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Abstract: This paper presents two new models for solving image the deblurring problem in the
presence of impulse noise. One involves a high-order total variation (TV) regularizer term in the
corrected total variation L1 (CTVL1) model and is named high-order corrected TVL1 (HOCTVL1).
This new model can not only suppress the defects of the staircase effect, but also improve the quality
of image restoration. In most cases, the regularization parameter in the model is a fixed value, which
may influence processing results. Aiming at this problem, the spatially adapted regularization
parameter selection scheme is involved in HOCTVL1 model, and spatially adapted HOCTVL1
(SAHOCTVL1) model is proposed. When dealing with corrupted images, the regularization
parameter in SAHOCTVL1 model can be updated automatically. Many numerical experiments
are conducted in this paper and the results show that the two models can significantly improve the
effects both in visual quality and signal-to-noise ratio (SNR) at the expense of a small increase in
computational time. Compared to HOCTVL1 model, SAHOCTVL1 model can restore more texture
details, though it may take more time.

Keywords: image restoration; impulse noise; ADMM; HOCTVL1; spatially adapted regularization
parameter

1. Introduction

In the field of electronics and information, signal processing is a hot research topic, and as
a special signal, the study of image has attracted the attention of scholars all over the world [1–3].
In image processing, image restoration is one of the most important issues and this issue has received
extensive attention in the past few decades [4–11]. Image restoration is a technology that uses degraded
images and some prior information to restore and reconstruct clear images, to improve image quality.
At present, this technology has been widely used in many fields, such as medical imaging [12,13],
astronomical imaging [14,15], remote sensing image [16,17], and so on. In this paper, the problem of
image deblurring under impulse noise is considered. Normally, camera shake, and relative motion
between the target and the imaging device may cause image blurring; while in digital storage and
image transmission, impulse noise may be generated.

In the process of image deblurring under impulse noise, the main task is to find the unknown
true image x ∈ Rn2

from the observed image f ∈ Rn2
defined by

f = Nimp(Kx) (1)

where Nimp denote the process of image degradation by impulse noise, and K ∈ Rn2×n2
is a blurring

operator. It is known that when K is unknown, the model deals with blind restoration, and when K is
known, it deals with image denoising.
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There are two main types of impulse noise: salt-and-pepper noise and random-valued noise.
Suppose the dynamic range of x to be [dmin, dmax], for all (i, j) ∈ Ω = {1, 2, . . . , n} × {1, 2, . . . , n},
the xi,j is the gray value of an image x at location (i, j), and dmin ≤ fi,j ≤ dmax. For 8-bit images,
dmin = 0 and dmax = 255. Then for salt-and-pepper noise, the noisy version f at pixel location (i, j) is
defined as

fi,j =


dmin, with probability s

2 ,
dmax, with probability s

2 ,
xi,j, with probability 1− s,

(2)

where s is the noise level of the salt-and-pepper noise.
For random-valued noise, the noisy version f at pixel location (i, j) is defined as

fi,j =

{
di,j, with probability r,
xi,j, with probability 1− r,

(3)

where di,j is uniformly distributed in dmin ≤ fi,j ≤ dmax and r is the noise level of random-valued
noise. It is clear that compared with salt-and-pepper noise, the random-valued noise is more difficult
to remove since it can be arbitrary number in dmin ≤ fi,j ≤ dmax.

For image-restoration problem contaminated by impulse noise, the widely used model is
composed of data fidelity term measured by `1 norm and the TV regularization term, which is
called TVL1 model [18–20]. TVL1 model can effectively preserve image boundary information and
eliminate the influence of outliers, so it is especially effective to deal with non-Gaussian additive
noise such as impulse noise. Now, it has been widely and successfully applied in medical image and
computer vision.

However, TVL1 model has its own shortcomings, which makes it ineffective in dealing with
high-level noise, such as 90% salt-and-pepper noise and 70% random-valued noise [21]. In recent years,
a large number of scholars have devoted themselves to this research, and a lot of algorithms have
been proposed [22–27]. In 2009, Cai et al. [22] proposed a two-phase method, and in the first phase,
damaged pixels of the contaminated image were explored, then in the second phase, undamaged pixels
were used to restore images. Numerical experiments show that the two-phase method is superior to
TVL1 model, it can handle as high as 90% salt-and-pepper noise, and as high as 55% random-valued
noise, while it cannot perform effectively when the level of random-valued noise is higher than 55%.
Similarly, considering the problem that TVL1 model may deviate from the data-acquisition model and
the prior model, especially for high levels of noise, Bai et al. [23] introduced an adaptive correction
procedure in TVL1 model and proposed a new model called the corrected TVL1 (CTVL1) model.
The main idea is to improve the sparsity of the TVL1 model by introducing an adaptive correction
procedure. The CTVL1 method also uses two steps to restore the corrupted image, the first step
generates an initial estimator by solving the TVL1 model, and the second step generates a higher
accuracy recovery from the initial estimator which is generated by TVL1 model. Meanwhile, for higher
salt-and-pepper noise and higher random-valued noise, by repeating the correction step for several
times, high levels of noise can be removed very well. Numerical experiments show that the CTVL1
model can remove salt-and-pepper noise as high as 90%, and remove random-valued noise as high as
70%, which is superior to the two-phase method.

Similar to CTVL1 method, Gu et al. [24] combined TV regularization with smoothly clipped
absolute deviation (SCAD) penalty for data fitting, and proposed TVSCAD model; Gong et al. [25]
used minimax concave penalty (MCP) in combination with TV regularization for data fitting, and he
proposed TV-MCP model. Numerical experiments show that both TVSCAD model and TV-MCP
model can achieve better effects than two-phase method. But compared with CTVL1 method, their
contributions mainly focus on the convergence rate, and they did not improve much in terms of
impulse noise removal.
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However, as is described in [28], TV norm may transform the smooth area to piecewise constants,
the so-called staircase effect. To overcome this deficiency, the efficient way is to replace the TV norm by
a high-order TV norm [29]. In particular, second-order TV regularization schemes are widely studied
for overcoming the staircase effects while preserving the edges well in the restored image. In [30],
Si Wang proposed a combined total variation and high-order total variation model to restore blurred
images corrupted by impulse noise or mixed Gaussian plus impulse noise. In [27], based on Chen
and Cheng’s an effective TV-based Poissonian image deblurring model, Jun Liu introduced an extra
high-order total variation (HTV) regularization term to this model, which can effectively remove
Poisson noise, and its effect is better than Chen and Cheng’s model. In [31], Gang Liu combined the
TV regularizer and the high-order TV regularizer term, and proposed HTVL1 model, which can better
remove the impulse noise contrast to TVL1 model. However, since TVL1 model has its own defects,
the restoration of HTVL1 model is limited. Besides, the author did not consider the removal effect of
random-valued noise.

In this paper, we continue to study the problem of image deblurring under impulse noise.
The main contributions of this paper include: (1) Combining high-order TV regularizer term with
CTVL1 model, a new model named high-order corrected TVL1(HOCTVL1) model is proposed and the
alternating direction method of multipliers (ADMM) is used to solve this new model. Compared with
existing models, our model can get higher signal-to-noise (SNR) in dealing with image deblurring
under impulse noise. (2) The spatially adapted regularization parameter is introduced into the
HOCTVL1 model and SAHOCTVL1 model is proposed. Compared to HOCTVL1 model, SAHOCTVL1
model can further improve the effects of image restoration in some degree.

The rest of this paper is organized as follows. In Section 2, a brief review of related work is
made. In Section 3, the presentation of HOCTVL1 model is discussed, and the HOCTVL1 algorithm
is concluded. Section 4 introduces the spatially adapted regularization parameter selection scheme,
and SAHOCTVL1 model is proposed. Numerical experiments are carried out in Section 5 and finally,
the conclusion is presented in Section 6.

2. Brief Review of Related Work

For recovering the image corrupted by blur and impulse noise, the classic method is TVL1 model.
Since a lot of literature [19,20,31–33] demonstrates that using L1-fidelity term for image restoration
under impulse noise can achieve good effects, the TVL1 model is expressed as

min
x

TV(x) + λ‖Kx− f‖1 (4)

where f is the observed image, x denotes the restoration image, K is a blur matrix, λ is a regularization
parameter which is greater than zero, TV(x) represents the discrete TV norm and is defined as
TV(x) = ∑

1≤i,j≤n

∥∥∥(Dx)i,j

∥∥∥. Here, D denotes the discrete gradient operator (under periodic boundary

conditions). The norm in
∥∥∥(Dx)i,j

∥∥∥ can be taken as `1 norm or `2 norm. When the `2 norm is used,
the resulting TV term is isotropic and when the `1 norm is used, the result is anisotropic. For more
details about the TV norm, readers can refer to [18].

Since one of the unique characteristics of impulse noise is that an image corrupted with impulse
noise still has intact pixels, the impulse noise can be modeled as sparse components, whereas the
underlying intact image retains the original image characteristics [34]. Therefore, TVL1 model can
efficiently remove abnormal value noise signals, and some points of the solution of the TVL1 model
are close to the points of the original image. However, Nikolova [21] pointed out from the viewpoint
of MAP that the solutions of the TVL1 model substantially deviate from both the data-acquisition
model and the prior model, and Minru Bai [23] further pointed out that the TVL1 model does not
perform well at the sparsity of Kx− f and there are many biased estimates produced by the TVL1
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model. To overcome this shortcoming, Bai et al. took a correction step to generate an estimator to
obtain a better recovery performance.

Given a reasonable initial estimator x̃ ∈ Rn2
generated by TVL1 model, let z̃ = Kx̃− f , then she

established a model called CTVL1 model, which is defined as

min
x,z ∑

1≤i,j≤n

∥∥∥(Dx)i,j

∥∥∥+ λ(‖z‖1 − 〈F(z̃), z〉) s.t. z = Kx− f (5)

Compared with TVL1 model, CTVL1 model is added a correction term − 〈F(z̃), z〉,
and F : Rn2 → Rn2

is an operator defined as

F(z) =

{
φ( z
‖z‖∞

), z ∈ Rn2\ {0} ,

0, z = 0,
(6)

and the scalar function φ : R→ R takes the form

φ(t) = sgn(t)(1 + ετ)
|t|τ

|t|τ + ετ
, ∀t ∈ R, (7)

where τ > 0 and ε > 0. Numerical results show that the CTVL1 model improves the sparsity of the
data fidelity term Kx− f greatly for the images deblurring under impulse noise, to achieve a good
denoising effect.

Since TV regularization term may come into staircase effects, in the past few years, a lot of
researchers have devoted to solving this problem, and they concluded that replacing the TV norm by
a high-order TV norm can get a better effect. The majority of the high-order norms involve second-order
differential operators because piecewise-vanishing second-order derivatives lead to piecewise-linear
solutions that better fit smooth intensity changes [35]. The second-order TV norm is defined as

(D2x)i,j = ((Dx)x,x
i,j , (Dx)x,y

i,j , (Dx)y,x
i,j , (Dx)y,y

i,j ) (8)

where (Dx)x,x
i,j , (Dx)x,y

i,j , (Dx)y,x
i,j , (Dx)y,y

i,j denote the second-order difference of the ((j− 1) n + i)th
entry of the vector x. Here we just briefly mention the concept of second-order TV norm, for more
details, readers can refer to [36].

Figure 1 shows the diagram of image restoration. In this paper, two models named HOCTVL1
model and SAHOCTVL1 model are proposed and are used to recover the corrupted images.
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Figure 1. The block diagram of solving image deblurring problem under impulse noise.
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3. New Method: The HOCTVL1 Algorithm

In this section, the HOCTVL1 model is proposed and the selection of F(z) is talked about among
CTVL1, SCAD and MCP models. Then ADMM is used to solve the proposed model and the HOCTVL1
algorithm is concluded.

3.1. Proposed New Model

Since the TV regularization norm
∥∥∥(Dx)i,j

∥∥∥ can be taken as `1 norm or `2 norm, which is isotropic
or anisotropic respectively. In [23–25,31], the authors all only consider the isotropic case, so in this
paper, we will also only treat the isotropic case in detail, and the anisotropic case is similar to deal with.
Based on this premise, the proposed high-order corrected TVL1 (HOCTVL1) model can be expressed as

min
x,z

∑
1≤i,j≤n

αi,j

∥∥∥(Dx)i,j

∥∥∥
2
+ (1− αi,j)

∥∥∥(D2x)i,j

∥∥∥
2
+ λ(‖z‖1 − 〈F(z̃), z〉) s.t. z = Kx− f (9)

where f is the corrupted image, x denotes the restoration image, K is a blur matrix, λ is a regularization
parameter,

∥∥∥(Dx)i,j

∥∥∥
2

denotes the first-order TV norm and
∥∥∥(D2x)i,j

∥∥∥
2

denotes the second-order TV

norm,− 〈F(z̃), z〉 is a correction term, and F(z) is an operator composed of a cluster of scalar functions.
αi,j is a weighting parameter that discriminates the TV and second-order TV penalty, and there

are several selection methods for the weighting parameter α. Here, the α in [31] is chosen since it can
achieve better effects in experiments compared with the α in [37]. The α is expressed as

α(i, j) =

 1, if
∥∥∥Dxk+1

i,j

∥∥∥
2
≥ c

1
2 cos(

2π
∥∥∥Dxk+1

i,j

∥∥∥
2

c ) + 1
2 , else

(10)

where c is a constant, and 0� c < 1.
About the selection of F(z), in [24], Gu et al. used the SCAD penalty function for data fitting,

and in [25], Gong et al. used the MCP penalty function for data fitting, the SCAD function ξ(t) and
MCP function ς(t) are described as

ξ(t) =


|t| , if |t| ≤ γ1
−t2+2γ2|t|−γ2

1
2(γ2−γ1)

, ifγ1 < |t| < γ2
γ1+γ2

2 , if |t| ≥ γ2

(11)

ς(t) =

{
θ1 |t| − t2

2θ2
, if |t| ≤ θ1θ2

θ2
1θ2
2 , if |t| > θ1θ2

(12)

where γ1, γ2, θ1, θ2 are all numbers greater than 0, and 0 ≤ t ≤ 1.
It is easy to find that ξ(t) and ς(t) are nonconvex and are difficult to solve. To solve this problem,

Gu et al. adopted a difference of convex functions (DCA) algorithm to solve the nonconvex TVSCAD
model. Similar to TVSCAD, Gong also adopted the DCA algorithm to solve the nonconvex TV-MCP
model. The final processed functions ϕ(t) in [24] and ψ(t) [25] are respectively defined as

ϕ(t) =


0, if |t| ≤ γ1
t−γ1sgn(t)

γ2−γ1
, if γ1< |t| ≤ γ2

sgn(t), if |t| > γ2

(13)

and

ψ(t) =

{
t

θ2
, if |t| ≤ θ1θ2

θ1, if |t| > θ1θ2
(14)
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Figure 2 shows the characteristics of φ(t), ϕ(t) and ψ(t). In TVL1 model, the regularization term
is to enforce certain regularity conditions or prior constraints on the image, and the data fitting term
penalizes the deviation of the observed data from the physical model. According to the analysis
in Section 2 of [24], these three functions can all enforce less or even null data fitting and more
regularization whenever Kx deviates significantly from f . However, in the experimental simulation,
it is found that the experimental results are almost the same no matter which function is selected.
Therefore, in this paper, the scalar function still chooses φ(t).
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Figure 2. Plots of φ(t) in CTVL1, ϕ(t) in TVSCAD and ψ(t) in TV-MCP. (a) φ(t):(ε2, τ) = (0.001, 2);
(b) ϕ(t):(γ1, γ2) = (0.08, 0.2); (c) ψ(t):(θ1, θ2) = (1, 0.15).

3.2. The HOCTVL1 Algorithm

In this subsection, the solving procedure of the HOCTVL1 model by ADMM will be shown,
and the HOCTVL1 algorithm will be concluded. About the details of ADMM, readers can refer to [38].
Firstly, let yi,j = (Dx)i,j, wi,j = (D2x)i,j, and (i, j = 1, 2, . . . , n). Then Equation (9) can be rewritten as

min
x,z ∑

1≤i,j≤n
αi,j

∥∥∥(Dx)i,j

∥∥∥
2
+ (1− αi,j)

∥∥∥(D2x)i,j

∥∥∥
2

+ λ(‖z‖1 − 〈F(z̃), z〉)

s.t. yi,j =
∥∥∥(Dx)i,j

∥∥∥
2
, wi,j =

∥∥∥(D2x)i,j

∥∥∥
2
, z = Kx− f , (i, j = 1, 2, . . . , n)

(15)

where for each i, j, yi,j = ((y1)i,j, (y2)i,j) ∈ R2, wi,j = ((w11)i,j, (w12)i,j, (w21)i,j, (w22)i,j) ∈ R4,
∥∥yi,j

∥∥
2 =√

((y1)i,j)
2 + ((y2)i,j)

2,
∥∥wi,j

∥∥
2 =

√
((w11)i,j)

2 + ((w12)i,j)
2 + ((w21)i,j)

2 + ((w22)i,j)
2.

Thus, the augmented Lagrangian function of Equation (15) is

L(x, y, z, w, µ1, µ2, µ3) =∑
i,j

αi,j
∥∥yi,j

∥∥
2 − µT

1 (y− Dx) +
β1

2 ∑
i,j

∥∥∥yi,j − (Dx)i,j

∥∥∥2

2
+ ∑

i,j
(1− αi,j)

∥∥wi,j
∥∥

2

− µT
2 (w− D2x) +

β2

2 ∑
i,j

∥∥∥wi,j − (D2x)i,j

∥∥∥2

2
+ λ(‖z‖1 − 〈F(z̃), z〉)

− µT
3 (z− (Kx− f )) +

β3

2
‖z− (Kx− f )‖2

2

(16)
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where µ1 ∈ R2n2
, µ3 ∈ Rn2

, µ2 ∈ R4n2
are the Lagrangian multipliers, and β1, β2, β3 > 0 are the

penalty parameters. Then the ADMM for solving the model Equation (9) by updating x, y, w, z and λ

as follows: 

yk+1 = arg min
y

L(xk, y, zk, wk, µk
1, µk

2, µk
3)

wk+1 = arg min
w

L(xk, yk+1, zk, w, µk
1, µk

2, µk
3)

zk+1 = arg min
z

L(xk, yk+1, z, wk+1, µk
1, µk

2, µk
3)

xk+1 = arg min
x

L(x, yk+1, zk+1, wk+1, µk
1, µk

2, µk
3)

µk+1
1 = µk

1 − ζβ1(yk+1 − Dxk+1)

µk+1
2 = µk

2 − ζβ2(wk+1 − D2xk+1)

µk+1
3 = µk

3 − ζβ3(zk+1 − (Kxk+1 − f ))

(17)

where ζ > 0 is the step length, and it can vary (0, (
√

5 + 1)/2) [23]. For the y, w, z sub-problems, it is
easy to get the scalar minimizer by using the soft thresholding, and for x sub-problem, it can be solved
by fast Fourier transform (FFT) under periodic boundary conditions. Therefore, for y sub-problem, it
can be obtained that

yk+1
i,j =max

{∥∥∥∥∥(Dxk)i,j +
(µk

1)i,j

β1

∥∥∥∥∥− αi,j

β1
, 0

}
·

(Dxk)i,j + (µk
1)i,j/β1∥∥∥(Dxk)i,j + (µk

1)i,j/β1

∥∥∥
2

(18)

here we assume the convention 0 · (0/0) = 0, i, j = 1, 2, . . . , n. For the w sub-problem, there is

wk+1
i,j =max

{∥∥∥∥∥(D2xk)i,j +
(µk

2)i,j

β2

∥∥∥∥∥− 1− αi,j

β2
, 0

}
·

(D2xk)i,j + (µk
2)i,j/β2∥∥∥(D2xk)i,j + (µk

2)i,j/β2

∥∥∥
2

(19)

Taking account of z, there is

zk+1 =max

{∣∣∣∣∣Kxk − f +
µk

3 + λF(z̃)
β3

∣∣∣∣∣− λ

β3
, 0

}
◦ sgn(Kxk − f +

µk
3 + λF(z̃)

β3
) (20)

where ◦ denotes pointwise product. For x sub-problem, it can be solved by FFT and the result is shown
as

xk+1 =
DT (β1yk+1−µk

1)+(D2)T(β2wk+1−µk
2)+KT (β3zk+1−µk

3)+β3KT f
β1DT D+β2(D2)T D2+β3KT K

(21)

Now, the HOCTVL1 Algorithm 1 can be concluded and is described as follows.

Algorithm 1: The HOCTVL1 algorithm
Input: f , K, λ, β1, β2, β3, ζ, c, δtol , Maxiter

Initialization: x0 = f , µ0
1 = 0, µ0

2 = 0, µ0
3 = 0, k = 0, α = 1.

Step 1. Compute yk+1
i,j , wk+1

i,j , zk+1 via Equations (18)–(20) respectively,

Step 2. Compute xk+1 by solving Equation (21),

Step 3. Update µk+1
1 , µk+1

2 , µk+1
3 , via Equation (17),

Step 4. Update αi,j via Equation (10),

Step 5. If k < Maxiter or
∥∥∥xk+1 − xk

∥∥∥
2
/
∥∥∥xk
∥∥∥

2
> δtol , go to Step 1

Output: xk.
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4. SAHOCTVL1 Model

It is known that the regularization parameter λ controls the trade-off between the fidelity and the
smoothness of the solution. Usually in most models, λ is a fixed value. In [39], Dong et al. developed
a new automated spatially adapted regularization parameter selection method, and had a good effect
on the Gaussian noise removal. In [27,40], the authors proposed a spatially adapted regularization
parameter selection scheme for Poissonian image deblurring. In [31], the authors used the spatially
adapted regularization parameter selection scheme for the impulse noise removal, while this method
did not always show good results. In this section, the spatially adapted regularization parameter
selection scheme described in [39] is adopted into the HOCTVL1 model, and SAHOCTVL1 algorithm
is concluded.

Firstly, the SAHOCTVL1 model is defined as

min
x,z ∑

1≤i,j≤n

∥∥∥αi,j(Dx)i,j

∥∥∥
2
+ (1− αi,j)

∥∥∥(D2x)i,j

∥∥∥
2
+ (‖λ ◦ (z − F(z̃) ◦ z)‖1 s.t. z = Kx− f (22)

where ◦ represents the pointwise product. Here, λ is a matrix as the same size of f , and its all elements
equal to one constant when we set its initial value.

As described in [39], the local window filter is defined as

ω(a, b) =

{
1

ω2 , if‖b− a‖∞ ≤ ω
2 ,

0, else,
(23)

with a ∈ Ω fixed, and
∫

Ω ω(a, b)dadb = 1.
Let r represents the noise level, and ν represents the control constant for controlling the fidelity

term. For the salt-and-pepper noise removal, we set

ν = r/2 (24)

and the λ updating rule is expressed as

(λ̃p+1)i,j = η min((λ̃p)i,j + τ max(LEAVEi,j − ν, 0), L) (25)

(λ̃p+1)i,j =
1

ω2 ∑
(s,t)∈Ωω

i,j

(λ̃p+1)s,t (26)

where L is a large constant to ensure λ is finite, 1 < η < 2, Ωω
i,j is a local window with the center on

(i, j), and τ = 2‖λ(:)‖∞/r, LEAVEi,j =
1

ω2 ∑
(s,t)∈Ωω

i,j

|Kx− f |s,t.

For the random-valued noise removal, the ν is defined as

νω
i,j =

1
ω2 ∑

(s,t)∈Ωω
i,j

r · ((Kx)2
s,t − (Kx)s,t +

1
2
) (27)

Then the λ updating rule is expressed as

(λ̃p+1)i,j = η min((λ̃p)i,j + τ · (LEAVEω
i,j − νω

i,j)
+, L) (28)

(λ̃p+1)i,j =
1

ω2 ∑
(s,t)∈Ωω

i,j

(λ̃p+1)s,t (29)

where the parameters η, L, τ, and LEAVEi,j are the same as before.
Now, the spatially adapted HOCTVL1 Algorithm 2 can be concluded.
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Algorithm 2: Spatially adapted algorithm for solving the SAHOCTVL1 model
Input: f , K, λ, β1, β2, β3, ζ, c, δtol , Maxiter, r, ω, L.

Initialization: x0 = f , µ0
1 = 0, µ0

2 = 0, µ0
3 = 0, k = 0, α = 1, p = 0.

Step 1. Solve the model Equation (22) by Algorithm 1, and get xp,

Step 2. Update λ̃p via Equations (24)–(26) for salt-and-pepper noise,

Update λ̃p via Equations (27)–(29) for random-valued noise,

Step 3. stop or set p = p + 1 and return to Step 1.

Output: xp.

5. Numerical Results

In this section, numerical results will be presented to illustrate the efficiency of the proposed
models. Firstly the HOCTVL1 model is compared with TVL1 [20], HTVL1 [31], CTVL1 [23], then four
state-of-the-art methods are selected for comparisons and the methods include LpTV-ADMM [26],
the Adaptive Outlier Pursuit (AOP) method [41], the Penalty Decomposition Algorithm (PDA) [42],
L0TV-PADMM [43]. It should be noted that we all only use HOCTVL1 model in these tests for
comparison. In the last subsection, the efficiency of SAHOCTVL1 model will be compared with
HOCTVL1 separately. In this section, the convergence of HOCTVL1 model is analyzed too. The test
images are mainly: Lena, camera, pepper, boat, which are shown in Figure 3. In the experiments,
for ease of comparison, we only consider “Gaussian” blurring kernel, since the model is also suitable
for other blurring kernels. Besides, signal-to-noise ratio (SNR) is used to evaluate the quality of
restoration, which is defined as

SNR(x) = 10log10
‖x̂− E(x̂)‖2

2

‖x̂− x‖2
2

(30)

where x̂ and x denote the original and restored image respectively, and E(x̂) represents the mean
of x̂. To evaluate the convergence rate, the running time of every algorithm is considered. For
fairness, the stop criterion is the same among the algorithms mentioned in the experiments, which is
expressed as ∥∥∥xk+1 − xk

∥∥∥2

2∥∥xk
∥∥2

2

< δtol (31)

All experiments are operated under the Windows 10 and MATLAB R2018a with the platform
Lenovo of Intel (R) Core (TM) i5-4200M CPU@2.50GHz 2.50 GHz made in Beijing, China.

(a) (b) (c) (d)
Figure 3. Original images. First column: image name. Second column: image size. (a) Lena: 512× 512;
(b) camera: 256× 256; (c) pepper: 512× 512; (d) boat: 512× 512.
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5.1. Parameter Setting

In this subsection, we mainly define the values of some parameters in the experiments. In [23],
the author set (β1, β2) = (5, 350) for TVL1 model, and (β1, β2) = (5, 20,000), ζ = 1.618, τ = 2 for
CTVL1 model. In [31], the author set (β1, β2, β3) = (5, 10, 1000), η = 1.1, c = 0.1, the local window
size ω = 21 for HTVL1 model. In this paper, firstly we decide the value of β3. Choose camera as test
image and add salt-and-pepper noise with noise level 30%, the blurring kernel is Gaussian (hsize = 7,
standard deviation = 5). When setting λ= 500 (not the most appropriate λ) and varying β3 from 500
to 30,000, the trend of SNR of the restored image is shown in Figure 4. From Figure 4, it can be seen
that with the increasing of β3, SNR is also increasing, and when β3 > 20, 000, the trend keeps stable.
In order to obtain good numerical results, in this paper, we set β3 = 25, 000.

0 0.5 1 1.5 2 2.5 3

3 10
4

13

14

15
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17
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22

S
N

R
(d

B
)

Figure 4. The SNR for results with different β3.

Then considering the selection of λ, it is often a troublesome thing. In most cases, scholars obtain
the appropriate λ through experience or a lot of attempts. In [24], Gong defined a selection scheme of
λ based on numerical experiments, which is expressed as follows.

λ =
cλ∗

1− r
(32)

where λ∗ denotes the “best” λ found for TVL1 model, c is a constant and r represents the noise level. It
means that we still need to struggle for the λ of TVL1 model. Through a large number of simulation
experiments, we find that the difficulty in selecting λ mainly lies in the initial value of λ when the
noise level is 10%, and as the noise increases, the value of λ decreases. Figure 5 shows the results
of HOCTVL1 model and CTVL1 model corrupted by 10% salt-and-pepper noise with different λ

and it can be seen that the appropriate λ for HOCTVL1 is almost the same with the λ for CTVL1.
Therefore, similarly, we can adopt the λ for CTVL1 model in our HOCTVL1 model, and we set λ= 800
for impulse noise with noise level 10%.
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Figure 5. The SNR of HOCTVL1 and CTVL1 with different λ.

The size of local window ω is a factor that may influence the noise removal effect of SAHOCTVL1
model. In [33], the author illustrated through experiments that it can reduce more noise and recover
more details when ω ≥ 11. Here, we also make an experiment. We choose camera as test image,
and add 30% salt-and-pepper noise. When varying ω from 3 to 31, the SNR of the restored image is
shown in Figure 6. From Figure 6, generally speaking, SNR does not change much, and when ω ≥ 13,
SNR tends to be stable. Therefore, in this paper, we still set ω = 21 and the other parameters are the
same as mentioned before.
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Figure 6. The SNR for results with different ω.

5.2. Convergence Analysis of HOCTVL1 Model

In this subsection, the convergence of HOCTVL1 algorithm will be analyzed. In [23], the author
has proved that the CTVL1 model can converge to an optimal solution and its dual. Let{

yk, wk, zk, xk, µk
1, µk

2, µk
3

}
be the iterative sequence generated by the ADMM approach, and set

Q1(y) = ∑
1≤i,j≤n

∥∥yi,j
∥∥

2, Q2(w) = ∑
1≤i,j≤n

∥∥wi,j
∥∥

2, Q3(z) = λ(‖z‖1 − 〈F(z̃), z〉). It is obvious that

Q1 : R2n2 → R, Q2 : R4n2 → R, and Q3 : Rn2 → R are closed proper convex functions. Then according
to the subsection 4.3 of [23], it is easy for us to obtain the convergence result of HOCTVL1 model. Here,
we verify the convergence property of HOCTVL1 model from another point of view. We observe the
changes of SNR and F(z) with the iterations by considering the camera image of size of 256× 256
corrupted by Gaussian blur (hsize = 15, standard deviation = 5) and 50% salt-and-pepper noise, λ= 500,
as are shown in Figure 7.
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(b)
Figure 7. Changes of SNR and F(z) with the iterations for Camera image corrupted by Gaussian blur
and 50% salt-and-pepper noise. (a) SNR; (b) F(z).

It can be seen that the SNR value (or the function F(z)) increases (or decreases) monotonically,
which can demonstrate the convexity of the model. Besides, it can be seen that after 130th iteration,
the SNR values keep stable, and the function remains unchanged after 70th iteration, which means
that the model has converged to an optimal solution.

5.3. Comparisons of TVL1, HTVL1 and CTVL1 Models

In this subsection, some experiments are made to illustrate the superiority of HOCTVL1 model in
removing the impulse noise and overcoming the staircase effects. By comparing the restoration effect of
TVL1, HTVL1 and CTVL1 models, the superiority of our model is further illustrated. For CTVL1 model
and HOCTVL1 model, the results of TVL1 model are used as the initial value, and the initial value is
same. The blurring kernel is Gaussian (hsize = 15, standard deviation = 5). Next, the experiments will
be carried out from three aspects: (1) Deblurring image under salt-and-pepper noise. (2) Deblurring
image under random-valued noise. (3) Analysis of convergence rate.

5.3.1. For Salt-and-Pepper Noise

Firstly, the visual comparisons of Lena image corrupted by Gaussian blur and salt-and-pepper
noise with noise levels 30%, 50%, 70% are carried out, and the results are shown in Figures 8–10
respectively. The unit of SNR value is dB.

(a) Corruption: 30% (b) SNR: 15.42 (c) SNR: 16.21 (d) SNR: 18.53 (e) SNR: 19.37

Figure 8. Comparisons of TVL1, HTVL1, CTVL1 and HOCTVL1 model on the Lena image corrupted
by Gaussian blur and salt-and-pepper noise with noise level 30%. (a) Corrupted image. (b) TVL1
model. (c) HTVL1 model. (d) CTVL1 model. (e) HOCTVL1 model.
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(a) Corruption: 50% (b) SNR: 14.82 (c) SNR: 15.14 (d) SNR: 18.01 (e) SNR: 18.61

Figure 9. Comparisons of TVL1, HTVL1, CTVL1 and HOCTVL1 model on the Lena image corrupted
by Gaussian blur and salt-and-pepper noise with noise level 50%. (a) Corrupted image. (b) TVL1
model. (c) HTVL1 model. (d) CTVL1 model. (e) HOCTVL1 model.

(a) Corruption: 70% (b) SNR: 12.39 (c) SNR: 13.59 (d) SNR: 17.43 (e) SNR: 17.71

Figure 10. Comparisons of TVL1, HTVL1, CTVL1 and HOCTVL1 model on the Lena image corrupted
by Gaussian blur and salt-and-pepper noise with noise level 70%. (a) Corrupted image. (b) TVL1
model. (c) HTVL1 model. (d) CTVL1 model. (e) HOCTVL1 model.

From Figures 8–10, it can be found that for noise levels 30% and 50%, four models can all remove
the salt-and-pepper noise effectively, but the quality of the restored images is different. The restored
image by HOCTVL1 model is closer to the original image and its SNR is the highest. For noise
level 70%, the restored image by TVL1 model is not clear. The restored image by HTVL1 model is
clearer than the restored image by TVL1 model, but there are some noise points in the image that have
not been removed, while both CTVL1 model and HOCTVL1 model can get a good restored result. By
comparing the results of TVL1 model and HTVL1 model, the image quality can be indeed improved
by introducing the high-order TV regularizer term. However, since the poor performance of TVL1
model, the results of HTVL1 is not very good. Since an adaptive correction procedure is introduced
in CTVL1 model, which can greatly enhance the effect of image deblurring. While we combine the
CTVL1 model with second-order TV regularizer term, which can further improve the effect of image
deblurring. Both for removing the salt-and-pepper noise with noise level from 30% to 70%, HOCTVL1
model can have a great performance. It cannot only provide a very good visual effect, but also achieve
a higher SNR. Especially for noise level 30%, the SNR value of the restored image by HOCTVL1 model
is more than 1 dB higher than that by CTVL1 model and for noise level 50%, the SNR value obtained
by HOCTVL1 model is also about 0.6 dB higher than CTVL1 model.

For noise level 90%, HOCTVL1 model can also use the step correction to improve the removal
effect, as shown in Figure 11. Figure 11 shows the results of CTVL1 model and HOCTVL1 model
during five correction steps. It can be seen that after several correction steps, two models both can
improve the effect of image deblurring though the effect of TVL1 model is worse. However, from first
correction step to fifth correction step, the SNR of our HOCTVL1 model is always higher than CTVL1
model. After first correction step, the SNR of recovered image by HOCTVL1 model is about 0.6 dB
higher than CTVL1 model. Meanwhile, after three correction steps, the SNR of the restored image
keeps stable, and the noise is eliminated, which shows that the correction efficiency of HOCTVL1
model is very high.
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(a) Corruption: 90% (b) SNR: 6.78

(c) SNR: 12.13 (d) SNR: 13.26 (e) SNR: 13.99 (f) SNR: 14.10 (g) SNR: 14.21

(h) SNR: 12.77 (i) SNR: 14.19 (j) SNR: 14.50 (k) SNR: 14.51 (l) SNR: 14.53

Figure 11. Restored images of TVL1, CTVL1 and HOCTVL1 models on the Lena image corrupted by
Gaussian blur and salt-and-pepper noise with noise level 90%. (a) Corrupted image. (b) TVL1 model.
(c–g) first correction step to fifth correction step of CTVL1 model. (h–l) first correction step to fifth
correction step of HOCTVL1 model.

Table 1 shows the results of the four models for restoring the corrupted images with noise levels
10%, 30%, 50%, 70% and 90%. The test images are what are shown in Figure 3. It should be noted
that the values of CTVL1 and HOCTVL1 model for noise level 90% are the SNR of the restored
images after first correction step. From Table 1, it can be seen that compared with other three models,
HOCTVL1 model can achieve a higher SNR value. It can also be seen that there is a great improvement
in HOCTVL1 model compared with TVL1 and HTVL1 model no matter what the noise level is.
Compared with CTVL1 model, there is about 1 dB higher in restoring the Lena, pepper and boat
images when noise levels are 10% and 30%. Even for recovering camera image, the SNR of the restored
image by HOCTVL1 model is still at least 0.5 dB higher than CTVL1 model when noise levels are 10%
and 30%. For noise level 90%, the SNR of our HOCTVL1 model is the highest among the four model,
though there is only a slight improvement in the camera image.
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Table 1. SNR of four different models for test images corrupted by Gaussian blur and salt-and-pepper noise.

Image Noise Level SNR(dB)

TVL1 HTVL1 CTVL1 HOCTVL1

Lena

10% 15.68 16.83 18.93 19.79
50% 14.82 15.14 18.01 18.60
70% 12.39 13.59 17.43 17.71
90% 7.32 6.77 12.13 12.77

Camera

10% 12.95 13.64 16.27 16.92
30% 12.30 12.99 15.73 16.21
50% 11.48 11.79 14.79 15.28
70% 10.26 10.27 12.44 12.54
90% 5.73 5.56 8.08 8.20

Pepper

10% 19.40 21.65 25.08 26.00
30% 18.96 21.01 24.24 25.43
50% 17.98 19.31 23.65 24.63
70% 16.14 16.48 22.77 23.25
90% 7.90 7.12 13.16 14.75

Boat

10% 15.26 16.54 19.03 20.02
30% 14.78 16.01 18.58 19.52
50% 13.63 14.58 18.08 18.69
70% 12.30 12.51 17.26 17.69
90% 6.79 6.13 10.99 11.36

5.3.2. For Random-Valued Noise

For the sake of testing the performance of HOCTVL1 model in removing random-valued noise,
we also carry out a series of experiments. Figures 12 and 13 show the visual comparisons of Lena
image corrupted by Gaussian blur and random-valued with noise levels 30% and 50%. It can be
seen that for noise level 30%, both four models can effectively restore the corrupted image, but the
image restored by TVL1 is still somewhat blurred, the images recovered by other three models are
clearer and the recovered image by HOCTVL1 model is closer to the original image and its SNR is
the highest. For noise level 50%, there is a little noise in Figure 13b,c, which shows that TVL1 and
HTVL1 models cannot completely remove the 50% random-valued noise though HTVL1 model has
a better performance. While CTVL1 model and HOCTVL1 model can remove noise very well, and
the recovered image by HOCTVL1 model is clearer than that by CTVL1 model, which illustrates that
high-order regularizer term can effectively restrain the staircase effects. Meanwhile, the value of SNR
of HOCTVL1 model also illustrates this point.

(a) Corruption: 30% (b) SNR: 15.41 (c) SNR: 16.25 (d) SNR: 18.48 (e) SNR: 19.32

Figure 12. Comparisons of TVL1, HTVL1, CTVL1 and HOCTVL1 model on the Lena image corrupted
by Gaussian blur and random-valued noise with noise level 30%. (a) Corrupted image. (b) TVL1 model.
(c) HTVL1 model. (d) CTVL1 model. (e) HOCTVL1 model.
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(a) Corruption: 50% (b) SNR: 14.24 (c) SNR: 14.95 (d) SNR: 17.94 (e) SNR: 18.62

Figure 13. Comparisons of TVL1, HTVL1, CTVL1 and HOCTVL1 model on the Lena image corrupted
by Gaussian blur and random-valued noise with noise level 50%. (a) Corrupted image. (b) TVL1 model.
(c) HTVL1 model. (d) CTVL1 model. (e) HOCTVL1 model.

Figure 14 shows the results of TVL1, five correction steps of CTVL1 model and eighth correction
steps of HOCTVL1 model for removing the random-valued noise with noise level 70%. Though the
performance of TVL1 model is not good, after several correction steps, both CTVL1 model and
HOCTVL1 model can improve the restoration effect. Meanwhile, it can be found that the SNR of the
new model is always higher than CTVL1 model after the same correction step. Besides, after the eighth
correction step, there are only a few noise points in the image and the restored image is very clear,
which shows the superiority of HOCTVL1 model.

(a) Corruption: 70% (b) SNR: 8.34 (c) SNR: 9.35 (d) SNR: 10.23 (e) SNR: 10.79

(f) SNR: 11.11 (g) SNR: 11.56 (h) SNR: 9.54 (i) SNR: 10.63 (j) SNR: 11.38

(k) SNR: 11.95 (l) SNR: 13.08 (m) SNR: 13.89 (n) SNR: 14.55 (o) SNR: 14.97

Figure 14. Restored images of TVL1, CTVL1 and HOCTVL1 model on the Lena image corrupted by
Gaussian blur and random-valued noise with noise level 70%. (a) Corrupted image. (b) TVL1 model.
(c–g) first correction step to fifth correction step of CTVL1 model. (h–o) first correction step to eighth
correction step of HOCTVL1 model.

Table 2 shows the results of the four models for restoring the corrupted images with noise levels
10%, 30%, 50%, 70%. The values of CTVL1 and HOCTVL1 models for noise level 70% in Table 2 are
also the SNR of the restored images after first correction step. The values show the superiority of our
model for removing the random-valued noise. Different to removing salt-and-pepper noise, there is
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only a little improvement compared to CTVL1 model for removing noise as high as 70%. But when the
noise level is lower than 70%, the improvement is remarkable.

Table 2. SNR of four different models for test images corrupted by Gaussian blur and random-valued noise.

Image Noise Level SNR(dB)

TVL1 HTVL1 CTVL1 HOCTVL1

Lena

10% 15.70 16.82 18.87 19.68
30% 15.41 16.25 18.48 19.32
50% 14.24 14.95 17.94 18.62
70% 8.34 8.28 9.35 9.54

Camera

10% 12.97 13.64 16.22 16.76
30% 12.18 12.88 15.80 16.20
50% 9.35 9.37 11.20 11.46
70% 3.30 3.60 3.63 3.79

Pepper

10% 19.41 21.57 25.00 25.95
30% 18.94 20.88 24.24 25.35
50% 16.23 16.88 20.88 21.40
70% 7.58 7.12 8.63 8.80

Boat

10% 15.26 16.48 19.01 19.90
30% 14.76 15.94 18.55 19.47
50% 12.90 13.62 17.06 18.31
70% 6.57 7.06 7.88 7.98

5.3.3. Analysis of Convergence Rate

Now, we analyze the convergence rate of four models. We choose Lena as the test image, and use
the running time to evaluate the convergence rate. Figure 15 shows the time that four models spend
restoring the corrupted Lena image under impulse noise with different level. It can be seen that
when dealing with the same noise, TVL1 and CTVL1 model cost relatively less time. Because of the
combination of high-order TV regularizer term, which increases the computational complexity of
the algorithm, HTVL1 and HOCTVL1 models consume more time compared to TVL1 and CTVL1
model. While HOCTVL1 model can effectively reduce the staircase effect and restore more details,
it is worthwhile taking more time. Figure 16 shows the change of F(z) with the iteration number
when dealing with the salt-and-pepper noise with noise levels 30% and 50%. It can be seen that the
convergence rate of HOCTVL1 model is slower than CTVL1 model, and the iteration number is about
twice as much as that of CTVL1 model.
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Figure 15. Running time of four different models for Lena corrupted by Gaussian blur and impulse
noise. (a) Salt-and-pepper noise; (b) Random-valued noise.
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Figure 16. Change of F(z) value with Iteration number. (a) Corruption: 30%; (b) Corruption: 50%.

5.4. Comparisons of Some Other Methods

In this subsection, we compare the effect of the HOCTVL1 model with some other methods for
image deblurring under impulse noise, mainly include: LpTV-ADMM [26], AOP [41], PDA [42] and
L0TV-PADMM [43]. Since in [23], the author has shown the superiority of CTVL1 model by numerical
experiments compared with two-phase method, in this subsection, we do not consider two-phase
method. In this experiment, for ease of comparison, we choose “Gaussian” blurring kernel with hsize
=9 and standard deviation =7, which is same with [43] and the parameter settings of these methods
also obey to the related papers and readers can refer to them for details.

Firstly, we show the visual results of the pepper image corrupted by salt-and-pepper noise and
random-valued noise with noise level 50% respectively, as are shown in Figures 17 and 18.

(a) Corruption: 50% (b) SNR: 14.33 (c) SNR: 16.97

(d) SNR: 15.95 (e) SNR: 26.62 (f) SNR: 30.64

Figure 17. Recovered images on Pepper image corrupted by salt-and-pepper noise with noise level
50%. (a) Corrupted image. (b) Lp-ADMM. (c) AOP. (d) PDA. (e) L0TV-PADMM. (f) HOCTVL1.
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(a) Corruption: 50% (b) SNR: 13.80 (c) SNR: 16.23

(d) SNR: 15.45 (e) SNR: 20.82 (f) SNR: 22.94

Figure 18. Recovered images on Pepper image corrupted by random-valued noise with noise level
50%. (a) Corrupted image. (b) Lp-ADMM. (c) AOP. (d) PDA. (e) L0TV-PADMM. (f) HOCTVL1.

From Figures 17 and 18, it can be seen that the restoration effect of HOCTVL1 model is very
remarkable. It is obvious that HOCTVL1 model has the highest SNR, followed by PDA and AOP
methods, and the Lp-ADMM method has the lowest SNR. When removing 50% salt-and-pepper
noise, as shown in Figure 17, compared with Lp-ADMM method, the SNR of (f) is more than twice
as (b). Compared with L0-PADMM method, the SNR of our model is also 4 dB higher. When
removing 50% random-valued noise, compared with L0-PADMM method, our model has only about
2 dB improvement in SNR, which is less than that in removing salt-and-pepper noise. But similarly,
compared with Lp-ADMM method, our model has more than 100% improvement.

Table 3 shows the results of the five methods for restoring the corrupted images by impulse noise
with different noise level, respectively. The value on the left of “/” represents the result after the first
correction step and the value on the right of “/” represents the result after multi-correction steps.
For removing salt-and-pepper noise, it is obvious that Lp-ADMM and PDA methods perform poorly,
and when noise level is 90%, Lp-ADMM method has the worst effect. When the noise level varies from
30% to 70%, HOCTVL1 model has the highest SNR in most cases, except the SNR of L0TV-PADMM
when dealing with the camera image with noise level 70%. It can also be seen that L0TV-PADMM
method has the best restoration effect and its SNR value is higher than our model when the noise level
is 90%. For dealing with random-valued noise, it can be seen that our model has the highest SNR
when noise level varies from 30% to 50%. Similarly, for noise level 70%, L0TV-PADMM method has
certain advantages; however, it can be seen from Lena and boat images that our model can achieve
a higher SNR than L0TV-PADMM method after multi-correction steps.
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Table 3. SNR of five methods for test images corrupted by Gaussian blur and impulse noise.

Image Algorithm Salt-and-Pepper Noise Random-Valued Noise

30% 50% 70% 90% 30% 50% 70%

Lena

Lp-ADMM 14.18 12.72 8.25 2.21 14.24 12.79 7.21
AOP 14.75 14.34 13.79 13.18 14.49 14.03 5.56
PDA 14.22 13.75 12.96 9.12 14.07 13.41 11.77

L0TV-PADMM 19.41 18.62 17.46 15.02 18.14 16.92 15.31
HOCTVL1 23.66 22.19 18.52 11.05/13.82 23.49 19.44 9.27/17.24

Camera

Lp-ADMM 9.46 8.37 3.92 −0.43 9.43 7.54 2.68
AOP 11.32 10.63 9.52 8.37 11.08 8.65 2.57
PDA 9.91 9.57 8.98 5.86 9.64 8.92 6.54

L0TV-PADMM 15.57 14.32 12.63 9.74 13.16 12.35 10.53
HOCTVL1 22.27 17.89 12.55 6.22/6.46 21.67 14.79 3.65/9.51

Pepper

Lp-ADMM 16.63 14.33 7.80 1.92 16.75 13.80 6.52
AOP 17.33 16.97 16.31 15.32 17.24 16.23 5.74
PDA 16.53 15.95 14.91 9.54 16.30 15.45 13.10

L0TV-PADMM 26.18 24.62 21.55 17.53 22.66 20.82 18.00
HOCTVL1 32.07 30.64 22.58 9.80/11.25 30.34 22.94 8.06/16.09

Boat

Lp-ADMM 12.28 11.13 7.16 1.99 12.22 10.95 6.18
AOP 13.70 12.80 12.24 11.43 13.11 12.51 5.43
PDA 12.38 11.91 11.18 8.29 12.32 11.76 10.43

L0TV-PADMM 19.45 18.12 16.58 13.26 17.38 15.76 14.04
HOCTVL1 24.21 22.55 18.15 9.25/10.85 23.84 18.46 7.91/15.45

Figure 19 shows the running time of the five methods for restoring the corrupted pepper image.
When dealing with 90% salt-and-pepper noise and 70% random-valued noise, HOCTVL1 model needs
multi-correction steps, which costs a lot time, here we only show the time of removing salt-and-pepper
noise as high as 70% and random-valued noise as high as 50%. It can be seen that compared to other
four methods, our HOCTVL1 model spends the least time whatever the noise level is. It can also be
found that the other four methods take several times as much time as our model, which illustrates the
advantages of our model.
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Figure 19. Running time of five methods for pepper corrupted by Gaussian blur and impulse noise.
(a) Salt-and-pepper noise; (b) Random-valued noise.
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5.5. Comparisons between SAHOCTVL1 Model and HOCTVL1 Model

In this subsection, the restoration effect of SAHOCTVL1 model will be analyzed. We choose
camera and Lena as test images, we use “Gaussian” blurring with hsize = 15 and standard deviation = 5,
and we set the spatially adapted iteration number p ≤ 3. Since we have shown the superiority of
HOCTVL1 model by many simulation experiments, here we only compare the effect of SAHOCTVL1
model and HOCTVL1 model on image restoration. Meanwhile, since we have shown the huge
advantage of HOCTVL1 model compared to HTVL1 model, while the effect of SAHTVL1 model
is similar to HTVL1 model, therefore we do not consider SAHTVL1 model in [31] either. In this
subsection we do not consider the 90% salt-and-pepper noise and 70% random-valued noise since the
multi-correction steps take much time. We evaluate the results by SNR and running time, and the
restoration results are shown in Table 4.

Table 4. Comparisons of SAHOCTVL1 and HOCTVL1 model for Cameraman and Lena corrupted by
Gaussian blur and impulse noise.

Image Noise Type Noise Level SNR(dB) Time(s)

HOCTVL1 SAHOCTVL1 HOCTVL1 SAHOCTVL1

Camera

SP

10% 16.85 16.98 2.32 6.76
30% 16.18 16.51 2.67 8.20
50% 15.33 15.72 3.02 9.32
70% 12.50 12.57 5.15 15.47

RV

10% 16.73 16.78 2.06 6.07
30% 16.22 16.34 2.30 7.08
50% 11.39 11.99 3.02 8.74

Lena

SP

10% 19.78 19.82 11.19 31.45
30% 19.35 19.44 13.97 39.27
50% 18.63 18.78 16.13 47.12
70% 17.72 17.85 18.82 55.57

RV

10% 19.68 19.72 9.18 30.60
30% 19.29 19.32 11.39 36.77
50% 18.56 18.68 12.07 41.35

SP denotes salt-and-pepper noise and RV denotes random-valued noise.

From Table 4, as is shown, generally speaking, SAHOCTVL1 model can achieve at least the same
effect as HOCTVL1 model. For camera image, when noise is 30% and 50% salt-and-pepper noise,
the SNR of SAHOCTVL1 model is about 0.4 dB higher than HOCTVL1 model and when noise is 50%
random-valued noise, there is 0.6 dB higher than HOCTVL1 model. For Lena image, the advantage of
SAHOCTVL1 model is little, and the SNR improves by about 0.1 dB when noise levels are 50% and
70%. Meanwhile, because we set p ≤ 3, which makes the algorithm run 3 times, making the time
SAHOCTVL1 model takes be about 3 times as much as that HOCTVL1 model takes. But we think it is
worthwhile to obtain high SNR at the expense of running time.

6. Conclusions

This paper gives a contribution to solving the problem of image deblurring under impulse
noise, and two models named HOCTVL1 model and SAHOCTVL1 model are proposed. Benefitting
from the merits of high-order TV regularizer term and spatially adapted regularization parameter
selection scheme, both models perform well in recovering the corrupted images. A great quantity
of experiments is carried out to show the superiority of the two models. Compared to CTVL1
model, HOCTVL1 model can achieve better visual effects and higher SNR values. When dealing with
salt-and-pepper noise with noise level less than 90% and random-valued noise with noise level less than
70%, there is about 0.5∼1 dB improvement. When dealing with 90% salt-and-pepper noise and 70%
random-valued noise, multi-correction steps are used to improve the restoration quality. HOCTVL1
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model outperforms CTVL1 model both in the SNR value of each correction step and the number of
correction steps they need. Compared to four other state-of-the-art methods, HOCTVL1 model always
outperforms Lp-ADMM, AOP, and PDA methods. Compared to L0TV-PADMM method, HOCTVL1
model performs well in most cases and it can achieve about 1∼4 dB improvement. When dealing
with 90% salt-and-pepper noise and 70% random-valued noise, L0TV-PADMM method performs well,
while after several correction steps, HOCTVL1 model can obtain higher SNR value in some cases
and HOCTVL1 model takes less time. In the last experiment, the comparisons of HOCTVL1 model
and SAHOCTVL1 model are conducted and the results show that SAHOCTVL1 can achieve about
0.1∼0.6 dB improvement compared to HOCTVL1 model. However, it takes about three times as long
as HOCTVL1 model, which is a problem that needs to be optimized in a future study.
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