4–7,44,46–49] state that a low-cost prototype was developed, its
actual cost was rarely evaluated, except for Reference [8] with a partial cost of 13 €, [43] with a
cost of 25 €, and [45] with a cost of 60 €.

This study developed and calibrated a prototype of an accurate open-source, low-cost, OSPPSM
in order to acquire the PV household-prosumer profiles at temporal high-resolution. This prototype
has an Arduino low-cost, open-source platform and is able to monitor and store the fundamental AC
electrical variables and the derived variables within an NILM scheme. This prototype has none of the
previously mentioned shortcomings. The OSPPSM is, thus, able to monitor at temporal high-resolution
(4 Hz, 0.25 s), and stores data both locally and in the cloud. The stationary analysis has 10-cycle analysis
window with a sampling rate of 1 kHz. In this way, PV household-prosumer profiles are available to
accurately assess different advanced energy services provided by PV household-prosumers. These
services account for the effects of both the fast short-term fluctuations of input profiles (<4 Hz) and
their hourly/daily/weekly/monthly variability.

3. Theoretical Background for Electrical Measurement

In electrical systems, time-invariable voltages or currents are almost impossible. Therefore,
the window size of the analysis is assumed to be stationary. The windowing results in a given time
localization and the spectrum this obtained is called a local spectrum. This window moves along
the entire length of the signal in order to calculate the localized spectra. The window that measures
electrical variables (e.g., voltage, current, harmonics, etc.) is a 10-cycle time interval for a 50-Hz power
system (Class-A performance [59]).

To accurately measure an electrical signal, the sampling frequency should be at least twice the
highest frequency of the signal. Since this study used a 1 kHz sampling frequency, the number of
samples ns for the 10-cycle analysis window was, thus, 200.

The R.M.S. value of an electrical variable (e.g., v, i) in a specified analysis window is given by the
aggregation using the square root of the arithmetic mean of the squares of the ns instantaneous values
taken [4,5,59]. The instantaneous value of the active power is given by the product of the instantaneous
values of voltage and current [60]. The average active power for a set of samples ns is given by the
equation below [60].

pavg =

ns∑
n=1

vins,n
·iins,n

ns
(1)

The variable power factor PF can be expressed as the ratio of the average active power to the
product of the R.M.S. values of voltage and current, respectively [4,5,47]. Lastly, the R.M.S. reactive
power q is given by the equation below.

qr.m.s. = vr.m.s.
·ir.m.s.

·sin(arccosϕ) (2)

4. Design of the On-Time Single-Phase Power Smart Meter (OSPPSM)

4.1. Hardware Design

This study designed and developed an OSPPSM for households with both local and cloud storage,
based on AUR3 [61] and AD1R1 [62] Arduino boards. The OSPPSM (Figure 1) is modularly integrated,
which means that, in the case of malfunction, parts can be replaced without affecting the general
operation of this electrical measuring instrument (MI).
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Figure 1. OSPPSM prototype.

In the first phase, the analog voltage and current sensors [63] on the AUR3 Arduino board of this
electrical MI capture and process fundamental electrical variables, such as the voltage v, current i,
and PF (cos ϕ). This is followed by the calculation of derived variables, active p, and reactive q power.
In a second phase, the AD1R1 Arduino board uploads the data to Firebase [64] using a Wi-Fi connection.

This OSPPSM receives two signals from the consumer unit to which it is connected: voltage and
current. Each signal comes from the sensors, and is read through three analog inputs, including one
for voltage and two for current.

Although it was possible for the the MKR WiFI 1010 Arduino board [65] to have more than one
analog input and Wi-Fi connection for access to the Firebase, this option was disregarded because of
its high price. Moreover, other low-cost Arduino Wi-Fi boards (e.g., wemos D1 R1 [62], wemos d1
mini [62], and NodeMCU [66], etc.) usually have only one analog input, and, therefore, could not be
used. Even a single board could perform all of the tasks (i.e., acquisition of electrical signals, processing,
and upload data to the cloud). This had the drawback of requiring high board features. This research,
thus, decided on a dual board configuration in order to obtain the following: (i) significant cost
reduction, (ii) improved device performance in terms of time of computation, thanks to dual processing,
which provided shorter interval times for managing recordings. Figure 2 shows a hardware block
diagram of the OSPPSM.
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Figure 3 shows the wiring diagram of the OSPPSM. The Arduino boards are fed through one of
the two 12 V AC outputs, which is rectified to DC to match the supply voltage of the AUR3 and AD1R1
boards (range 7–12 V DC). For the voltage signal, the ZMTP101b [67] voltage transformer is used to
transform the 230 V AC signal to 5 V DC accepted by the AUR3 analog input. The A0 input is reserved
for the voltage.
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The STC-013 current sensor [68] has a 1-V DC output. This is largely due to the ADS1115 analog
digital converter [69], which adapts to the 5-V DC voltage for the analog inputs of the AUR3 board.
The A4 and A5 inputs are reserved for current.

4.1.1. Microcontroller

The microcontroller is a small computer inside of a single integrated circuit, and contains one or
more CPUs, RAM memory, and programmable input/output peripherals. They are widely used in
industrial and residential equipment, because they are able to control signals and devices.

The rapid evolution of electronic devices had led to the availability of low-cost powerful hardware
tools, which provide a viable solution for measuring and monitoring applications. In this context,
the AUR3 board performs data digitization, processing, and transmission. It has a high 16-MHz
clock speed, which obtains measurements in shorter time intervals (0.25 s). This is one of the aims of
our OSPPSM.

The AUR3 board is based on the ATmega328P microcontroller on a platform for open-source
electronic prototypes. Its technical specifications are given in Reference [61].

4.1.2. Wireless Communication

The wireless communication module is based on the AD1R1 board and serves as an interface
between the microcontroller and the cloud data storage (i.e., Firebase). This board uses the ESP8266
platform as the core of operations, which allows WEP (Wired Equivalent Privacy) or WPA/WPA2
(Wi-Fi Protected Access) authentication for secure Wi-Fi communication. Furthermore, it operates
with 802.11 b/g/n wireless systems, which are supported by most routers and modems on the market.
These features signify that the average data upload time to the cloud is 0.15 s, which is shorter than the
0.25-second time interval of the planned power. The technical specifications of AD1R1 are given in
Reference [62].

4.1.3. Current Sensor

Both invasive and non-invasive sensors are on the market. Invasive sensors require modification
of the electrical installation, whereas non-invasive sensors measure current without any modification.
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Techniques used to measure electrical currents include Hall Effect sensors and current transformers,
which all transform the electrical current signal into a proportional voltage signal.

The STC-013 non-invasive current sensor [68] from YHDC is planned for the OSPPSM. It has a
core to be installed at the service cable of the consumer unit of the monitored household. Options
range from 5 to 100 A. The 30-A option is tuned for households, since it reaches a 6600-W power, which
is higher than the average of most households. The 100-A limit allows 23,000-W household power.

An ADC, model ADS1115 [69] (Texas Instruments brand) matches the STC-013 output voltage to
the 5-V DC level of the AUR3 board.

4.1.4. Voltage Sensor

There are various options for measuring and adapting voltage to the analog input signal of the
AUR3 board: (i) a 230/12 V transformer, AC/DC rectifier, and voltage divider for adapting to a 5 V
DC, (ii) a 230/24 V transformer, AC/DC rectifier, and DC meter FZ0430 that gives a maximum of 5 V
DC, (iii) a 230/24 V transformer, AC/DC rectifier, and INA219 DC that gives a maximum of 5 V DC,
and (iv) a ZMPT101b voltage transformer that directly provides a maximum of 5 V DC. Because most
of these possibilities require several components, option (iv) was selected because it adapted best to
the AUR3 board level. The technical specifications of the ZMPT101b voltage transformer are given in
References [67].

4.1.5. Datalogger Shield

One problem that can arise is that, depending on network usage, the Internet connection for
uploading data to the cloud is not always guaranteed, or may be excessively slow. For this reason,
the OSPPSM was equipped with a datalogger shield with an 8 GB SD memory card. The storage
capacity adopted has an autonomy of two years as well as five floating point data types for variables v,
i, PF, p, and q, every 0.25 s. In addition, the datalogger shield includes a real-time clock that records the
date and time of the measurements.

4.2. Software Design

Figure 4 shows a process timeline for the OSPPSM. In a first parallel process, the software in
the AUR3 main microcontroller (Section 4.2.1) determines the fundamental and derived electrical
variables, sends them through the serial port, and, lastly, stores them on the data logger. In a second
parallel process, the software in the AD1R1 board (Section 4.1.2) uploads data to the Internet through
the Wi-Fi connection.
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4.2.1. Measurement and Computation of the Electric Variable

The microcontroller in the AUR3 board determines the fundamental and derived electrical
variables, as reflected in the flowchart in Figure 5. The first step involves the initialization of the
system. This includes putting the serial port in the data-sending mode by resetting analog inputs,
the initialization of the SD memory card system, and the initiation of the clock in real time. However,
these processes are only performed when the meter is connected. The second step is the measurement
of fundamental electrical variables through analog inputs A0, A4, and A5. The fundamental and
derived electrical variables are computed as specified in Section 3. Electrical variables are then sent
through the serial port to the AD1R1 board, and, lastly, the fundamental and derived electrical variables
are stored in the SD memory card as a backup copy. The measurement and storage of these variables
are continuously performed while the meter is connected.
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The maximum times for each task are shown in Figure 4: (i) 200 ms for the 10-cycle analysis
window, (ii) 30 ms for calculating fundamental and derived variables, (iii) 1 ms for sending data to the
AD1R1 board, (iv) 9 ms for storing all of the variables in a backup SD memory, and (v) a waiting time
of 10 ms.

The software is implemented in the Arduino open-source platform [70], which is able to acquire
data each millisecond, which signifies a 1-kHz sampling frequency. As a result, 200 measurement
samples are acquired in the 10-cycle analysis window.

4.2.2. Cloud Data Uploading

The IoT has various options for storing data records in the cloud, such as ThingSpeak [50,71–73]
and MQTT [74–77]. In their free version, both platforms store data records every 15 s. However,
for shorter time intervals, it is necessary to purchase a standard commercial license. Even in that case,
the shortest possible rate limit is 1 s.

Our study required data record storage and availability every 0.25 s. The only platform that
provides this rate in its free version is Google’s Firebase [64] platform with compatible data record
storage times of every 0.1 s.

Cloud data uploading follows the flowchart in Figure 6. The upload program is located in the
AR1D1 board [62], and performs the following tasks: (i) initialization of the system, which includes the
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preparation of the serial port in the data reading mode, the initialization of the Wi-Fi system to connect
the household wireless network, and the initialization of the Firebase system, (ii) data reading from the
AUR3 board, (iii) data uploading to the cloud using Firebase, and (iv) confirmation of data uploading.
Tasks (ii-iv) are continuously performed while the meter is connected.
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The maximum times for each task are shown in Figure 4: (i) 1 ms for data reading from the serial
port, (ii) 150 ms for data uploading to the cloud, (iii) 50 ms for confirming the data uploading by the
Firebase server, and (iv) a wait of 49 ms.

5. Standard Guidance on Calibration and Uncertainty Evaluation for Power Smart Meters

This section provides the theoretical background for the characterization of errors, which includes
the standard tests that should be used to calibrate power smart meters and the evaluation procedure of
the uncertainty in measurements.

5.1. Characterization of Errors

The error of an MI (e.g., a power smart meter) is obtained by subtracting the true value from the
indicated value [78]. In particular, the intrinsic error [79] of an nth measurement of the variable xi
is the error of the MI as compared to the reference measurement standard (RMS) when used under
reference conditions.

Exn
j
= 100×

(xn,MI
j,re f − xn,RMS

j,re f )

xn,RMS
j,re f

(3)

The mean absolute percentage error (MAPE) and the mean relative error (MRE) for a set of
measurements ns of the variable x j = [x1

j , x2
j , . . . , xns

j ] are given by Reference [51].

MAPEx j
=

100
ns
×

ns∑
n=1

∣∣∣∣∣∣∣∣
(xn,MI

j,re f − xn,RMS
j,re f )

xn,RMS
j,re f

∣∣∣∣∣∣∣∣ (4)

MREx j =
100
ns
×

ns∑
n=1

(xn,MI
j,re f − xn,RMS

j,re f )

xn,RMS
j,re f

(5)
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The characterization of the intrinsic error distribution Ex j
= [Ex1

j
, Ex2

j
, . . . , Exns

j
] can be performed

by moments, which are a set of descriptive constants of the distribution. Thus, the first moment mean
(µ) of the distribution Ex j

is given by the equation below.

µExj
=

ns∑
n=1

Exn
j

ns
(6)

The second moment is the variance (σ) of the distribution.

σ2
Exj

=

ns∑
n=1

(
Exn

j
− µExj

)2

ns − 1
(7)

Alternatively, the standard deviation can be obtained as follows.

σExj
=

√
σ2

Exj
(8)

5.2. Standard Calibration Test

This section provides a brief description of the common standard tests that should be used to
calibrate a power smart meter. It is necessary to apply standard calibration tests for voltmeters [80],
ammeters [80], watt meters [81], varmeters [81], and PF meters [82]. Additionally, functional tests
for measuring, recording, and displaying PQ parameters in instruments for the distribution grid are
relevant [83].

The accuracy of an electrical MI characterizes the degree of proximity between the indicated value
and the true value. In particular, the accuracy class categorizes the potential errors within specified
limits [78]. In the calibration of an electrical MI, the indicated values [79] of the MI are compared
with those of a RMS (indicative of the highest metrological quality) under different working points
at reference conditions [78]. As a result of these tests, a maximum intrinsic error is obtained, which
defines the accuracy class of the calibrated electrical MI [78]. In what follows, the common standard
tests are described.

The intrinsic value test determines the intrinsic error of an electrical MI for the fundamental and
derived electrical variables under reference conditions [78]. The measuring range of the fundamental
variables (v, i, PF (cos ϕ)) includes the interval of 0% to 120% of the rated value at different points on
the scale [83]. For ammeters (current measuring [80]) and voltmeters (voltage measuring [80]), both
variable magnitudes must be modified. For PF meters (PF measuring), the PF should be modified [82].
For watt meters (active power measuring) and varmeters (reactive power measuring [81]), once the
rated voltage and reference PF are fixed, the current should be changed [83].

The current magnitude distortion test [83] superposes a 20% harmonic third-magnitude wave on
the sinusoidal fundamental electrical variables, while adapting the fundamental component to maintain
the resulting R.M.S. value. In the case of watt meters, varmeters, and PF meters, a waveform with 20%
of the third harmonic to the rated voltage and current is superposed, and the fundamental component
is adapted to maintain the resulting R.M.S. value [80–82]. The intrinsic error is then determined.

The alternating current frequency variation test applies a frequency variation from 40 to 60 Hz
to fundamental electrical variables [83]. Particularly for PF meters, the frequency change applies to
voltage and current, with different PFs (PF: 0.5 lagging, 1, 0.5 leading). For watt meters and varmeters,
the PF is set at the reference value [81].

The alternating current/voltage component variation test performs two assessments on PF
meters [82]. The first one focuses on the voltage variation, and fixes the current at 50% of its rated
value with three voltage magnitudes: (i) rated value, (ii) lower limit of the nominal range of use (NRU),
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and (iii) higher limit of the NRU. In addition, it is necessary to include different PFs (0 lagging, 1,
0.5 lagging, and 0.5 leading). The second assessment focuses on the current variation, and fixes the
voltage at a rated value, with three current magnitudes: (i) rated value, (ii) lower limit of the NRU,
and (iii) higher limit of the NRU. Once again, the different PFs should be analyzed [83]. In the case
of watt meters and varmeters [81], the current is set to 80% of the upper limit of the NRU and PF
at reference conditions with three voltage magnitudes: (i) rated value, (ii) lower limit of the NRU,
and (iii) higher limit of the NRU. The intrinsic error is then evaluated [78].

The PF variation test focuses only on the variable active power (wattmeter) and reactive power
(varmeter) [81]. This includes two assessments at reference frequency. The first is at the nominal
current, where the voltage measuring range is from the lower to upper limit of the NRU, with different
PFs (1, 0.5 lagging, 0.5 leading). The second is at nominal voltage, where the current fulfills the relevant
previous variation range [83]. The intrinsic error [78] is then evaluated.

The continuous overload test applies an overload of 120% for two hours on fundamental electrical
variables. For watt meters, varmeters, and PF meters, the 120% overload applies to the current,
once the rated voltage and reference PF have been fixed [83]. The intrinsic error [78] applies to the
evaluated quantities.

5.3. Uncertainty in Measurements

The objective of a measurement is to determine the true value of a measurand [84]. However,
the result of a measurement is an estimate of this true value. It should, thus, be accompanied by a
statement of the uncertainty of that estimate [85]. Consequently, the uncertainty reflects the lack of
exact knowledge of the value of the measurand [84].

5.3.1. Uncertainty of Fundamental Variables and Standard Uncertainty

The uncertainty evaluation associated with the measurements of a fundamental variable is
characterized by the standard uncertainty [84]. This can be obtained from a Type A or Type B
evaluation. These are essentially two ways of evaluating uncertainty components [84], which are based
on different procedures and probabilistic distributions.

The standard uncertainty type A for a series of observations ns of the variable x j = [x1
j , x2

j , . . . , xns
j ]

is characterized by a statistical analysis, in particular, the estimated variance [84].

σs
x j
= σs

x j
(µx j) =

√√√√√√ ns∑
n=1

(
xn

j − µx j

)2

ns − 1
(9)

where:

µx j =

ns∑
n=1

xn
j

ns
(10)

In addition to previous data, the evaluation of standard uncertainty type B requires knowledge
of the MI, manufacturer specifications, and calibration and uncertainty data, defined by the
manufacturer [84].

5.3.2. Uncertainty of Derived Variables and Combined Uncertainty

The combined uncertainty of a derived variable y of two or more fundamental variables
(x j, xm, . . . , xw) is characterized by a numerical value expressed in the form of standard deviation
obtained by applying the usual method of the combination of variances [84].



Electronics 2019, 8, 878 12 of 29

σc
y =

√√√√ nv∑
z=1

[
∂ f
∂xz

]2[
σs

xz(µxz)
]2
+ 2

nv−1∑
z=1

nv∑
j=z+1

∂ f
∂xz

∂ f
∂x j

(
σs

xz(µxz)·σ
s
xz(µx j)·ρ(xz, x j)

)
(11)

where:

ρ(µxz ,µx j) =

ns∑
n=1

(xn
z − µxz) ×

(
xn

j − µx j

)
ns − 1

/σs
xz ·σ

s
x j

(12)

Regarding the OSPPSM, the combined uncertainty of the derived variables, active p, and reactive
q power, can be obtained using the formulas below [84].

σc
p =

√√√√√√√√√√√√√√√√√ [µiµPF]
2
·(σs

v)
2 + [µvµPF)]

2
·

(
σs

i

)2
− [µvµi sin(arc cos(µPF))]

2
·

(
σs
ϕ

)2

+2


[µiµPF]·[µvµPF]·σs

v·σ
s
i ·ρ(µv,µi)

+[µiµPF]·[−µvµi sin(arc cos(µPF))]·σs
v·σ

s
ϕ·ρ

(
µv,µϕ

)
+[µvµPF]·[−µvµi sin(arc cos(µPF))]·σs

i ·σ
s
ϕ·ρ

(
µi,µϕ

)


(13)

σc
q =

√√√√√√√√√√√√√√√√√ [µi sin(arc cos(µPF))]
2
·(σs

v)
2 + [µv sin(arc cos(µPF))]

2
·

(
σs

i

)2
+ [µvµiµPF)]

2
·

(
σs
ϕ

)2

+2


[µi sin(arc cos(µPF))]·[µv sin(arc cos(µPF))] × σs

v·σ
s
i ·ρ(µv,µi)

+[µi sin(arc cos(µPF))]·[µvµiµPF]·σs
v·σ

s
ϕ·ρ

(
µv,µϕ

)
+[µv sin(arc cos(µPF))]·[µvµiµPF]·σs

i ·σ
s
ϕ·ρ

(
µi,µϕ

)


(14)

5.3.3. Confidence Level of the Uncertainty Evaluation

The uncertainty value when a measurement is taken depends on the confidence level and the
sample number ns of the measurement. Nonetheless, given a certain confidence level, the sample
number can be determined. The definition of the confidence interval [84] for the mean µx j of a
measurement set ns of variable x j is given by the formula below.µx j −Z α

2
·

σs
x j
√

ns
,µx j + Z α

2
·

σs
x j
√

ns

 (15)

and the probability that the mean will be in this confidence interval is shown below.

P

µx j −Z α
2
·

σs
x j
√

ns
< µxi < µx j + Z α

2
·

σs
x j
√

ns

 = 1− α (16)

When evaluating the uncertainty of the different levels in Reference [84], the 99% level is usually
set. This confidence level (1-α) is defined as the probability that the measurement mean will be within
this range, which is shown in Equation (16).

Assuming an N(0,1) normal Gaussian distribution for the measurements and a set confidence
level αset of 1%, the corresponding value of Z αset

2
is 2.58. Therefore, once the value Z αset

2
is known,

the minimum number of samples needed to attain a confidence level αset is shown below.

ns-min ≥

Z αset
2
·σs

x j

αset


2

(17)

6. Results

The OSPPSM was tested in the electrical engineering laboratory at the University of Jaen (Spain),
Figure 7. This meter was connected to Wi-Fi and Firebase during all of the tests to store the data.
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In order to create the testing conditions, a grid emulator and a programmable electronic load were
used. This equipment had larger regulation possibilities that significantly exceeded the requirements
to perform the calibration standard tests. Moreover, an electrical RMS was used as a reference for the
calibration. The following subsections describe the test equipment.
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The tests allowed us to determine the accuracy class reached by the OSPPSM, based on the
maximum error observed. Additional tests were also conducted to evaluate the uncertainty that fully
defined the OSPPSM.

6.1. Test Equipment

6.1.1. Electrical Reference Measurement Standard (RMS)

The electrical RMS to perform the calibration of the OSPPSM was the Class-A power quality
(PQ) analyzer (FlukeTM 1760TR Fluke Corporation, Everett, WA, USA), which is a high-end model of
the brand, that allows the recording of a multitude of electrical variables compatible with calibration
standard tests. Table 1 shows the main characteristics of Fluke 1760TR.

Table 1. Main features of electrical RMS and model Fluke 1760TR.

Parameter Range

Continuous recording Voltage, current, active, reactive, and apparent power,
power factor, energy, harmonics, etc.

Measuring intervals 10, 20, 200, 500 ms, or 3 s

Parameter Range

Sampling rate 10–24 kHz
Resolution 16 ppm

Uncertainty for frequency <20 ppm
Uncertainty for voltage 0.1% at 230 V

Intrinsic uncertainty for harmonics Class I [56]
Accuracy class Class I
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6.1.2. Grid Emulator

The Cinergia GE+15 unit emulates a low voltage grid. This allowed us to modify parameters such
as frequency, phase angle, magnitude, and harmonic context in the main voltage. This capability was
required for calibration standard tests. Table 2 shows the main characteristics of the used grid emulator.

Table 2. Main features of grid emulator, model Cinergia GE+15.

Parameter Range

Voltage 0 to 277 V phase-neutral
0 to 480 V phase-phase

Current 66 A max
Phase angle 0◦ to 360◦ resolution 0.01◦

Power 15 kW
Frequency 10 to 100 Hz

Harmonics Up to 50th
15 harmonics independent/phase

Accuracy ±0.1% voltage, ±0.2% current

6.1.3. Programmable Electronic Load

Calibration standard tests require variable loads. Therefore, a programmable electronic load,
model Cinergia EL+15, made it possible to adapt the required load for each specific standardized test.
Table 3 shows the characteristics of the programmable electronic load used in this study.

Table 3. Main features of electronic load, model Cinergia EL+15.

Parameter Range

Voltage 0 to 277 V phase-neutral
0 to 480 V phase-phase

Current 66 A max
Phase angle −90◦ to 90◦ resolution 0.01◦

Power 15 kW
Frequency 10 to 100 Hz

Harmonics Up to 50th
15 harmonics independent/phase

Accuracy ±0.1% voltage, ±0.2% current

6.2. Calibration Standard Test

6.2.1. Intrinsic Value Test

Figure 8a, Figure 9a, Figure 10a,b, Figure 11a, and Figure 12a portray the correlation between the
values in the OSPPSM for the variables, vOSPPSM, iOSPPSM, PFOSPPSM, pOSPPSM, and qOSPPSM. They also
show the reference values in the RMS for vRMS, iRMS, PFRMS, pRMS, and qRMS under different intrinsic
value tests on a 0.25 s basis. The intrinsic errors obtained for the variables are reflected in Figure 8b,
Figure 9b, Figure 10c, Figure 11b, and Figure 12b. As can be observed, the intrinsic error did not exceed
1% for each electrical variable measured (v, i, PF, p, and q), which signified that the OSPPSM is in the
accuracy class 1.

The results of the Kolmogorov-Smirnov test (95% confidence level) show that the intrinsic error
follows a beta distribution for voltage measurement (p-value = 0.104), and a uniform distribution for
both current measurement (p-value = 0.312) and PF measurement (p-value = 0.311). This uniformity in
the intrinsic error distribution highlights the accuracy of the OSPPSM, with a maximum intrinsic error
value of 0.9783% as a voltmeter and 0.91% as a PF meter, wattmeter, and varmeter.
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Figure 8. Voltmeter test: (a) OSPPSM vs. RMS voltage. (b) Intrinsic error of voltage measuring.
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Figure 9. Ammeter test: (a) OSPPSM vs. RMS current. (b) Intrinsic error of current measuring.
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Figure 10. PF meter test: (a) 30 A, OSPPSM vs. RMS PF. (b) 8 A, OSPPSM vs. RMS PF. (c) Intrinsic
error of PF measuring, 8 A and 30 A.
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Figure 11. Wattmeter test: (a) OSPPSM vs. RMS active power. (b) Intrinsic error of active power measuring.
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Figure 12. Varmeter test: (a) OSPPSM vs. RMS reactive power. (b) Intrinsic error of reactive power measuring.

Table 4 displays the MAPE and MRE statistical error indicators as well as the standard deviation.
The MAPE was less than 0.48%, and MRE was below 0.07%. During all of the intrinsic value tests,
the standard deviation did not exceed 0.55%.

Table 4. Intrinsic value test: maximum intrinsic error (%), MAPE (%), MRE (%), and standard deviation (%).

Test Maximum Intrinsic Error MAPE MRE Standard Deviation

Voltmeter 0.9783 0.4303 0.0643 0.4957
Ammeter 0.9400 0.4712 −0.0080 0.5428
PF meter, 8 A 0.9500 0.4218 −0.0133 0.5123
PF meter, 30 A 0.9100 0.4675 0.0133 0.5366
Wattmeter 0.9100 0.4675 0.0133 0.5366
Varmeter 0.9100 0.4540 −0.0280 0.5240

6.2.2. Current Magnitude Distortion Test

Figures 13 and 14 display the results of the voltage variation, which show the relationship between
the voltage vOSPPSM and the reference voltage vRMS. They also show the intrinsic error for variables
vOSPPSM, pOSPPSM, and qOSPPSM. Figures 15 and 16 focus on the current variation, which reflects the
relationship between the current value iOSPPSM and the reference current iRMS. The intrinsic error for
the variables i, pOSPPSM, and qOSPPSM is also shown.

The error graphs underline the fact that the intrinsic error was less than 1%, which signifies
that the OSPPSM belongs to accuracy class 1. Furthermore, the maximum intrinsic error for the
voltage variation and current variation was lower than 0.99%. Once again, the intrinsic error had a
uniform distribution.

Tables 5 and 6 show the MAPE and MRE statistical error indicators as well as the standard
deviation for the voltage and current variation, respectively. The voltage variation test did not exceed
0.49% for the MAPE, 0.49% for the MRE, and 0.56% for the standard deviation. Meanwhile, the current
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variation test indicated that the MAPE and MRE values and standard deviation were similar to those
of the voltage variation test.
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Figure 13. Voltmeter test: (a) OSPPSM vs. RMS voltage. (b) Intrinsic error of voltage measuring.
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Figure 14. PF meter, wattmeter, and varmeter test: intrinsic error of different variables measuring the
voltage variation.
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Figure 15. Ammeter test: (a) OSPPSM vs. RMS current. (b) Intrinsic error of current measuring.
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Figure 16. PF meter, wattmeter, and varmeter test: intrinsic error of different variable measuring for
current variation.
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Table 5. Current magnitude distortion test: maximum intrinsic error (%), MAPE (%), MRE (%),
and standard deviation (%): voltage variation.

Test Maximum Intrinsic Error MAPE MRE Standard Deviation

Voltmeter 0.9900 0.4869 −0.0048 0.5593
PF meter 0.9700 0.4820 −0.4820 0.2860
Wattmeter 0.9900 0.4208 0.0225 0.5239
Varmeter 0.9900 0.3738 0.0076 0.5251

Table 6. Current magnitude distortion test: maximum intrinsic error (%), MAPE (%), MRE (%),
and standard deviation: current variation.

Test Maximum Intrinsic Error MAPE MRE Standard Deviation

Ammeter 0.9900 0.4820 −0.0121 0.5594
PF meter 0.9800 0.4906 −0.0300 0.5721
Wattmeter 0.9900 0.4949 0.0288 0.5698
Varmeter 0.9900 0.2069 0.0038 0.5663

6.2.3. Alternating Current Frequency Variation Test

Figures 17a and 18a illustrate the values of the variables vOSPPSM and iOSPPSM in relation to the
reference values vRMS and iRMS. The results of the intrinsic error for variables v, i, PF, p, and q are
depicted in Figure 17b, Figure 18b, Figure 19, and Figure 20. As a result, the intrinsic error for none of
the variables studied exceeded 1%, which confirmed the inclusion of the OSPPSM in accuracy class 1.
The distribution of errors was again uniform with a maximum value of 0.98%.
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Figure 17. Voltmeter test: (a) OSPPSM vs. RMS voltage. (b) Intrinsic error of voltage measuring.
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Figure 18. Ammeter test: (a) OSPPSM vs. RMS current. (b) Intrinsic error of current measuring.
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Figure 19. PF meter test: Intrinsic error of PF measuring (PF: 0.5 lagging, 1, 0.5 leading).
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Figure 20. Wattmeter and varmeter test: Intrinsic error of different variable measuring.

Table 7 summarizes the statistical error indicators. As can be observed, the maximum MAPE
value for the different electrical variables did not exceed 0.63%. The MRE did not reach values higher
than 0.05%, and the standard deviation did not exceed 0.8%.

Table 7. Alternating current frequency variation test: maximum intrinsic error (%), MAPE (%),
MRE (%), and standard deviation (%).

Test Maximum Intrinsic Error MAPE MRE Standard Deviation

Voltmeter 0.9800 0.4875 −0.0090 0.5619
Ammeter 0.9900 0.4778 0.0446 0.5511
PF meter, PF: 0.5 lagging 0.9200 0.2944 0.0025 0.4227
PF meter, PF: 1 0.9800 0.3296 −0.0110 0.4653
PF meter, PF: 0.5 leading 0.9500 0.6211 0.0119 0.7645
Wattmeter 0.9600 0.4712 −0.0206 0.5466
Varmeter 0.9800 0.4904 0.0089 0.5650

6.2.4. Alternating Current/Voltage Component Variation Test

Tables 8 and 9 show the results for the alternating current/voltage component variation test, which
changed the voltage and current when OSPPSM acted as a PF meter. The maximum intrinsic error was
lower than 0.98% for both assessments. This maintained the OSPPSM in accuracy class 1. The tables
also include the statistical error indicators. In this regard, the maximum MAPE value was below 0.34%
for both assessments, whereas the maximum MRE value did not exceed 0.26% for the voltage variation,
and 0.24% for current variation. The standard deviation was lower than 0.48%.

Table 10 gives the results obtained when the OSPPSM acted as a wattmeter and varmeter. The fact
that the maximum intrinsic error was 0.97% signifies that OSPPSM continued in accuracy class 1.
The maximum MAPE and MRE values were 0.512% and −0.034%, respectively. The standard deviation
was 0.582%.
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Table 8. Alternating current/voltage component variation test (PF meter, voltage variation): maximum intrinsic error (%), MAPE (%), MRE (%), and standard deviation (%).

Test Maximum Intrinsic Error MAPE MRE Standard Deviation

v = 230 V
i = 15 A

v = 0 V
i = 15 A

v = 253 V
i = 15 A

v = 230 V
i = 15 A

v = 0 V
i = 15 A

v = 253 V
i = 15 A

v = 230 V
i = 15 A

v = 0 V
i = 15 A

v = 253 V
i = 15 A

v = 230 V
i = 15 A

v = 0 V
i = 15 A

v = 253 V
i = 15 A

PF meter, PF: 0 lagging 0.920 0.920 0.940 0.339 0.286 0.287 −0.002 0.008 −0.012 0.462 0.412 0.417
PF meter, PF: 1 0.920 0.920 0.940 0.222 0.259 0.275 −0.222 −0.259 −0.275 0.279 0.298 0.311
PF meter, PF: 0.5 lagging 0.980 0.950 0.970 0.332 0.294 0.316 −0.046 −0.044 −0.003 0.463 0.432 0.462
PF meter, PF: 0.5 leading 0.960 0.930 0.930 0.279 0.293 0.301 −0.018 −0.008 0.005 0.403 0.430 0.423

Table 9. Alternating current/voltage component variation test (PF meter, current variation): maximum intrinsic error (%), MAPE (%), MRE (%), and standard deviation (%).

Test Maximum Intrinsic Error MAPE MRE Standard Deviation

v = 230 V
i = 30 A

v = 230 V
i = 0 A

v = 230 V
i = 36 A

v = 230 V
i = 30 A

v = 230 V
i = 0 A

v = 230 V
i = 36 A

v = 230 V
i = 30 A

v = 230 V
i = 0 A

v = 230 V
i = 36 A

v = 230 V
i = 30 A

v = 230 V
i = 0 A

v = 230 V
i = 36 A

PF meter, PF: 0 lagging 0.920 0.950 0.950 0.308 0.308 0.328 0.007 −0.012 −0.027 0.439 0.445 0.464
PF meter, PF: 1 0.930 0.900 0.900 0.225 0.234 0.215 −0.225 −0.234 −0.215 0.289 0.312 0.290
PF meter, PF: 0.5 lagging 0.960 0.910 0.960 0.308 0.340 0.305 0.057 −0.030 0.075 0.439 0.455 0.440
PF meter, PF: 0.5 leading 0.970 0.970 0.930 0.313 0.317 0.372 0.039 −0.046 −0.041 0.447 0.438 0.473

Table 10. Alternating current/voltage component variation test (wattmeter and varmeter, voltage, current, and PF variation): maximum intrinsic error (%), MAPE (%),
MRE (%), and standard deviation (%).

Test Maximum Intrinsic Error MAPE MRE Standard Deviation

v = 230 V
i = 24 A
PF = 1

v = 0 V
i = 24 A
PF = 1

v = 256 V
i = 24 A
PF = 1

v = 230 V
i = 24 A
PF = 1

v = 0 V
i = 24 A
PF = 1

v = 256 V
i = 24 A
PF = 1

v = 230 V
i = 24 A
PF = 1

v = 0 V
i = 24 A
PF = 1

v = 256 V
i = 24 A
PF = 1

v = 230 V
i = 24 A
PF = 1

v = 0 V
i = 24 A
PF = 1

v = 256 V
i = 24 A
PF = 1

Wattmeter 0.920 0.970 0.970 0.506 0.512 0.512 0.010 −0.034 −0.034 0.572 0.582 0.582
Varimeter 0.950 0.940 0.940 0.483 0.453 0.453 0.003 0.028 0.028 0.553 0.523 0.523
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Table 11. PF variation test (wattmeter and varmeter, voltage variation): maximum intrinsic error (%), MAPE (%), MRE (%), and standard deviation (%).

Test Maximum Intrinsic Error MAPE MRE Standard Deviation

v = 0 V
i = 30 A

v = 230 V
i = 30 A

v = 256 V
i = 30 A

v = 0 V
i = 30 A

v = 230 V
i = 30 A

v = 256 V
i = 30 A

v = 0 V
i = 30 A

v = 230 V
i = 30 A

v = 256 V
i = 30 A

v = 0 V
i = 30 A

v = 230 V
i = 30 A

v = 256 V
i = 30 A

Wattmeter, PF:1 0.940 0.950 0.910 0.458 0.492 0.518 −0.011 −0.025 −0.004 0.529 0.557 0.578
Varmeter, PF:1 0.920 0.940 0.900 0.465 0.483 0.467 0.022 −0.022 0.029 0.529 0.546 0.528
Wattmeter, PF:0.5 lagging) 0.940 0.930 0.970 0.473 0.488 0.526 −0.046 0.035 0.028 0.546 0.557 0.579
Varmeter, PF:0.5 lagging 0.960 0.980 0.940 0.488 0.499 0.506 0.119 0.008 0.058 0.547 0.581 0.557
Wattmeter, PF:0.5 leading) 0.970 0.990 0.930 0.485 0.497 0.461 0.051 0.011 0.037 0.555 0.575 0.538
Varmeter, PF:0.5 leading 0.950 0.950 0.940 0.421 0.493 0.474 −0.044 0.009 0.009 0.494 0.557 0.544

Table 12. PF variation test (wattmeter and varmeter, current variation): maximum intrinsic error (%), MAPE (%), MRE (%), and standard deviation (%).

Test Maximum Intrinsic Error MAPE MRE Standard Deviation

v = 230 V
i = 0 A

v = 230 V
i = 30 A

v = 230 V
i = 36 A

v = 230 V
i = 0 A

v = 230 V
i = 30 A

v = 230 V
i = 36 A

v = 230 V
i = 0 A

v = 230 V
i = 30 A

v = 230 V
i = 36 A

v = 230 V
i = 0 A

v = 230 V
i = 30 A

v = 230 V
i = 36 A

Wattmeter, PF:1 0.910 0.980 0.940 0.472 0.483 0.454 0.100 −0.050 −0.048 0.507 0.552 0.520
Varmeter, PF:1 0.910 0.960 0.900 0.523 0.419 0.467 −0.020 0.028 0.064 0.581 0.502 0.531
Wattmeter, PF:0.5 lagging) 0.950 0.950 0.930 0.413 0.490 0.480 0.032 0.031 −0.035 0.493 0.555 0.542
Varmeter, PF:0.5 lagging 0.950 0.950 0.970 0.544 0.463 0.480 0.004 0.057 0.125 0.597 0.538 0.538
Wattmeter, PF:0.5 leading) 0.950 0.910 0.950 0.460 0.494 0.501 −0.014 −0.027 −0.028 0.541 0.556 0.567
Varmeter, PF:0.5 leading 0.930 0.950 0.950 0.450 0.466 0.492 0.026 −0.005 0.016 0.518 0.546 0.564
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6.2.5. PF Variation Test

Table 11 shows the first assessment of the PF variation test. This test changed the voltage when
the OSPPSM acted as a wattmeter and varmeter. Since the intrinsic error attained a 0.97% maximum
value, the OSPPSM remained in accuracy class 1.

Table 12 shows the second assessment of the PF variation test. This test changed the current when
the OSPPSM acted as a wattmeter and varmeter. Since the intrinsic error reached a 0.98% maximum
value, the OSPPSM remained in accuracy class 1.

6.2.6. Continuous Overload Test

Table 13 gives the results of the continuous overload test. The maximum intrinsic error was lower
than 0.99%. Consequently, the OSPPSM continued in accuracy class 1.

Table 13. Continuous overload test: maximum intrinsic error (%), MAPE (%), MRE (%), and standard
deviation (%).

Test Maximum Intrinsic Error MAPE MRE Standard Deviation

Voltmeter 0.9800 0.4734 0.0352 0.5483
Ammeter 0.9900 0.4789 −0.0099 0.5582
PF meter 0.8600 0.0041 0.0003 0.0484
Wattmeter 0.9900 0.5047 −0.0066 0.5813
Varmeter 0.9800 0.4991 −0.0113 0.5725

6.3. Uncertainty Evaluation

Table 14 shows 10 independent sets of simultaneous observations for the three fundamental
variables v, i, and PF (cosϕ). Because the variables were simultaneously measured, they were correlated.
Evidently, these correlations should be taken into account in the uncertainty evaluation of derived
variables p and q.

Table 14. Fundamental variables: input quantities from 10 sets of simultaneous observation.

Measure k/Input Quantities v (V) i (A) PF (p.u.)

1 236.86 1.02 0.670
2 237.10 1.01 0.670
3 236.48 1.04 0.680
4 236.64 1.03 0.670
5 236.86 1.03 0.670
6 236.25 1.05 0.670
7 237.34 0.99 0.670
8 237.38 1.00 0.670
9 236.95 1.03 0.670

10 236.73 1.05 0.670

Table 15 summarizes the standard uncertainty results for the fundamental variables. Accordingly,
Table 16 shows the absolute precision of these variables in relation to the recommendations and
requirements of the JCGM guide 100:2008 [84].

Table 15. Fundamental variables and standard uncertainty.

Fundamental
Variables Mean Standard

Uncertainty
Standard

Uncertainty (%)
Correlation
Coefficients

v (V) 236.859 0.1130 0.00047 ρ(µv,µi)= −0.900
i (A) 1.0248 0.0064 0.0062 ρ(µi,µPF)= 0.262

PF(p.u.) 0.6710 0.0010 0.0015 ρ(µv,µPF)= −0.373
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Table 16. Fundamental variables and absolute accuracy.

Fundamental Variables Absolute Accuracy

v (V) AAv = InputReadingVoltage± 0.1130
i (A) AAi = InputReadingCurrent± 0.0064

PF (p.u.) AAPF = InputReadingPF± 0.001

The relationship between the derived and the fundamental variables is described in Section 3.
After the application of Equations (13) and (14), Table 17 gives the standards uncertainties for the
derived variables, according to Reference [28].

Table 17. Derived variables and calculated values for derived quantities p and q.

Relationship between
Variables

Estimate Value of
Derived Variables

Combined
Uncertainty

Combined
Uncertainty (%)

p = v·i· cosϕ (W) 162.880 1.031 0.0063
q = v·i· sinϕ (VAr) 179.977 1.010 0.0056

Correlation coefficient ρ(µp,µq)= 0.901

The results in Table 18 reflect the absolute accuracy of the derived variables, according to the
JCGM guide 100:2008 [84].

Table 18. Derived variables and absolute accuracy.

Derived Variables Absolute Accuracy

p (W) AAp = CalculatedActivePower± 1.031
q (VAr) AAq = CalculatedReactivePower± 1.010

As can be observed in the results of the uncertainty evaluation, the maximum uncertainty
percentage was achieved for variable p, with a 0.0063% value, whereas the rest of the variables had lower
values. In order to achieve a 99% confidence level (αset = 1%) when evaluating uncertainty, the minimum
number of samples required for the active power measurement, according to Equation (17), is:

ns-min ≥

(2.58× 1.031
1

)2
= 7.08 (18)

and for the reactive power measurement:

ns-min ≥

(2.58× 1.011
1

)2
= 6.81 (19)

The 10 samples taken were sufficient to fulfill the set confidence level of 99%.

7. Conclusions and Discussion

This research study developed and successfully calibrated a new prototype of an accurate
low-cost OSPPSM for collecting generation/load profiles at temporal high-resolution in real-world
PV household-prosumer facilities. This OSPPSM was based on the Arduino open-source electronic
platform. Input data were gathered with a set of sensors based on Arduino components. The NILM
approach used in the OSPPSM makes it ideal for measuring electrical variables without modifying the
monitored household.

This prototype has a number of advantages. More specifically, it determines fundamental and
derived electrical variables in conformity with the IEC 61000-4-30 standard. The stationary analysis has
a 10-cycle analysis window with a sampling rate of 1 kHz. Thanks to its dual board, the computational
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time is extremely fast. In fact, the OSPPSM is able to perform real-time monitoring with temporal
high-resolution data, every 0.25 s (4 Hz). Evidently, this real-time calculation capacity and the big-data
support in the cloud have promising applications, especially all that concerns the provision of advanced
energy services for PV household-prosumers. The design of these services is based on the training
and validation of models. However, this requires temporal high-resolution data for generation/load
profiles that can be collected by using this prototype in real-world household facilities. It should be
highlighted that these services account for the effects of both the fast short-term fluctuations of input
profiles (<4 Hz) and their hourly/daily/weekly/monthly variability.

Another promising application of the prototype is the verification of household status by using a
computer or mobile device that is able to perform the appropriate actions.

This prototype was calibrated as accuracy class 1, according to IEC standards for power smart
meters. This was confirmed by the results of the calibration standard tests, in which there was a
maximum error of 0.99% and a maximum uncertainty of 0.0063%. Moreover, the Kolmogorov-Smirnov
tests performed on the OSPPSM, working as an ammeter and PF meter, showed uniform distributions
of the intrinsic error distributions. This highlights the accuracy of the OSPPSM.

Furthermore, the prototype design features easy-to-obtain hardware and open-source software.
This means that it is freely accessible to researchers and users in general for their own design and
use in a non-intrusive way. With no loss of accuracy and uncertainty, the cost of this prototype is
considerably lower than commercially available power-energy loggers (about 1400 €). It also has
equivalent measurement functionalities without cloud data uploading.

The results obtained in this research justify the continuation and further development of the
OSPPSM prototype. Further research will focus on building additional OSPPSMs and testing them
in real-world scenarios by deploying a network of OSPPSMs in different PV household-prosumers.
For the benefit of the research community, an open web interface will be designed to visualize the
main electrical variables at temporal high-resolution of the monitored PV household-prosumers.
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Abbreviation

Nomenclature
AAxi : absolute precision of variable x j
AC: alternating current
ADC: analogic to digital converter
BESSs: battery energy storage systems
DC: direct current
E: intrinsic error
F: frequency
FPGA: field programmable gate array
GSM: global system mobile
i: current
IoT: Internet of Things
MAPE: mean absolute percentage error
MI: measuring instrument
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MRE: mean relative error
n: index for the set of samples
ns: number of samples
nv: number of fundamental variables
NILM: non-intrusive load monitoring
NRU: nominal range of use
OSPPSM: on-time single-phase power smart meter
P: active power
PF:power factor
PF: power factor (=cos ϕ)
PQ: power quality
PV: photovoltaic
PWM: pulse width modulation
q: reactive power
R.M.S: root mean square
RMS: reference measurement standard
s: apparent power
v: voltage
x: fundamental electrical variable
y: derived variable
WEP: wired equivalent privacy
z: index for the set of variables
Greek symbols
µ: mean
µx j : mean of variable x j
ρ(µxz ,µx j ): correlation coefficient of variables xz, x j
σ: standard deviation
σ2: variance
σs

x j
: standard uncertainty type A for the variable x j

σc
y:combined uncertainty of variable y
ϕ:phase angle of current
1-α: confidence level
Subscripts
din: declared input
i: current
j, m, w: jth mth, wth variable
max: maximum
min: minimum
OSPPSM: on-time single-phase power smart meter
p: active power
PF: power factor
q: reactive power
ref : reference
v: voltage
x j: variable x j
Superscripts
avg: average
k: kth specified analysis window
ins: instantaneous
n: index for the set of samples
set: set
r.m.s: root mean square
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