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Abstract: Due to the large size of space targets, migration through resolution cells (MTRC) are
induced by a rotational motion in high-resolution bistatic inverse synthetic aperture radar (Bi-ISAR)
systems. The inaccurate correction of MTRC degrades the quality of Bi-ISAR images. However, it is
challenging to correct the MTRC where sparse aperture data exists for Bi-ISAR systems. A joint
approach of MTRC correction and sparse high-resolution imaging for Bi-ISAR systems is presented in
this paper. First, a Bi-ISAR imaging sparse model-related to MTRC is established based on compress
sensing (CS). Second, the target image elements and noise are modeled as the complex Laplace prior,
and the Gaussian prior, respectively. Finally, the high-resolution, well-focused image is obtained by
the full Bayesian inference method, without manual adjustments of unknown parameters. Simulated
results verify the effectiveness and robustness of the proposed algorithm.

Keywords: bistatic ISAR; high resolution; migration through resolution cell (MTRC); compress
sensing (CS); Laplace prior; sparse aperture

1. Introduction

In monostatic ISAR imagery, the monstateic ISAR image cannot be attained when targets move
along the line-of-sight (LOS) of the radar in the coherent processing interval (CPI). Thus, radar systems
with bistatic configuration have been employed for ISAR imaging to overcome these limitations [1,2].
Additionally, the bistatic configuration can provide complementary target information and a better
anti-interference performance. Generally, a wideband signal is adopted to improve the slant-range
resolution, and a long CPI is utilized for improving the cross-range resolution. A high-resolution
image of Bi-ISAR provides more target details, which is beneficial to further target classification and
recognition [3–8]. Hence, high-resolution Bi-ISAR systems have been an important technique of space
target surveillance [9–14].

Due to the large size of the complicate space target, the MTRC (migration through resolution
cells) (slant-range MTRC and cross-range MTRC) are induced by the rotational motion of the target
as the resolution increases. The MTRC cause the image to defocus. Hence, the correction of MRTC
should be conducted to attain well-focused images [15–20]. For monostatic ISAR systems, several
correction methods are proposed for both the slant-range MTRC and cross-range MTRC [15,18]. The
keystone transform proposed in [15], can solve the slant-range MTRC without motion information
on the target for monostatic ISAR imagery. In [17], we proposed a MTRC correction method for
the Bi-ISAR systems in the presence of time-variant bistatic angles. Recently, based on [17], we
proposed a distortions mitigation method that can correct the cross-range MTRC simultaneously by
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exploiting prior information in [21]. However, the correction methods are all for full aperture data.
The performance of these algorithms degrade or will even become invalid under condition of sparse
aperture. Modern multiple-task radars need to switch its beams to different LOS directions among
multiple targets. Meanwhile, for a Bi-ISAR of space target, the echo data in some periods may not be
used, due to the low SNR and interference. It is also difficult to obtain continuous observations of
the target. These factors lead to sparse aperture measurements and causes high-level side-lobes and
energy leakage if the Range-Doppler (RD) algorithm is utilized. The performance of the conventional
MRTC correction method is degraded, due to the sparse aperture. Therefore, it is necessary to study
the imaging approach of joint MTRC correction and high-resolution imaging under conditions of
sparse aperture.

Bi-ISAR images of space targets can be regarded sparse because there are only a few limited
scatterer in the image of the artificial target. Compressed sensing (CS) theory is proven to be an effective
solution to complete the spectrum estimation and reconstruct the high-resolution ISAR image for
sparse aperture data [4,22–29]. There are three major categories of CS-based reconstruction algorithms,
with respect to greedy-pursuit algorithms, regularization algorithms based on lp-norm, and Bayesian
reconstruction algorithms. Bayesian sparse reconstruction algorithm can learn to obtain unknown
parameters automatically. The local minimum and structural errors are avoided as the the posterior
statistical information is utilized. It can obtain better sparse solutions by iteration. In [23], we proposed
a Bi-ISAR sparse imaging algorithm, based on Bayesian sparse reconstruction, with Laplace prior.
However, the algorithm is based on the assumption that there is no slant-range MTRC, which restricts
its application. In [4], a reconstruction method, based on l1-norm, is used to achieve the MTRC
correction and ISAR imaging in monostatic ISAR systems. However, it is not applicable to the Bi-ISAR
sparse imaging because MTRC and rotational motion are related to the time-variant bi-static angles
in Bi-ISAR systems. Therefore, further considerations on the joint approach of MTRC correction and
high-resolution imaging need to be studied in Bi-ISAR systems with sparse apertures.

In this paper, we propose a Bi-ISAR sparse high-resolution imaging algorithm of the joint approach
of the image reconstruction and MTRC correction. First, a Bi-ISAR CS-based imaging model, with
MTRC, is established using the prior information of coefficients of time-variant bistatic angles. The
prior distribution of each image element is assumed to be the complex Laplace prior. Then, the
hierarchical Bayesian estimation method, based on a full Bayesian inference, is conducted to reconstruct
the high-resolution image. Meanwhile, the phase auto-focusing is conducted iteratively, in the
same way mentioned in [23]. The reconstruction algorithm with full Bayesian inference utilizes the
statistical posterior information, and avoids structural errors and a local minimum. Consequently, a
high-resolution well-focused image is obtained without the manual parameters adjustments.

The paper is organized as follows. In Section 2, the Bi-ISAR joint MTRC correction and sparse
high-resolution imaging model, based on the CS theory, is constructed. In Section 3, the reconstruction
algorithm, based on full Bayesian inference with Laplace prior, is discussed in detail. In Section 4,
simulated results and related discussions are provided. And a conclusion is drawn in Section 5.

2. Bi-ISAR CS-Based Imaging Model with MTRC

A Bi-ISAR geometry of space targets is illustrated in Figure 1. The transmitter and the receiver
are located in two stations. The baseline length L is comparable to the distance between the target
and the transmitter and receiver. The bistatic angle, formed by bistatic geometry, is referred as βm.
The rectangular coordinate system xOy and uOmv are the target ontology coordinate systems with the
target mass center O and Om as the origin at imaging time t0, and tm, respectively. More details are
available in our previous paper [21].



Electronics 2019, 8, 874 3 of 17

Electronics 2019, 8, x FOR PEER REVIEW 3 of 17 

 

where ( )
11   
2rect
10   
2

u
u

u

 ≤= 
 >


. t̂ is the fast time, mt  is the slow time, ˆ
mt t t= − . pT  

is the pulse width, 

while, cf  is the carrier frequency and μ  is the chirp rate. The pulse repetition period of the signal 

is T . 

 
Figure 1. Geometry of bistatic ISAR imaging system. 

Then, after suitable signal pre-processing (demodulation and range compression), the range 
compressed signal of the scatterer p  can be expressed as, 

( )ˆ ˆ, sinc exp 2Pm Pm
p m P p c

R Rs t t T t j f
c c

σ μ π    = ⋅ − −    
    

 (2) 

where Pσ  is the scattering coefficient, Pm TPm RPmR R R= +  denotes the total instantaneous distance 
between mP  and both the transmitter and the receiver. As we mentioned in [21], the PmR  can be 
written as, 

( )+2 sin + cos cos = +
2
m

Pm Om P m P m Om PmR R x y R Rβθ θ≈ Δ  (3) 

where Om TOm ROmR R R= +  is the total distance of mO  the center of mass to the Tx and Rx. It represents 
the translational motion of the target, which is uniform to all scatterers. 

( )= sin + cos cos
2
m

Pm P m P mR x y βθ θΔ  represents the rotational motion of the target. It can be further 

approximated by the second-order Taylor polynomial [21],  

( )

( )

2 2
0

0 0 1

2 2 2
0 1 0 0 0 0 1

2 1
2

2 2 2

m
Pm P m P m

P P m P m P m m

t
R x t y K K t

y K y K t y K t x K t K t

ωω

ω ω

  
Δ  ≈ + − × +     

≈ + − + +

 (4) 

where 0K  is the first-order coefficient of the time-variant bistatic angles and 1K  is the second-order 
coefficient [21], and 0ω  is the rotational velocity. Those two coefficients and rotational velocity can 
be estimated by exploiting the prior information [21,30]. 

The conventional range alignment methods [31,32] still work for sparse aperture data. The 
performance of the phase correction methods [33,34] degrade because of sparse aperture and MTRC. 
The translational motion compensations (TMC), including range alignment and phase correction, are 
performed. The signal of the scatterer in (2) is expressed as, 

Figure 1. Geometry of bistatic ISAR imaging system.

The transmitted linear frequency modulated (LFM) signal is shown as,

st(t̂, tm) = rect
(

t̂
Tp

)
exp

[
j2π

(
fct +

1
2
µt̂2

)]
(1)

where rect(u) =

1 |u| ≤ 1
2

0 |u| > 1
2

. t̂ is the fast time, tm is the slow time, t̂ = t − tm. Tp is the pulse width,

while, fc is the carrier frequency and µ is the chirp rate. The pulse repetition period of the signal is T.
Then, after suitable signal pre-processing (demodulation and range compression), the range

compressed signal of the scatterer p can be expressed as,

sp(t̂, tm) = σP · sin c
[
µTp

(
t̂−

RPm

c

)]
exp

(
− j2π fc

RPm

c

)
(2)

where σP is the scattering coefficient, RPm = RTPm + RRPm denotes the total instantaneous distance
between Pm and both the transmitter and the receiver. As we mentioned in [21], the RPm can be
written as,

RPm ≈ ROm+2(xP sinθm + yP cosθm) cos
βm

2
= ROm + ∆RPm (3)

where ROm = RTOm + RROm is the total distance of Om the center of mass to the Tx and
Rx. It represents the translational motion of the target, which is uniform to all scatterers.
∆RPm = (xP sinθm + yP cosθm) cos βm

2 represents the rotational motion of the target. It can be
further approximated by the second-order Taylor polynomial [21],

∆RPm ≈ 2
(
xPω0tm + yP

(
1−

ω2
0t2

m
2

))
× (K0 + K1tm)

≈ 2yPK0 + 2yPK1tm − yPK0ω2
0t2

m + 2ω0xP
(
K0tm + K1t2

m

) (4)

where K0 is the first-order coefficient of the time-variant bistatic angles and K1 is the second-order
coefficient [21], and ω0 is the rotational velocity. Those two coefficients and rotational velocity can be
estimated by exploiting the prior information [21,30].

The conventional range alignment methods [31,32] still work for sparse aperture data. The
performance of the phase correction methods [33,34] degrade because of sparse aperture and MTRC.
The translational motion compensations (TMC), including range alignment and phase correction, are
performed. The signal of the scatterer in (2) is expressed as,

sp(t̂, tm) ≈ σP · sin c
[
µTp

(
t̂−

∆RPm

c

)]
exp

(
− j2π fc

∆RPm

c

)
exp( jϕm) (5)
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where the ϕm is the residual phase error of TMC in m-th pulse.
Substituting (4) to (5), the signal can be approximated as follows:

sp(t̂, tm) ≈ σP · sin c
[
µTp

(
t̂−

2yPK0+2ω0xi(K0tm+K1t2
m)

c

)]
exp

(
− j2π fc

2yPK0+2ω0xP(K0tm+K1t2
m)

c

)
exp

(
− j2π fc

2yPK1tm−yPK0ω
2
0t2

m
c

)
exp( jϕm)

(6)

In the first term (envelop term), the term related to the slant-range is neglected, since it is generally
less than half of the range resolution. The term related to the cross-range is preserved and is referred to
as the slant-range MTRC. The second term is the phase term related to the position along cross-range.
The third term is the spatial-variant phase terms, which lead to a linear-geometry distortion and
defocus of cross-range direction [21]. The quadratic term is also referred to as the cross-range MTRC.
Hence, the correction of the two type of MTRC should be conducted to obtain a well-focused image.
For full aperture data, the cross-range MRTC can be corrected by constructing the spatial-variant
compensation term [21]. It is not feasible for the sparse aperture data, because the estimation method
of equivalent rotation center, proposed in [21], does not work because of the sparse aperture.

We set the middle index of the slant-range as the rotation center. If nc is the real discrete range-cell
index of the equivalent rotation center, the error of the position is Y∆ = (nc −N/2)ρy. While, ρy is
the range sampling cell length [21]. We neglect the linear spatial-variant phase term, because it only
causes a shift in the target image [30]. Then, after compensation of the spatial-variant phase term, the
signal can be rewritten as [21],

sp(t̂, tm) ≈ s̃p(t̂, tm) exp
(
− j4π fc

c
Y∆K0ω

2
0t2

m

)
exp(ϕm) = s̃p(t̂, tm) exp( jφm) (7)

where exp
(
− j4π fcY∆K0ω2

0t2
m/c

)
is converted to a residual phase error of TMC, related to the constant

value of Y∆. The reason is that Y∆ is only related to nc. While, φm = ϕm + 2 fcY∆K0ω2
0t2

m/c are the
updated residual phase errors.

For the slant-range MTRC, we apply the Fourier transform (FT) along the fast time, and obtain
the corresponding frequency domain signal of (7),

Sp( fr, tm) = S̃p( fr, tm) exp( jφm) (8)

where

S̃p( fr, tm) = σP · exp
[
− j

4π fryPK0

c

]
exp

− j4π( fr + fc)
ω0xP

(
K0tm + K1t2

m

)
c

 (9)

where fr represents the frequency of the slant-range direction.
In the conventional keystone transform, the inverse scaled FT is performed along a slow time-scale

to alleviate the slant-range MTRC [15]. However, a quadratic term is caused by the time-variant bistatic
angles in the phase term of (9). Inverse scaled FT is not suitable for this scenario. Matching Fourier
Transform (MFT) is a generalization of FT [35]. It can obtain best spectral when the integral path
function matched with the signal. The MFT of f (t) can be conduct as,

F(ω) =

T∫
0

f (t)e− jωψ(t)dψ(t) (10)

where f (t) =
∑

Ai exp[ jωiψ(t)] is a signal within [0, T],ψ(t) is the phase function,ψ(t) has a monotonic
bound and ψ(0) = 0.
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After the integral path function is selected according to the phase function, the MFT and the FT
have the same scale dual relationship between the time domain and the frequency domain. Thus, we
adopt inverse scaled MFT along the cross-range direction to correct slant-range MTRC in (9),

S̃p( fr, xP) =

T∫
0

S̃p( fr, tm) exp

 j4π( fr + fc)
ω0xP

(
K0tm + K1t2

m

)
λ fc

d(K0tm + K1t2
m

)
(11)

where λ is the wavelength, ( fr + fc)/ fc is the scaled factor.
The geometry of sparse aperture measurements is illustrated in Figure 2. The total number of

available sub-aperture is Q. The length of q-th available sub-aperture and vacant sub-aperture are Lq,

and Pq, respectively. The equation, M =
Q∑

q=1
Lq and M =

Q∑
q=1

Lq +
Q−1∑
q=1

Pq stands for the total number

of available apertures and full apertures. Thus, the sampling pulse index of the sparse aperture is

Z =

m|Zq =
q−1∑
i=1

Li + Pi + 1 :
q−1∑
i=1

Li + Pi + Lq, 1 ≤ q ≤ Q
. Let Sp,q(N × Lq) be the matrix form of (6) of

q-th available sub-aperture. N is the number of range cells. The matrix form of (6) can be written as:

Sp =
[
Sp,1 · · ·Sp,q · · ·Sp,Q

]
N×M

. (12)

The signal of the total P scatterers can be expressed as,

S =
[
S1 · · ·Sq · · ·SQ

]
N×M

(13)

where Sq =
P∑

p=1
Sp,q. Then, the corresponding vector data by column can be written as,

s =
[

s1 s2 · · · sM

]T
N·M×1 (14)

where sm = [S(1, m) · · ·S(N, m)]T is the vector of the m-th pulse echo data.
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We discretize the two-dimensional imaging fields into N range cells and M Doppler cells. When
applying MFT along the cross-range, the size of the grid is set as [21],

∆x = λ/2ω0ϕm f t(Ta)

∆y = c/2 fsK0
(15)

where ψm f t(Ta) = K0MTa + K1M2T2
a , Ta is total CPI time, fs is the sampling frequency along

the slant-range.
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Let [X]N×M be the two-dimensional imaging field. The corresponding vector data of [X]N×M by
column stacking is [x]NM×1. Inspired by [4], the discrete form of Bi-ISAR sparse aperture imaging
model of (6) can be written as,

s = EEyFH
r DsaFrx + ε·n = EFeqx + εn (16)

where Feq = EyFH
r DsaFr, the discrete vector of the residual phase error of m-th pulse for N range bins

is [ejφm · · · ejφm ]
T
N×1. E =

[
diag

(
[ejφm · · · ejφm ]

T
N×1

)]
NM×NM

, m ∈ Z denotes the discrete matrix related

with residual phase errors. The discrete compensation matrix of the spatial-variant phase terms

Ey = [diag([em]N×1)]NM×NM, m ∈ Z, while em = exp
[

j2π fc(n−N/2)
c

(
2K1mT − yK0ω2

0m2T2
)]

(n ∈ [1 : N]),

m ∈ Z. The discrete FT matrix along the fast time is Fr−b, then Fr =


Fr−b 0 0 0

0 Fr−b 0 0

0 0
. . . 0

0 0 0 Fr−b


MN×MN

.

Dsa = [dnm]NM×NM (n ∈ [1 : N], m ∈ Z) denotes the sparse sampling pattern of the scaled MFT along
the cross-range directions, where the ((m− 1) ·N + n)-th row of Dsa is,

dnm =
[
0n−1,γ(m, n), 0N−1,γ(m, n)2, 0N−1, · · ·γ(m, n)M, 0N−n

]T

1×NM
(17)

where 0n−1 is a n× 1 zero vector. And γ(m, n) can be written as,

γ(m, n) = exp

 − j4π(K0mT + K1m2T2
)
( fc + (n−N/2)∆ fr)∆xω0

c

 (18)

where ∆ fr = exp(2π/N). When ∆x = λ/2ω0ϕm f t(Ta) = c/(2 fcω0(K0MTa + K1M2T2
a )), γ(m, n) can

be rewritten as:

γ(m, n) = exp
[
− j2π(K0mT + K1m2T2)( fc + (n−N/2)∆ fr)

fc(K0MTa + K1M2T2
a )

]
. (19)

In (16), we treat the residual phase errors of TMC and spatial-variant phase errors as model errors.
We convert the spatial-variant phase errors to residual phase errors of TMC by Ey according to (7). To
achieve the high-resolution Bi-ISAR image, we solve the model of (16) in the next section.

3. Bi-ISAR Reconstruction Algorithm Based on Full Bayesian Inference

A high-resolution Bi-ISAR reconstruction algorithm was adopted to solve the model in (16), based
on full Bayesian inference with complex Laplace prior. It is directly solved in the complex domain.
Each image element is assumed to obey a Laplace prior, and the same weight constraint is applied to
the real part and the imaginary part, that is, directly constrained phase information of the complex
data. The phase relationship of the image element can be preserved during the reconstruction process,
and it is more conducive to the phase adjustment process.

3.1. The Prior Model

The elements in εn are independent and assumed to be complex Gaussian distribution with
variance σ2, the conditional probability density function of εn can be written as:

P
(
s
∣∣∣x, σ2

)
=

(
2πσ2

)−NM
exp

(
−

1
2σ2 ‖s− EFeqx‖22

)
(20)
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In order to obtain the conjugate properties of the Gaussian distribution, place a Gamma prior on
σ−2 as follows,

p
(
σ−2

)
= Gamma

(
σ−2

∣∣∣c, d
)

(21)

where Gamma(α|a, b ) = Γ(a)−1baαa−1e−bα with Γ(a) =
∫
∞

0 tα−1e−tdt.
Each element of target image x is independent and follows Laplace distribution, which has better

sparse promotion than the Gaussian distribution. Because the Laplace prior is not conjugate to the
Gaussian likelihood in (20), we expressed it in a hierarchical way by using a Gaussian prior and an
exponential prior. First, mean-zero Gaussian priors are employed on each element of x,

p
(
xi|α

−1
i

)
= N

(
xi|0,α−1

i

)
(22)

where xi ∈ x =
[

x1 x2 · · · xMN
]T

, αi ∈ α =
[
α1 α2 · · · αMN

]T
is the corresponding

hyper-parameter. Place the following hyper-prior on αi,

p
(
αi
−1

∣∣∣λ) = Γ
(
αi
−1

∣∣∣1,λ/2
)
=
λ
2

exp
(
−
λαi
−1

2

)
. (23)

By combining (22) and (23), we can obtain the expression of Laplace prior of x| :

p(x|λ) =
∫

p(x|α)p(α|λ)dα =
λMN/2

2MN exp

−√λ∑
i

|ai|

. (24)

Finally, the following Gamma hyper-prior is placed on λ:

p(λ|ξ) = Γ(λ|ξ/2, ξ/2). (25)

The prior distribution of λ is flexible. Especially, when ξ→ 0 , where we can obtain the very
vague information p(λ) ∝ 1/λ.

3.2. Bayesian Imaging Reconstruction

The model of (16) can be rewritten as,

EHs = Feqx + εn (26)

where EHs is the echo data after phase error compensation. Deriving the Bayesian inference by utilizing
the sparse priors in (22), (23), and (25), as well as the conditional distribution in (21), the posterior
distribution of the target image can be decomposed as:

p
(
x,α,λ, σ2

∣∣∣EHs
)
= p

(
x|EHs,α,λ, σ2

)
p
(
α,λ, σ2

∣∣∣EHs
)
. (27)

The formula, p
(
x|EHs,α,λ, σ2

)
is found to follow a multivariate Gaussian distributionCN(x|µ, Σλ)

with parameter,
µ = σ−2ΣλFeq

HEHx (28)

Σλ =
(
σ−2Feq

HFeq + Λ
)−1

(29)
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where Λ =diag(α1,α2, · · · ,αMN), µ is also the estimated value of the target image x̂. According to the
Bayesian criterion, we have,

p
(
α,λ, σ2, EHs

)
=

∫
p
(
EHs

∣∣∣x, σ2
)
p(x|α)p(α|λ)p(λ)p

(
σ2

)
dx

= (2π)−MN/2
|Cn|

−1/2 exp
(
−

1
2 sHECn

−1EHs
)
p(α|λ)p(λ)p

(
σ2

) (30)

where Cn = σ2IMN + FeqΛ−1Feq
H and IMN is the MN ×MN identity matrix. We estimate the

hyper-parameters αn,λ, σ2 by maximizing the joint distribution p
(
α,λ, σ2, EHs

)
. For the sake of

convenience in the computation, we maximized equivalently its logarithm and neglected constant
terms to obtain the following function to be maximized:

L = log p
(
α,λ, σ2, EHs

)
= 1

2

(
log|Λ|+ MN log σ−2 + log|Σ|

)
−

1
2σ
−2
‖EHs− Feqµ‖

2
2 −

1
2µ

HΛµ+ MN log λ
2−

λ
2

MN∑
i=1

αi
−1 + (c− 1) log σ−2

− dσ−2 + ξ
2 log ξ

2 − log Γ
(
ξ
2

)
+

(
ξ
2 − 1

)
logλ− ξ

2λ

(31)

We can solve the hyper-parameters by means of derivation, take the derivative of L with respect
to logαi, σ−2 and λ, and set the equal to zero. The update formulas of hyper-parameters αi, σ2 and λ
can be obtained as,

αnew
i−Lap =

1
2 +

√
1
4 +

(
Σii + µ

∗

iµi

)
λnew(

Σii + µ
∗

iµi

) (32)

(
σ2

)new
=

tr
(
ΣλFH

eqFeq
)
+ ‖EHs− Feqµ‖

2
2 + 2d

MN + 2(c− 1)
(33)

λnew =
ξ+ 2MN − 2

ξ+
MN∑
i=1

(
αold

i−Lap

)−1
(34)

where Σii is the i-th element on the diagonal of Σ, µi is the i-th element of µ. For the sake of convenience
in the computation, we set ξ→ 0 . Substituting (34) into (32), the update of hyper-parameter αi can be
rewritten as:

αnew
i−Lap ≈

1/2 +

√
1/4 +

(
Σii + µ

∗

iµi

)[
2(MN − 1)/

MN∑
i=1

(
αold

i−Lap

)−1
]

(
Σii + µ

∗

iµi

) . (35)

In the g-th iteration, utilizing (35) and (33) to obtain the update value of hyper-parameters

α
(g+1)
i , σ2(g+1), and then utilizing (29) and (28) to obtain µ(g+1), which is the estimate of the target

image x̂(g+1). In addition, the update αi−Lap is related to the update of λ, that is related to the last
estimate and all elements of the target image. The updating process utilizes the whole information of
the previous image.

3.3. Phase Error Update

The real sparse solution gradually becomes nearer in each iteration when the target image is
sparsely reconstructed. Hence, the process of iteration is consistent with the enhanced focusing purpose
of eliminating the phase error. Therefore, the phase adjustment process can be combined with the target
image reconstruction, in order to gradually eliminate the phase error in each iteration. Supposing that
in the g-th iteration, the target image reconstruction x̂(g+1) has been obtained, the estimated echo data

can be expressed as ŝ(g+1) = Feqx̂(g+1). The echo data can be defined as: ŝ(g+1) =
[

ŝ1 ŝ2 · · · ŝM

]T
,
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and ŝm =
[

ŝ(1, m) ŝ(2, m) · · · ŝ(N, m)
]T

is the vector of the m-th pulse echo data. The phase
error estimation of the m-th pulse echo data is,

exp( j ·φ(g+1)
m ) = arg min

exp( j·φ(g)
m )

‖sm − exp( j ·φ(g)
m )ŝ(g+1)

m ‖
2

2

= arg min
exp( j·φ(g)

m )

tr
(
smsH

m + ŝ(g+1)
m

(
ŝ(g+1)

m

)H
− 2 exp( j ·φ(g)

m )ŝ(g+1)
m sH

m

) (36)

where ŝ(g+1)
m sH

m represents the vector inner product, φ(g)
m is the estimation of φm in the g-th iteration.

The maximization term of exp( j · φ(g)
m )ŝ(g+1)

m sH
m can be used to solve the function, so the updated

expression of the phase error is:

exp( j ·φ(g+1)
m ) = conj

(
ŝ(g+1)

m sH
m/

∣∣∣∣ŝ(g+1)
m sH

m

∣∣∣∣) = conj

 Feqµ
(g+1)sH

m∣∣∣Feqµ(g+1)sH
m

∣∣∣
. (37)

After obtaining the phase error Ê(g+1), the phase compensation is performed by using the(
Ê(g+1)

)H
s = Feqx̂(g+1) + εn and then moves to the next iteration. Thereby, alternately iteratively

updating the target image and the phase error, the well-focused imaging is obtained.

3.4. Algorithm Summary

The flow chart of the reconstruction algorithm is shown in Figure 3. The specific steps are
as follows:

Step 1: Obtain the corresponding vector of valid echo data by column stacking s and construct the
sparse basis matrix Feq;

Step 2: Initialize the hyper-parameters αni = 1, σ2 = 0.01, E1 = I and initialize the iteration index
g = 0. Set the maximum number of iterations as G and the threshold value as eps;

Step 3: Conduct phase error compensation to obtain compensated echo data ŝ(g+1) =
(
Ê(g+1)

)H
s;

Step 4: Update the hyper-parameters α(g+1) and σ2(g+1) according to (35) and (33), and then update

Σ
(g+1)
λ

and µ(g+1) according to (29) and (28). µ(g+1) is the (g + 1)-th estimation of the
corresponding column stacking vector x̂(g+1) of the target image.

Step 5: Estimate the (g + 1)-th echo data according to ŝ(g+1) = Feqx̂(g+1), estimate the phase error

matrix Ê(g+1) by (37);
Step 6: Stop the iteration when ‖µ(g+1)

− µ(g)
‖2/‖µ(g)

‖2 < eps or the iteration number exceeds G, and
then remove column stacking of vector x̂(g+1) and obtain the target image X, otherwise go to
step 3.
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4. Simulation Results and Discussion

The effectiveness and robustness of the proposed algorithm is verified by simulation results, based
on dataset of scatterer models of both an ideal point and an electromagnetic point in this section.

4.1. Simulation Setting

The simulation scenario is the same as that used in [21], which is illustrated in Figure 4. Details
of the Bi-ISAR configuration, simulated orbit, and visible time window are available in our previous
paper [21].
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Table 1. Parameters of the Simulation.

Parameter Name Value Parameter Name Value

Carrier frequency 10 GHz Signal bandwidth 1000 MHz
Pulse width 20 us Sampling frequency 1200 MHz

Pulse Repetition Frequency 50 Hz Accumulation numbers 500
Chirp rate 5 × 1013 Equivalent Doppler bandwidth 10 s

Range resolution 0.1809 m Azimuth resolution 0.2683 m

4.2. Simulations Based on an Scatterer Model of Ideal Point

The model of the ideal point scatterer is the same as the one we used in [21]. Figure 5 shows
the projection on the imaging plane. The corresponding echo data are generated by the method we
proposed in [12].
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Figure 5. The ideal point scatterer model.

4.2.1. Different Sparse Aperture Cases

The effectiveness of the proposed algorithm in different sparse aperture cases is confirmed in
this section. The four sparse aperture cases are random missing sampling (RMS) and gap missing
sampling (GMS), with 300 pulses, and 150 pulses, respectively. Random phase errors with a magnitude
of −π/4 ∼ π/4 are added to the echo data, and the SNR is set as 5 dB. The range profiles and the
imaging results, obtained by the algorithm without MTRC correction [23], and proposed algorithm in
the four sparse aperture cases, are shown in Figures 6–9, respectively.Electronics 2019, 8, x FOR PEER REVIEW 12 of 17 
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As shown in the images in Figures 6b, 7b, 8b and 9b, the algorithm in [23] can suppress the side
lobes introduced by the sparse aperture. However, there are still some residues and the side lobes
introduced by MTRC in the ISAR images. Moreover, the reconstruction performance of the algorithm
in [23] degrades dramatically, using 150 pulses in Figures 7b and 9b. While, the proposed algorithm
can obtain clear images in the four different cases, even with few pulses, as the sparsity of the image
is reduced without considering the MTRC correction in [23]. The phase adjustment performance is
also degraded with sparse aperture and MTRC, which make it difficult to correct the phase errors
precisely. The proposed algorithm can realize the MTRC correction, the phase adjustment, and the
sparse aperture imaging jointly to obtain well-focused images.

4.2.2. Different SNRs

The l1-norm reconstruction algorithm, used in [4], and the proposed algorithm, are utilized to
realize Bi-ISAR sparse imaging with RMS of 300 pulses. The magnitude of the added random phase
errors are, −π/4 ∼ π/4 and SNR = 10, 5, and 0 dB. The imaging results of the two algorithms are shown
in Figures 10 and 11, respectively. Comparing the image results in Figures 10 and 11, the performance of
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l1-norm algorithm decreases more significantly as the noise increases, while the proposed algorithm can
still obtain high quality images even under low SNR. The results indicate that the proposed algorithm
performs better than l1-norm algorithm. The regularization coefficient, related to noise, influences the
performance of l1-norm algorithm. While, the proposed method, based on full Bayesian inference, can
utilize the posterior statistical information and avoid the local minimum and structural errors.
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4.3. Simulations Based on an Model of Electromagnetic Scatterer

To further evaluate the proposed Bi-ISAR imaging algorithm, a simulation experiment was carried
out, based on the bistatic numerical electromagnetic target data, which is the same as the data used
in [21]. The satellite model is shown in Figure 12. The simulation settings in Section 4.1 are still
used here.

Electronics 2019, 8, x FOR PEER REVIEW 13 of 17 

 

The 1l -norm reconstruction algorithm, used in [4], and the proposed algorithm, are utilized to 
realize Bi-ISAR sparse imaging with RMS of 300 pulses. The magnitude of the added random phase 
errors are, π 4 ~ π 4−  and SNR = 10, 5, and 0 dB. The imaging results of the two algorithms are 
shown in Figures 10, and 11, respectively. Comparing the image results in Figures 10 and 11, the 
performance of 1l -norm algorithm decreases more significantly as the noise increases, while the 
proposed algorithm can still obtain high quality images even under low SNR. The results indicate 
that the proposed algorithm performs better than 1l -norm algorithm. The regularization coefficient, 
related to noise, influences the performance of 1l -norm algorithm. While, the proposed method, 
based on full Bayesian inference, can utilize the posterior statistical information and avoid the local 
minimum and structural errors. 

   
(a) (b) (c) 

Figure 10. Imaging results obtained by 1l -norm algorithm under different SNRs: (a) SNR=10 dBs; (b) 

SNR=5 dB; (c) SNR=0 dB. 

   
(a) (b) (c) 

Figure 11. Imaging results obtained by the proposed algorithm under different SNRs: (a) SNR = 10 
dB; (b) SNR = 5 dB; (c) SNR = 0 dB. 

4.3. Simulations Based on an Model of Electromagnetic Scatterer 

To further evaluate the proposed Bi-ISAR imaging algorithm, a simulation experiment was 
carried out, based on the bistatic numerical electromagnetic target data, which is the same as the data 
used in [21]. The satellite model is shown in Figure 12. The simulation settings in Section 4.1 are still 
used here. 

 
Figure 12. The side view of the model of typical satellite (40.09 m × 30.37 m × 20.74 m). Figure 12. The side view of the model of typical satellite (40.09 m × 30.37 m × 20.74 m).

The range profiles and the imaging results, obtained by the algorithm in [23] and the proposed
algorithm in the four sparse aperture cases, are shown in Figures 13–16, respectively. The imaging
results of the two algorithms, under three different SNRs, are shown in Figures 17 and 18, respectively.
By comparing the imaging results, similar conclusions as found in Section 4.2 can be drawn. This is
further evidence of the validity and robustness of the proposed algorithm.
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in our approach are as follows: Establishing the sparse imaging model by considering the MTRC
correction and the reconstruction of the high-resolution well-focused image based on full Bayesian
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