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Abstract: The undesired square-law characteristics in micro-electrostatic actuators and magnetic
solenoids results in a limited stable range, which reduces their application fields and performance.
This research investigated the isomorphic dynamics in these actuators and observed that the nonlinear
drive force and the uncertain time delay are the challenges for the full range position controller design.
A hybrid nonlinear control scheme includes an input–output linearization controller and a feedback
posicast compensator for targeting these problems with abundant stability margin. The experimental
results show that the stable range has been extended from 33% to 80%. Furthermore, it is the first
literature report of this type of actuator that can track sinusoidal motion beyond the conventional
stable range with an amplitude of 70% of the total range. This contribution can significantly
enhance the performance of micro-sensors or expand the usage of electrostatic/magnetic actuators in
motion-control systems.

Keywords: electrostatic actuators; magnetic actuators; feedback posicast; solenoids; nonlinear control

1. Introduction

Electrostatic parallel-plate actuators (PPA) and magnetic solenoids are commonly used actuators in
industrial applications. PPAs are used to generate desired motion in micro-electro-mechanical systems
(MEMS) devices such as antennas [1], resonators [2], accelerometers [3], switches [4], micro-mirrors [5],
and gyroscopes [6]. The nonlinear plunger-type solenoids are also used as key actuators in variety of
fields, such as biomedical apparatuses [7], internet of things [8] and magnetic bearings [9].

These kinds of actuators may have different exteriors, but their physical dynamics are isomorphic
in that the mechanical part is a linear second-order system and the driving force is proportional to
the square of the input term [10,11]. Consequently, they share a common fatal defect that the inherent
nonlinear driving forces produce a limited open-loop stable range to avoid the famous snap-in problem.
Figure 1 illustrates this snap-in phenomenon. PPAs/solenoids operate by generating a displacement in
response to an applied voltage/current. They have an electrically controlled stable displacement range,
x, of 0 ≤ x < x0/3, where x0 is the total traveling distance. An open-loop command attempting to
further increase displacement results in unstable motion with the actuator snapping into the full range.

Thus, most applications use the solenoids/PPAs as switches or operating the actuator around
an operating point with a small amplitude of motion, which can ignore this undesired characteristic.
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Extending the stable operating range in a practical way is highly expected to enhance the performance
for many industrial products. By breaking the barrier of this snap-in trap, MEMS gyroscopes can
greatly enhance their relatively low signal-to-noise ratio [12]; the scanning range of micro-mirrors
would be enlarged to benefit autonomous cars [13]; solenoids could be used as a low-cost solution for
motion-control systems to replace small motors [14].

Figure 1. A demonstration of the snap-in effect: desired position larger than 1/3 of the total range
would be unstable.

Several feedback control solutions have been investigated to increase the stable displacement
range using various controller architectures. Examples include the series capacitor method [15],
synthetic voltage division [16], various electrode configurations [17], charge control [18], negative
capacitance control [19], dual actuator configuration [20] and fractional order controller [21].
An alternative approach would be modifying the dynamics by using advanced mechanical
design [22,23].

The contributions of this work are summarized as follows: (1) The comprehensive mechanical and
electrical coupling model for actuators with square-law input characteristics are analyzed and unified.
This model points out the challenges for the control system design. (2) A hybrid nonlinear control
policy is designed for the position control purpose with sufficient stability robustness. This control
scheme can effectively cancel the nonlinear term and track the reference position. (3) The effectiveness
of the proposed method is experimentally verified that rapid response and 2.5x extended stable range
are demonstrated. In particular, the AC motion beyond the snap-in limit with an amplitude of 70% of
the total traveling range is the firstly reported for the actuators with this nonlinear square characteristic.

The remainder of the paper presents the details.

2. Kinematics of Actuators Possessing a Square Characteristic

2.1. Kinematics of PPAs

An illustrative drawing of a PPA is presented in Figure 2. The planar electrodes are arranged in a
parallel configuration with an overlapping surface area, A, and a rest distance between them of x0.
The bottom electrode is fixed in space and the top electrode can move toward or away from the bottom
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electrode. The system’s suspension system constrains the motion of the top electrode and is modeled
by the system spring constant, k. Cact is the capacitance between the two electrodes and is modeled by

Cact =
ε0εr A

x0 − x(t)
; (1)

when the displacement x(t) is zero, the capacitance reaches a minimum value Cm:

Cm =
ε0εr A

x0
(2)

where x is the motion of the top electrode, ε0 is the permittivity of free space and εr is the relative
permittivity of the gas in between the electrodes. If a voltage, Vact, is applied across the two electrodes,
an electrostatic force,

Fe(x, Vact) =
ε0εr AV2

act(t)
2(x0 − x(t))2 , (3)

results that pulls the top electrode closer to the bottom electrode until its motion is balanced by the
spring force

Fs = kx(t) (4)

from the suspension system. In this simplified PPA model, the suspension system is assumed to be
satisfactorily modeled by a linear spring. Additionally, capacitive fringing field effects have been
ignored. This is a reasonable assumption as long as the electrode overlap area is much greater than the
electrode separation distance squared [24]. Using (3), a nonlinear differential equation that models the
PPA system dynamics can be developed:

mẍ(t) = −cẋ(t)− kx(t) +
ε0εr AV2

act(t)
2(x0 − x(t))2 . (5)

Figure 2. An illustration of a parallel-plate actuator.

Here, m is the proof mass, typically the movable electrode, and c is the system coefficient of
damping. The system’s natural frequency, ω0, is:

ω0 =

√
k
m

, (6)
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while Q, the mechanical quality factor, is

Q =
ω0m

c
. (7)

MEMS devices are generally designed to be highly underdamped [24], except for MEMS
accelerometers, which are usually designed to be critically damped [25].

When the PPA is operated in its open-loop stable range of motion, the electrostatic force and the
spring force are in equilibrium. However, since the spring force is linearly proportional to displacement
and the electrostatic force is a nonlinear function of both displacement and applied voltage, the actuator
has a limited open-loop stable range of displacement of 0 ≤ x < x0/3. If the applied voltage is further
increased in attempt to reach a displacement of x0/3 or further, the system will no longer be in
equilibrium since the electrostatic force will always be greater than the spring force. This results in the
movable electrode accelerating toward and snapping into contact with the fixed electrode. This event
is called snap-in. The minimum applied voltage that will cause snap-in is referred to as the pull-in
voltage [25], Vpi, where

Vpi =

√
8(x0)3

27ε0εr A
. (8)

2.2. Kinematics of Solenoids

A typical configuration of a solenoid in a spring-mass-damper system is illustrated in Figure 3.
Its mathematical description is:

Figure 3. An illustration of a solenoid with a spring and a damper.

mẍ(t) + cẋ(t) + kx(t) =
µ0µr N2 AI2(t)

2(d + x0 − x(t))2 , (9)

where x is the displacement of the armature, µ0 is the permeability of free space, A is the cross-sectional
area of the core, N is the number of the turns of the coil, µr is the relative permeability of the dielectric
material between the coil and the armature, xo is the initial air gap between the armature and the back
side of the frame and d is the additional initial air gap related to the solenoid’s geometry, which is
much smaller than x0 in general. Also, m is the proof mass of the armature, k is the stiffness of the
spring and c is the system damping coefficient. I(t) is the current through the coil [26,27]. L(x) is the
inductance of the coil that depends on the air gap x [26,27], which is:

L(x) =
µ0µr A

d + x0 − x(t)
. (10)
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The plunger is driven by a magnetic force which can be described by:

F(x, I(t)) =
µ0µr N2 AI2(t)

2(d + x0 − x(t))2 . (11)

At equilibrium:

kx =
µ0µr N2 AI2(t)

2(d + x0 − x(t))2 . (12)

Because the magnetic force is also nonlinear, this type of actuator also has the pull-in effect.
The pull-in current is:

Ipi =

√
8(x0)3

27µ0µr N2 A
. (13)

The definitions for quality factor and resonant frequency are as same as (6) and (7).

2.3. The Pull-in Effect and Stable Range of PPAs

The stable traveling range of PPAs is less than 1/3 x0. A linear approximation by (5) can be
formed by Taylor series expansion of Fe(x, V) [28]. From the Taylor series:

∂Fe(x, V)

∂x
=

ε0εr AV2(t)
(x0 − x(t))3 , (14)

Let xa be a desired displacement over the stable range and Va be the voltage from (3). Then:

Fe(x, V) =
ε0εr AV2

a
2(x0 − xa)2 (x(t)− xa)

0 +
ε0εr AV2

a
(x0 − xa)3 (x(t)− xa)

1, (15)

Define N and KEL as:

N =
ε0εr AV2

a
2(x0 − xa)2 − xa

ε0εr AV2
a

(x0 − xa)3

KEL =
ε0εr AV2

a
(x0 − xa)3 .

(16)

Then substituting (16) for Fe(x, V) in (5) yields the linear approximation:

mẍ(t) + cẋ(t) + (k − KEL)x(t) = N. (17)

The characteristic equation has roots at:

s1,2 =
1
2
(
−c
m

±
√
(
−c
m

)2 − 4(
k − KEL

m
)). (18)

This system is only stable by open-loop voltage control for 0 ≤ x < x0/3. If the PPA voltage
is increased in attempt to increase the displacement to or beyond x0/3, the two electrodes will snap
into contact.

2.4. The Pull-In Effect and Stable Range of Solenoids

Because solenoids have the same type of driven force, the PPAs’ pull-in principle can also be
applied to solenoids and generate the same result. The stable traveling range of solenoids is also up to
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1/3 of x0. A linear approximation around an operational point of the solenoid can be formed by Taylor
series expansion of Fm(x, I). From the Taylor series:

∂Fm(x, I)
∂x

=
µ0µr N2 AI2(t)
(d + x0 − x(t))3 , (19)

Let xa be a desired displacement over the stable range and Ia be the current from (9). Then:

Fm(x, I) =
µ0µr N2 AI2

a
2(d + x0 − xa)2 (x(t)− xa)

0 +
µ0µr N2 AI2

a
(d + x0 − xa)3 (x(t)− xa)

1, (20)

Define N and KM as:

N =
µ0µr N2 AI2

a
2(d + x0 − xa)2 − xa

µ0µr N2 AI2
a

(d + x0 − xa)3

KM =
µ0µr N2 AI2

a
(d + x0 − xa)3 .

(21)

Similiar to PPAs, solenoid’s snap-in problem is also able to be characterized by (17) and (18).
This system is only stable by open-loop current control for 0 ≤ x < x0/3. If the current is increased
in attempt to increase the displacement to or beyond x0/3, the armature will contact the bottom of
the frame.

3. Characteristics of Square-Law Actuator Systems in Circuits

3.1. PPAs with a Series Resistor

PPAs contain variable capacitance which depends on the displacement of the movable electrode.
Consider a time-variant capacitor with a series resistor, R, which is used to protect the capacitive
element and prevent the power source from shorting to ground in case the MEMS device’s electrodes
physically contact each other. The circuit’s schematic is given in Figure 4. In addition, different
configurations can be transformed into this model using the Thevenin equivalent circuit method.

Figure 4. A Thevenin equivalent schematic diagram of a time-variant capacitor with a series resistor
and an AC voltage source.

The circuit’s behavior is described by:

Ic(t) = (Vs(t)− Vc(t))/R = V̇c(t)C(t) + Vc(t)Ċ(t), (22)

where Vs is the power source, Vc is the voltage across the variable capacitor and Ic is the current
through it. Though (22) fully characterizes the circuit’s behavior, it is difficult to solve this nonlinear
differential equation in practice and obtain a closed form solution.



Electronics 2019, 8, 863 7 of 14

3.2. Solenoids with a Series Resistor

A solenoid can be treated as variable inductor when it is in an electronics circuit. Based on (10),
L(x) is a variable inductor; the dynamics of the circuit in Figure 5 are modeled as:

L(x)
dI(t)

dt
+

dL(x)
dt

I(t) + I(t)R = V(t). (23)

Figure 5. The equivalent circuit for a solenoid.

According to (9), the electrical and mechanical dynamics are coupled with each other, which makes
solving (23) and identifying the time delay between the control voltage V(t) and I(t) difficult.

4. Control Scheme

4.1. Dynamic System Formulation

By analyzing the mechanical and electrical behaviors of solenoids and PPAs, the general properties
of the actuators possessing a square-law characteristic can be summarized as:

(1) The mechanical part is suspended with spring and dampers which can be considered to be a
linear second-order system. It is notable that the mechanical suspension is required to work in the
linear region to cooperate with this assumption.

(2) The driving force is proportional to the square of the input term and the inverse of the
traveling range.

(3) There is always an uncertain time delay between the control voltage and the actual
driving force.

Thus, a unified model can be established for the control system design:

mẍ(t) + cẋ(t) + kx(t) =
γu2(t − τ)

(x0 − x(t))2 , (24)

where γ is the constant coefficient related to the physical structure of the actuator.

4.2. Hybrid Nonlinear Control Scheme

To overcome the drawbacks of the nonlinear driving force, an input–output linearization (IOL)
control policy is first introduced as

u(t) = v1(t)kc

√
(x0 − x(t)) (25)
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to cancel the nonlinear terms to prevent the snap-in phenomena, where kc is a positive gain. where v1

is the new control input and v1 > 0. In this situation, the system dynamics become:

mẍ(t) = −cẋ(t)− kx(t) +
kcγ(x0 − x(t − τ))2v1(t)

(x0 − x(t))2 . (26)

To evaluate the effect of this modified dynamic system with the uncertain time delay, τ, the Taylor
series-based approximation can be applied:

x(t − τ) ≈ x(t)− τẋ(t). (27)

Combining the approximation (27) and (26) will become:

mẍ(t) = −cẋ(t)− kx(t) + kcγv1(t) +
2kcγτ

x0 − x(t)
ẋ(t)v1(t) +

kcγτ

(x0 − x(t))2 ẋ2(t)v1(t), (28)

where the last two terms are resulting negative nonlinear damping effects to the system. So, the actual
system can be described as:

mẍ(t) = −(c − ∆c)ẋ(t)− (k − ∆k)x(t) + kcγv1(t), (29)

where ∆c and ∆k are the time-variant perturbations damping coefficient and spring stiffness.
Specifically, ∆c is generated from the last two nonlinear damping terms in (28) and ∆k is conducted by
the spring softening effect.

As a result, the consequences of introducing this policy into (24) without compensating the time
delay effect are degrading the stability margins of the original system. It would be common sense to use
a proportional–integral–derivative (PID)-type controller for the non-ideality. However, compensating
these nonlinear effects by using a PID controller is challenging.

Therefore, an advanced and robust compensation control policy should be developed to make
the basic nonlinear IOL solution practical. This study proposes a feedback posicast and IOL (FPIOL)
hybrid scheme to solve this problem, as shown in Figure 6. The inner loop is still the IOL and the outer
one is called a feedback posicast compensator whose time domain representation is:

v1(t) =
δ

1 + δ
(v2(t −

Td
2
)− 1), (30)

where v2 is the input of this compensator. The role of the feedback posicast controller is cancelling
the undesired oscillation that was introduced by the inner loop [29,30]. The parameters in (30) are
illustrated in Figure 7 when the system is stimulated with a step input, where δ is the ratio of the
overshoot and Td is the period of the oscillation. It is noted that the term δ is inherently associated
with the damping coefficient c.

The ultimate goal is developing an accurate and robust position control system. Thus, there is an
integral block ahead of the posicast controller to eliminate the position tracking error. Defining e(t) as
the position error and the resulting control policy is:


v1(t) = kI

∫
δ

1 + δ
(e(t − Td

2
)− 1)dt

u(t) = v1(t)kc

√
(x0 − x(t)),

. (31)

where kI is the integral gain for the position tracking performance.
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Figure 6. The overall control diagram of the hybrid nonlinear control scheme.

Figure 7. The physical representation of the parameters in the posicast controller.

4.3. Stability Analysis

The control policy (31) claims that it is robust, insensitive to model variations, and able to stabilize
the overall feedback system. To prove this claimed policy, a nominal model based on the transfer
function formulation for the system (29) is established as:

G(s) =
kcγ

ms2 + cs + k
, (32)

and the outer loop controller is

C(s) =
1
s

δ

1 + δ
(e−s Td

2 − 1). (33)

Therefore, the tolerance of the nonlinear model mismatch and the uncertain time delay effect
can be evaluated by the stability margins of the combined system C(s)G(s). These non-idealities
are weighted by the mismatch of the overshoot/damping, δ, and the frequency, ω. The visualized
numerical results are given in Figure 8.

In terms of the gain margin, it remains stable within the ±50% mismatch of the overshoot and
frequency. The positive mismatch of δ in the controller can yield a larger gain margin. The inspiration
would be in setting a larger δ when the overshoot in the experiments is hard to be characterized.

The performance of the phase margin in the proposed solution exceeds expectation. When the δ

mismatch is within ±20% and ω mismatch is between −30% and 50%, the phase margin would be
beyond 170◦, which is particularly useful to this system with uncertain time delay effect. This unique
advantage also solves a common issue for MEMS control systems that their absolute time delay
tolerance is low. For instance, a feedback control approach failed due to the insufficient phase
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margin [31]. Thus, the proposed scheme is an appropriate candidate for both macro and micro
actuators from multiple points of considerations.

Though the proposed solution shows good stability robustness, it is notable that the selection
of the parameter δ and Td should not be free. It is suggested that the value of Td should be within
±20% of the nominal value to conduct a good stability property. Similar to Td, the range of δ should be
between −30% and 30% to reach the maximum stability margin. Otherwise, an aggressive controller
design may lead the system to be unstable due to insufficient stability margins.

(a) Gain Margin (b) Phase Margin

Figure 8. The stability margins of the integral-feedback-posicast controller with a nominal model.

5. Experimental Validation

A commercial magnetic solenoid-based evaluation platform was designed to validate the
proposed solution. The components of the solenoid are shown in Figure 9a and its equivalent initial
gap distance was configured as 5 mm. The platform was mounted on a vibration test system to do
the system identification and measurement, which is shown in Figure 9b. The relative displacement
between the armature and fixture, x, was measured by two laser vibrometers. The core control
algorithm was implemented with a STM32F107 micro-controller and the output data was displayed
and recorded through a computer.

Figure 9. (a) Detailed components of the solenoid and (b) experimental setup.

A group of step responses were first collected with “different control systems”, as that illustrated
in Figure 10. The open-loop system was slightly under damped, but its maximum stable was 1.5 mm,
which range in this case was even less than 1/3 of x0 due to the non-ideal factors in the real setup.
The solenoid with the IOL can improve the stable range up to 2.3 mm with a penalty of additional
oscillations that verifies the theoretical analysis. The legends of the input were marked with numbers
because they did not have any position control functions. The further command led the system to
snap-in because of the insufficient phase margin. To overcome these issues, a PID controller was
developed along with the IOL and further extended the stable range to 4 mm. However, the oscillation
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was still not severe, especially if the desired position was around 3 mm, because of the residual
nonlinear terms.

Based on the results with the IOL, the parameter Td and δ were characterized to conduct a FPIOL
as proposed in Figure 6. The adjustment of the integral gain increased gradually to optimize the
stability and performance. The final results are shown in Figure 10d. It successfully significantly
cancelled the oscillation without sacrificing the stable traveling range, which was 80% of the total gap.

(a) Open loop. (b) IOL.

(c) IOL with PID. (d) FPIOL.

Figure 10. Step responses of the actuators with different control systems.

The vibration system characterized the frequency responses of the solenoid with different control
systems to further demonstrate the advantage of the proposed hybrid nonlinear controller FPIOL,
which is shown in Figure 11. The original system had a resonant frequency with a quality factor of
2.4, while the IOL increased it to 3.3, which means the damping ratio was lower. Both the amplitude
and phase plot of the FPIOL demonstrated the advantages: the damping ratio was reduced below 2,
the bandwidth was withheld, and the phase margin was enhanced by 45◦. The frequency domain
characterization well matched to the theory sponsored the time domain results.
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Figure 11. The frequency responses of the system with open-loop, IOL, and FPIOL configurations.

Another significant contribution is that the FPIOL enabled the AC-type motion beyond the
snap-in point with a large magnitude, as shown in Figure 12. The motion was performing a sinusoidal
trace beyond the 1/3 range with an amplitude of 3.5 mm and a frequency of 1 Hz. In comparison,
a conventional actuator with this square-law characteristic can only do AC motion below the snap-in
range and the amplitude is only 1/10 of the total displacement. The outputs of the posicast controller
and the actual current are also displayed in Figure 12.

Figure 12. 1 Hz sinusoidal AC motion results of the system with FPIOL.
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6. Conclusions

The mechanical and electrical dynamics of the actuator possessing a square-law characteristic were
analyzed from the prospective of control systems. A hybrid nonlinear control policy that contains a
nonlinear control law, input–output linearization, and a feedback posicast compensator was designed
and its stability was analyzed. The experimental results verified that the proposed solution can
effectively regulate the actuator’s set point or track an AC motion with high performance. This control
technique can contribute to industrial motion-control systems or MEMS inertial sensors.
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