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Abstract: Non-technical losses (NTLs) have been a major concern for power distribution companies
(PDCs). Billions of dollars are lost each year due to fraud in billing, metering, and illegal consumer
activities. Various studies have explored different methodologies for efficiently identifying fraudster
consumers. This study proposes a new approach for NTL detection in PDCs by using the ensemble
bagged tree (EBT) algorithm. The bagged tree is an ensemble of many decision trees which
considerably improves the classification performance of many individual decision trees by combining
their predictions to reach a final decision. This approach relies on consumer energy usage data to
identify any abnormality in consumption which could be associated with NTL behavior. The key
motive of the current study is to provide assistance to the Multan Electric Power Company (MEPCO)
in Punjab, Pakistan for its campaign against energy stealers. The model developed in this study
generates the list of suspicious consumers with irregularities in consumption data to be further
examined on-site. The accuracy of the EBT algorithm for NTL detection is found to be 93.1%, which
is considerably higher compared to conventional techniques such as support vector machine (SVM),
k-th nearest neighbor (KNN), decision trees (DT), and random forest (RF) algorithm.

Keywords: electricity theft; non-technical losses; Ensemble Bagged Tree algorithm

1. Introduction

Electrical energy losses in any transmission and distribution system include both technical and
non-technical losses. The assessment of technical losses is usually necessary for the valuation of
non-technical losses [1]. Technical losses generally take place due to electrical energy dissipation in the
various transmission and distribution (T&D) components. The non-technical losses (NTL), however,
occur as a result of errors in billing, equipment malfunction, low-quality infrastructure, non-metered
supply, or because of illegal behavior of energy consumers [2]. The illegal behavior in electrical energy
usage by fraudster consumers is often associated with regularized corruption, theft, and organized
crime. Therefore, this kind of loss cannot be precisely calculated [3]. The reduction of NTL is one of
the most important concerns for PDCs. It poses huge and weighty issues for PDCs since, in some cases,
half of electricity supplies translate into NTLs and thus loss of billions of dollars per year [4]. It is
estimated that PDCs worldwide lose around $25 billion worth of electricity each year alone as a result
of electricity theft [5]. Although, countries with stable economies are not facing severe concerns related
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to NTLs, the search for suitable solutions to mitigate these losses are still a concern. For example, in the
USA and UK, the revenue loss due to electricity theft aggregates to $6 billion and $173 million Great
Britain Pounds (GBP), respectively each year [5,6]. The most damaging effect of NTLs is present in
those countries where economies are in an evolutionary phase [7]. For instance, in Pakistan, the T&D
losses of 17% and 17.5% were recorded in the electricity system for the years 2016–2017 and 2017–2018,
respectively. These losses are considerably higher when compared to other regional countries in Asia.
For example, in China T&D losses in the electricity system are only 8% in Korea and around 3.6%
in other European countries, these are below 7% [8]. NTL shares a major portion of the T&D losses
in the electricity system of Pakistan with estimated shares of 33% in the overall T&D losses of the
country [8]. In order to reduce NTL, PDCs generally undertake a random audit of consumer billing
profiles and inspection of metering devices for the purpose of detecting NTLs. However, the key
shortcoming pertaining to these random audits and inspections is that it does not take into account
any knowledge of the behavior of the consumer’s consumption pattern so the detection rate of these
inspections is very low. These conventional audit and inspection methods are also inefficient for the
reason that distribution feeders in developing countries are generally very long with a large number of
consumers hence these traditional methods can be often very costly and time-consuming [9]. In the
meantime, smart meters have emerged as one of the most recent and significant remedies for NTL’s
detection. However, the design, deployment, and operational cost of these meters require billions of
dollars which is not an affordable option for many developing countries like Pakistan [10]. Despite
huge losses to the economy caused by NTLs over the years, there is no published evidence available
on NTL detection in any PDC of Pakistan.

There are several NTL detection schemes developed and proposed in contemporary literature.
Most of these electricity theft detection schemes are based on game theory and classification
approach [11–13]. The game theory-based approach proposes a game amongst the potential thieves
and PDCs [14]. The main disadvantage associated with this method is the formation of different
functions of every player, which is a very tedious task. On the other hand, the traditional classification
method employs consumers load profiling over a given period using healthy and unhealthy data
samples [11]. However, the main problem with these traditional classification-based methods is their
low detection rate and high false-positive rate (FPR) which results in increased cost of the audits
and inspections. In addition, the data imbalance is one of the fundamental problems in traditional
classification algorithms since the consumption data for honest consumers are easily accessible whereas
the data for the fraudster consumers is rarely available. Hence, obtaining the data for fraudster
consumers is a very difficult and tedious task. Finally, the common factors which are known to pose
a threat to the traditional classification-based methods also include seasonal variations, change of
residence, change in appliance use, etc. [15].

NTL’s detection has also been studied using artificial neural networks (ANNs) in another study by
Costa et al. [3]. This study used the consumers’ information to develop the database and then utilizing
the ANN method to classify the consumers as a fraudster or honest. However, the proposed scheme
was not very effective due to the uneven datasets and hence low precision was obtained which finally
resulted in huge false positives. Muniz et al. [16] also used the ANN-based approach for training the
NTLs detection model. In order to further improve the performance of the ANN model, the fuzzy
classification was employed, however, that model also suffers from lower accuracy. Angelos et al. [17]
utilized fuzzy classification and fuzzy clustering-based approach for classifying the consumption
pattern of different consumers. The proposed approach required average consumption data, standard
deviation, maximum consumption, the sum of the remarks from inspections, and neighborhood
average consumption to create a pattern for every consumer. Gathering such huge data for every
consumer was a challenging task and ultimately the developed model resulted in a large detection delay.
Spiric’ et al. [18] have applied fuzzy clustering and rough set theory-based approach for identifying
scams committed by fraudulent consumers. A list of suspected consumers was generated based on
the amount of electricity lost. This work, however, ignored important performance measures like
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sensitivity, specificity, and Area Under Curve (AUC) for imbalanced datasets. The author in [19] used
advanced metering infrastructures (AMI) intrusion detection system (AMIDS) that uses various sensors
to identify anomalous behavior in consumer consumption patterns. The major problem associated
with this method is that it requires a very high sampling rate which reveals all kinds of appliances
being used by consumer and time of use hence destroying the consumer’s privacy. The installation of
smart prepaid energy meters was considered and undertaken in [20] for controlling electricity theft.
The major drawback of the proposed scheme is that during unauthorized tapings, the sensor will
give zero value resulting in no energy measured by a metering device. To reduce uncertainty error,
a Support Vector Machine (SVM) anomaly detection algorithm along with consumption pattern-based
energy theft detector (CPBETD) was proposed in another study [15]. The main drawback of the
proposed scheme was that the companies have to bear additional expenses of installing a transformer
meter in addition to smart meters. Nagi et al. [21] developed an SVM-based fraud detection model
that utilizes 25-month consumption data and other parameters like the creditworthiness rating (CWR)
for identifying fraudulent consumers. Later in [22], the fuzzy inference system (FIS) was introduced
along with SVM to further improve the performance of mode. However, the detection rate, as a result
of such modification, had merely increased from 60% to 72% which is very still less as compared to the
Ensemble Bagged Tree (EBT) model developed in this study.

In order to address the shortcoming and limitations of precedent works, for NTL detection,
some redundant classifiers are combined to form ensemble learning systems (ELS’s) that result in
increased accuracy, robustness, improved overall performance, and reduced uncertainties [23]. ELS’s
are an aspect of machine learning involving aggregation of many classifiers for enhanced performance
which has demonstrated great advantages over single classifiers. Ensemble classifiers have been
found to improve the classification and prediction algorithms and have been employed recently to
solve problems involving class imbalance, intrusion detection systems, and credit scoring, etc. [24–30].
As ELS’s perform better as compared to conventional classification techniques, hence the same has
been adopted in this study.

This research work explores a classification approach based on EBT algorithm and proposes
the same to support the PDCs by effectively detecting fraudster consumers. The proposed NTL
scheme has achieved the maximum detection rate and minimum false positives (FP) as compared to
the conventional methods on Multan Electric Power Company (MEPCO) real-time dataset and can
be considered as the first-ever study of electricity fraud detection in Pakistan PDCs. Furthermore,
for the very first time in literature, the EBT algorithm has been explored for NTL detection which
has attained the higher detection rate than that of its counterpart machine learning algorithms on
conventional energy meter’s dataset. The proposed EBT classification scheme utilizes the consumer’s
electricity consumption data from MEPCO Multan, Pakistan, to classify the honest and fraudster
consumer. Although, as explained earlier, several factors contribute to NTLs, this research work only
considers one of the major fraud indicators, which is a sudden deviation from consumers’ normal load
profile. The list of potential fraudster consumers generated would be subsequently used for the on-site
inspection. It is anticipated that the proposed scheme will significantly improve the NTL detection
rate for PDCs and will decrease their operational expenditure by avoiding random on-site inspections.

The remaining paper is structured as follows. Section 2 describes the working principle of the EBT
algorithm. Section 3 elaborates the methodology for the NTL detection model of this study. Section 4
provides the results and relevant discussions and finally, Section 5 provides the summary of this study.

2. Classification Using Ensemble Bagged Tree

Ensemble methods train multiple machine learning algorithms to reach a final decision [31].
ELS’s are inspired by human behavior, which considers that any problem can be easily tackled from
seeking and applying the opinion of several experts. The decision is reached based on these diverse
opinions. ELSs provides better performance compared with that of using a single classifier. There are
various algorithms proposed for achieving ELSs with the most common being bagging, boosting,
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and random forest [24,31–33]. Among these, the bagging is the most efficient and highly accurate
ensemble algorithm [34]. The mathematical details for ensemble learning algorithms are given in [32].
In EBT ‘bagging’ stands bootstrap aggregation where training datasets are continuously replaced by
drawing random samples. A Decision Tree (DT) belongs to the category of the weak learner as they are
sensitive to training pattern and, therefore, an individual decision tree normally results in overfitting
to specific training pattern. Bagged DT can be used to improve the performance of decision trees as it
aggregates the results of many individual decision trees by taking a majority vote of their decisions,
as a result, it solves the overfitting problem and improves the performance of individual decision
trees. The bagged tree is not concerned with the individual decision tree. The bagged trees have been
applied in many classification problems recently i.e., fault classification scheme for series capacitor [34],
classification of mixed pixels [35], and sleep stage classification [36], etc. Figure 1 shows the different
stages of a bagging algorithm.

Figure 1. Bagging training procedure.

The working mechanism of the bagging algorithm commences by generating a random
combination of the original data set into n number of data sets as illustrated in Figure 1. This follows
the training of different classifiers on these subsets of the original dataset. A model is finally developed
based on the majority votes of the individual models. A prediction is then made based on the decision
of the final model. In a given dataset, bootstrapped subsamples are drawn. A DT is established
on each bootstrapped sample. The result of each DT is aggregated to yield the strongest and most
accurate predictor.

3. Methodology

This section presents the methodology used in this study for data mining and model development.
The proposed framework for fraud detection by a consumer with an abnormality in their consumption
data is depicted in Figure 2.
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Figure 2. Framework for training and validation of the model.

The functionality details of the different blocks used in Figure 2 are explained in subsequent
sections as under.

3.1. Data Acquisition

The data for this research work has been obtained from MEPCO which is one of the largest
power distribution companies in Pakistan with 6 million consumers. MEPCO is further divided into
8 circles with Multan circle as the largest one and hence this study is based on the data obtained for
this circle only. The obtained data comprised of data of two consumer classes i.e., honest consumers
and fraudster consumers. The dishonest or fraudster consumers were those consumers whose fraud
had been verified by the meter and testing (M&T) laboratory. In order to verify the status of the
consumers, it is necessary for the M&T laboratory to thoroughly check the meter status and issue the
report. All theft cases for the past two years i.e., for the period 2016 and 2017 were gathered from
M&T of Multan circle. The total registered theft cases for this period were 1109. The data for honest
consumers were obtained from SHAH RUKAN-E-ALAM feeder which has 4124 consumers. Further,
to this study, the monthly kWh consumption data of the past 36 months from May 2015 to April 2018
was also obtained from MEPCO. The data gathered also include the meter status, type of theft, meter
reading, date of meter reading, connected load, sanctioned load, discrepancies, and date of inspection.

3.2. Consumption Pattern of Fraudulent and Honest Consumers

On a detailed analysis of the data obtained from MEPCO Pakistan, the theft cases were classified
as shown in Figure 3.

Figure 3. Different modes of theft registered in Multan circle for the year 2016–2017.

As can be seen from Figure 3, the reversed metering cases were highest in number while the
tilted metering cases were minimum among the registered theft cases. The reverse metering, body
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tempering, looping in the terminal block, slowing of the meter by installing a dimmer circuit, washing
out the display screen, and tilted metering are done by tempering the meter while direct supply, bogus
metering, permanently disconnected (PDISC) metering, and phase interchanging are done without
tempering the metering device. In reverse metering, the reading of the meter is reversed by physically
reversing the current meter reading. Furthermore, slowing down the meter rotation by installing a
permanent magnet inside the meter is also one of the major causes of meter tampering. The second
mostly found cause of meter tempering is direct supply where the meter is bypassed and hence it is
unable to register the consumed electricity. The available data was utilized to differentiate between the
consumption pattern of the honest and fraudulent customers as illustrated graphically in Figure 4.

Figure 4. Consumption pattern of the fraudulent (A) and honest consumer (B).

The consumption pattern of honest consumers shows a symmetrical pattern with a clear increase
in summer as the temperature in the considered area reaches 50 ◦C while the same in winter falls to
around 20 ◦C. As can be observed from Figure 4, that unlike the honest consumers, the consumption
pattern of the fraudulent consumers undergoes few abrupt changes in consumption pattern which
indicates the possibility of fraud.

3.3. Customer Filtering and Selection

The obtained data from MEPCO was initially filtered to remove the consumers with incomplete
information in order to have fair training of the model. The following consumers were filtered and
removed before training the model.

i. All those consumers whose entire 36 months consumption data was not available or those who
were not using electricity due to change of residence or any other reason.

ii. All consumers who were registered after May 2015.
iii. All healthy consumers who were charged an average i.e., whose metering equipment became

defective during the studied time period.

It may be noted that this research work has been purely carried out for the domestic and commercial
consumers as they share the major portion of the total electricity consumption. After removing all the
outliers and applying the filtration process, the finalized list includes 2774 consumers with 647 fraudster
and 2117 honest consumers. Despite the fact that many consumers were eliminated after the filtering
procedure, the remaining ones were sufficient for training and testing of the studied model.
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3.4. Studied Classification Methods

All the classifiers which are evaluated for the mentioned classification purpose in this study are
depicted in Figure 5 and are explained in subsequent subsections.

Figure 5. Classification algorithms used in this research work.

3.4.1. Decision Trees

A decision tree is a machine learning algorithm and is used for performing classification and
regression. Many types of DT’s like Classification And Regression Tree (CART), Quick, Unbiased,
Efficient, Statistical Tree (QUEST), and C4.5 have been used in literature for NTL detection purposes
just like in [37–39]. The construction of DT is done by examining the set of training examples for
which class labels are already known. For example, if the DT model is trained on high-quality data it
can provide very accurate predictions. The CART algorithm has been used in this research work for
classifying between honest and fraudster consumers. It employs the Gini impurity index for calculating
the probability of incorrect classification. The Gini impurity index of a group of items with D classes
and the likelihood of picking that item with the class p(i) can be computed as:

G =
∑D

i=1
p(i)(1− p(i)) (1)

The split criterion and the maximum number of splits used by different DT’s model in this study
are given in Table 1.

Table 1. Decision Tree (DT) models and parameters.

Model Maximum Number of Splits Split Criterion

Fine Tree 100 Gini’s diversity index
Medium Tree 20 Gini’s diversity index
Coarse Tree 4 Gini’s diversity index
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3.4.2. Support Vector Machines (SVM)

A support vector machine is a supervised machine learning algorithm that can be used for
performing classification and regression tasks, however, for this research work, it is only used for
classification purposes. Generally, a hyperplane or set of hyperplanes are constructed by SVM
in a high dimensional space which is used for performing classification for non-separable class.
The non-separable class can be separated by transforming them from lower-dimensional space into
higher dimensional space through kernel trick. To apply this kernel trick for two classes the dot
product of (Xi,Xj) are replaced by functions. Following are the most commonly used kernels:

Linear: K(Xi,Xj) = Xi·Xj (2)

Polynomial: K(Xi,Xj) = (γ·Xi·Xj + c)b (3)

Gaussian: K(Xi,Xj) = exp(−γ‖Xi − Xj‖
2)/δ2 (4)

Sigmoid: K(Xi,Xj) = tanh(γ·Xi·Xj + v) (5)

Here c and v are constant, b is the degree of polynomial and δ is the width of RBF kernel.
The parameter γ limits the tradeoff between error owing to variance and bias in the model. The kernel
function and kernel scale used by all the SVM’s models in this study are given in Table 2.

Table 2. Support Vector Machine (SVM) models and parameters.

Model Kernel Function Kernel Scale

Linear SVM Linear 1
Quadratic SVM Quadratic 1

Cubic SVM Cubic 1
Fine Gaussian SVM Gaussian 1.5

Medium Gaussian SVM Gaussian 6
Coarse Gaussian SVM Gaussian 24

There is sufficient literature where SVM has been used a number of times for NTL detection
such as in studies referred in [21,40]. However, it is realized from these studies that tuning of SVM
parameters increases the time for constructing the model. Hence, the SVM is generally combined with
fuzzy logic, DT, genetic algorithm (GA), and social spider optimization to improve the classification
performance of the model as studied in [22,41–43].

3.4.3. K-Nearest Neighbor

KNN classifier is a non-parametric and lazy learner algorithm used for classification and regression.
It is one of the simplest classifying algorithms that saves the existing data and classifies the new
data based on a similarity measure. This algorithm is generally used in literature as a standard for
comparison with different algorithms as done in [44,45]. Different types of distance metric functions
can be used for measuring the distance between two points A and B in a dataset by KNN algorithm.
The Euclidean distance metric is most commonly used and is calculated by using Equation (6);

dist(A, B) =

√∑n

i=1
(Ai − Bi)

2 (6)

whereas the cosine distance metric is generally used for finding the similarity level and can be computed
by using Equation (7);

similarity(A.B) =
A.B
|A||B|

(7)
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Here numerator is dot product of vectors A and B while the denominator is the product of their
Euclidean lengths. Another important distance metric called Minkowski distance metric is used by
cubic KNN and can be computed by Equation (8);

Minkowski(A, B) =
(∑m

i=1
|Ai − Bi|

r
)1/r

(8)

All distance metrics and the number of neighbors used by all KNN models in this research study
are stated in Table 3.

Table 3. K-Nearest Neighbor (KNN) models and parameters.

Model Distance Metric Number of Neighbors

Fine KNN Euclidean 1
Medium KNN Euclidean 10
Coarse KNN Euclidean 100
Cosine KNN Cosine 10
Cubic KNN Minkowski 10

Weighted KNN Euclidean 10

3.4.4. Ensemble Classification

A detailed discussion of ensemble classification methods has been made in Section 2, hence
this subsection only describes the parameters used for evaluated ensemble algorithms. It may be
noted that the DT is generally used as a base model in boosted trees, bagged trees, RUSBoosted trees,
and RF algorithm where the nearest neighbors are used as a base model for subspace KNN. It is
important to note that the number of splits and the number of learners play a key role in all versions of
ensemble models. The ensemble models perform better when used with a higher number of splits
however, increased number of splits causes overfitting of the model. Similarly, a greater number of
learners enhance the accuracy of the model, but the process becomes very time-consuming. Therefore,
a trade-off between a maximum number of splits and the number of learners is required to achieve the
optimal results. Table 4 depicts all the ensemble methods used for this research study along with their
learner type, the maximum number of splits, and the number of learners.

Table 4. Ensemble models and parameters.

Ensemble Models Ensemble Method Learner Type Max. Number of Splits Number of Learners

Boosted Trees AdaBoost Decision tree 20 30
Bagged Trees Bag Decision tree 20 30

Subspace KNN Subspace Nearest neighbors 20 30
RUSBoosted Trees RUSBoost Bag Decision tree 20 30

Random Forest RUSBoost Bag Decision tree 20 30

4. Results and Discussion

The performance of the classifier is generally evaluated with the help of a confusion matrix [4].
The matrix provides the information as “True” for the correct classification and “False” for the
misclassification. In the confusion matrix, the true positive (TP) represents the fraudster consumers and
are correctly classified as fraudster while the false positive (FP) represents the honest consumers who
are wrongly predicted as fraudsters. Similarly, true negative (TN) represents the honest consumers
which are correctly classified as honest and false negative (FN) represents fraudster consumers which
are wrongly classified as honest by the classifier. In order to judge the performance of any classifying
algorithm, its accuracy (ACC) needs to be evaluated by using the following relationship:

ACC =
TP + TN

TP + TN + FP + FN
(9)
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As the number of samples for honest and fraudster consumers are generally not equal, therefore
some additional performance measures like sensitivity and specificity are also required to evaluate the
performance of a classifier. For example, an NTL detection system with 1000 consumers, a classifier
that correctly classifies 990 honest consumers while misclassifying 10 fraudster consumers will have
an accuracy of 99% which is misleading and incomplete information. Unlike the previous research
works on NTL detection system [21,22,46], this research work has considered all the key evaluation
measures in order to have a fair comparison between different classifiers. Sensitivity recall or true
positive rate (TPR) is used for measuring the percentage of true positives (TP) which are correctly
classified. The sensitivity of a classifier is defined as in Equation (10):

Sensitivity =
TP

TP + FN
(10)

Similarly, specificity or true negative rate (TNR) is used for determining the percentage of true
negatives which are correctly classified and can be expressed by Equation (11):

Speci f icity =
TN

TN + FP
(11)

In the same way, false positive rate (FPR) is also one of the main concerns for power distribution
companies because high FPR results in costly inspections. It is used to calculate the number of honest
consumers who are wrongly classified as fraudsters and it can be expressed by Equation (12):

FPR =
FP

FP + TN
(12)

Another important measure which is generally used for accessing the performance of a classifier
is the F1 score. It is used to measure the balance between recall and precision and can be found by
using Equation (13):

F1 Score = 2·
Precision.Recall

Precision + Recall
(13)

In this study, the performance evaluation of the classifiers was carried out by using a 10-fold
cross-validation (CV) procedure using MATLAB version 2017b. CV is utilized to test the effectiveness
of machine learning classifiers. In 10-fold CV the entire data is split into 10 equal-sized folds. One out
of the 10-folds is used for validation and the remaining are used for training the classifier. The process
is repeated 10 times with each subsample used for validation individually. Subsequent to various tests
with different configurations, the best results were achieved with a tree at depth 5 as shown in Figure 6.
The Node-1 contains 137 customers with a total consumption of less than 15.5 kWh with 134 classified
as fraudulent while 3 were classified as honest consumers. Similarly, the remaining 1822 customers
from Node 1 were further classified in Node-2 on the basis of their electricity consumption. It may be
noted that Node-1 classifies the highest number of customers while the number of customers decreases
in subsequent nodes due to the filtration process during classification. Furthermore, the performance
evaluation of DT and EBT along with other algorithms are given Table 5.

The performance of the different algorithms shown in Table 5 is significant. It is evident that EBT
provides best results among all tested algorithms by achieving an accuracy of 93.1%, the sensitivity
of 74.9%, the specificity of 98.6%, F1 score of 41.75% and FPR of 1.37, whereas the medium trees,
quadratic SVM, and fine KNN perform best among their respective classes. It is also observed from
the results of Table 5 that there are some algorithms which perform well in detecting negative class,
but their performance is worst while classifying positive class. For example, coarse KNN classifies all
consumers belonging to healthy class (honest consumers) while it’s unable to classify the fraudster
costumers. Hence, its specificity is maximum i.e., 100% while the sensitivity is minimum i.e., 0%.
Figure 7 shows the comparison of the EBT algorithm against the best classifying algorithms among DT,
SVM, and KNN.
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Figure 6. Classification and Regression (C&R) decision tree.
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Table 5. Classification results of different algorithms.

Model Accuracy Sensitivity Specificity F1 Score FPR

Decision Trees

Fine Tree 85.84 42.33 99.10 29.14 0.90
Medium Tree 91.02 64.19 99.20 38.48 0.80
Coarse Tree 86.35 43.41 99.43 29.88 0.57

Support Vector Machines

Linear SVM (LSVM) 79.54 16.43 98.77 13.64 1.23
Quadratic SVM (QSVM) 85.59 52.09 95.80 31.40 4.20

Cubic SVM (CSVM) 52.32 58.14 50.54 18.14 49.46
Fine Gaussian SVM 85.01 63.88 91.45 33.28 8.55

Medium Gaussian SVM 81.54 28.53 97.69 20.96 2.31
Coarse Gaussian SVM 76.94 1.86 99.81 1.82 0.19

K-Nearest Neighbours

Fine KNN 81.79 27.29 98.39 20.58 1.61
Medium KNN 79.58 13.49 99.72 11.79 0.28
Coarse KNN 76.65 0.00 100.00 0.00
Cosine KNN 78.20 20.00 95.94 15.00 4.06
Cubic KNN 78.96 11.01 99.67 9.82 0.33

Weighted KNN 79.33 12.40 99.72 10.94 0.28

Ensemble Classification

Boosted Trees 90.66 61.55 99.53 37.74 0.47
Bagged Trees 93.08 74.88 98.63 41.75 1.37

Subspace Discriminant 77.23 2.79 99.91 2.71 0.09
Subspace KNN 82.80 29.61 99.01 22.29 0.99

RUSBoosted Tree 89.03 66.51 95.89 36.95 4.11
Random Forest 90.03 67.51 96.89 37.71 3.11

Figure 7. Classification performance of different models.

It is evident from Figure 7 that EBT outclasses the other well-known classifying algorithms on the
basis of its combined results of accuracy, sensitivity, specificity, F1 score and low FPR thus validate
its performance superiority over other algorithms. Furthermore, the medium tree has been found to
be the second-best classifier among the selected classifying algorithms with the specificity of 99.2%
and FPR of 0.80, which is slightly better than the specificity of EBT. However, its TPR and ACC are
quite inferior to that of the EBT algorithm which makes it an inappropriate choice for NTL detection as
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compared to EBT. Another performance evaluation indicator of classifying algorithms is the Receiver
Operating Characteristic (ROC) curve. It evaluates the performance of the classifiers by plotting the
TPR against FPR and is not sensitive to changes in the class distribution. The area under the ROC
curve (AUC) is measured between 0 and 1. As such, any classifier with AUC greater than 0.5 achieves
better results than that of any random prediction method while the AUC of exactly 0.5 conveys that the
model has no class separation capability at all [47]. The closer the AUC value is to 1, the superior will
be the performance of the model. The ROC curve of the EBT algorithm along with Medium Decision
Tree (MDT), Fine KNN, and Quadratic SVM for honest and fraudulent costumers is shown in Figure 8.

Figure 8. Receiver Operating Characteristic (ROC) curve for Ensemble Bagged Tree (EBT) algorithm
(a) negative class (honest consumers), (b) positive class (fraudster consumers).
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The red line on the plots in Figure 8 shows the performance of the EBT classifier for both negative
and positive class, respectively. It shows the values of the TPR and the FPR for EBT classifier. In NTL
detection the main objective is to minimize the FPR which is necessary to avoid the excessive inspections
while maximizing the TPR. It is evident from Figure 8a that the TPR of 0.99 and FPR of 0.25 have
been obtained for the negative class from EBT which indicate that 99% of the honest consumers are
classified correctly while 25% of fraudster consumers are incorrectly classified as honest consumers,
therefore, EBT has maximum AUC as compared to MDT, QSVM, and FKNN. Furthermore, for the
positive class (fraudulent consumers), the TPR of 0.75 and FPR of 0.02 has been achieved respectively
as shown in Figure 8, which shows that the 75% of fraudster consumers were classified correctly while
1% of healthy consumers were wrongly classified as a fraudster. In addition, the AUC of 0.95 validates
the tremendous performance of the studied EBT classifier.

5. Conclusions

This study has offered a new approach for NTL detection in PDCs using one of the most efficient
classifying algorithms called EBT algorithm. The proposed framework for NTL detection has been used
on the historical consumption data of consumers obtained from MEPCO which is one of the largest
power distribution companies in Pakistan. In order to validate the effectiveness of the proposed EBT
classifier, its performance has been compared with that of DT, SVM, KNN, and ensemble classification
methods. The results of this study demonstrate that the EBT performs much better than the mentioned
artificial intelligence techniques and achieves an accuracy of 93.1%, sensitivity of 74.9%, and specificity
of 98.2%; thus, validates its performance superiority. In addition, the value of the AUC of 0.95 indicates
the tremendous classification capabilities of the EBT algorithm. The outcomes of this research work
will help the MEPCO and other power distribution companies in avoiding trouble due to inefficient
and costly random inspections, which on one hand have merely helped in reducing NTL and on the
other hand cause a huge revenue loss to the PDC’s on both account of NTL and costly inspections.
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