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Abstract: Recently, supervised deep super-resolution (SR) networks have achieved great success
in both accuracy and texture generation. However, most methods train in the dataset with a fixed
kernel (such as bicubic) between high-resolution images and their low-resolution counterparts.
In real-life applications, pictures are always disturbed with additional artifacts, e.g., non-ideal
point-spread function in old film photos, and compression loss in cellphone photos. How to generate
a satisfactory SR image from the specific prior single low-resolution (LR) image is still a challenging
issue. In this paper, we propose a novel unsupervised method named unsupervised single-image SR
with multi-gram loss (UMGSR) to overcome the dilemma. There are two significant contributions
in this paper: (a) we design a new architecture for extracting more information from limited inputs
by combining the local residual block and two-step global residual learning; (b) we introduce the
multi-gram loss for SR task to effectively generate better image details. Experimental comparison
shows that our unsupervised method in normal conditions can attain better visual results than other
supervised SR methods.

Keywords: unsupervised single-image super-resolution; two-step super-resolution; multi-gram loss;
global residual learning

1. Introduction

Super-resolution (SR) based on deep learning (DL) has received much attention from the
community [1-7]. Recently, Convolutional neural networks (CNN)-relevant models have consistently
resulted in significant improvement in SR generation. For example, the first CNN-based SR method
SRCNN [4] generated more accurate SR images compared with traditional methods. In general, many
high-resolution (HR)-low-resolution (LR) image pairs are the building blocks for DL-SR methods in
a supervised way. The SR training uses the HR image as the supervised information to guide the
learning process. Nevertheless, in practice, we barely collect enough external information (HR images)
for training under severe conditions [8-10], e.g., medical images, old photos, and disaster monitoring
images. On the other hand, most DL-SR methods train on the dataset with fixed kernel between HR and
LR images. In fact, this fixed kernel assumption creates a fairly unrealistic situation limited in certain
circumstances. When a picture violates the fixed spread kernel of training data, its final performance
decreases in a large margin. This phenomenon is also highlighted in ZSSR [11]. In addition, if there
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are some artifacts, e.g., kernel noise or compression loss, a pre-trained DL model with a fixed kernel
relationship will generate rather noisy SR images. As a result, we claim that we can turn to synthesis of
the SR image with a single input, and it may become a solution to the problematic situation mentioned
above.

Theoretically, SR is an ill-posed inverse problem. Many different SR solutions are suitable for one
LR input. Intuitively, the more internal information of the LR input involves in the generation process,
the better result can be expected. The changing route of DL-SR shows that various carefully designing
strategies are being introduced to improve the learning ability. However, as a typical supervised
problem, supervised DL-SR models train on the limited HR-LR image pairs. Model is restricted by the
training data. In contrast, our method is conducted on single-input SR, i.e., designing a SR model for
one image-input condition. We define the special condition as the unsupervised SR task following [11].
A new structure is proposed in our model. Moreover, to learn the global feature [12-14], we introduce
the style loss to the SR task, i.e., the gram loss in the style transfer. Some experimental results show
that the well-designed integrated loss can contribute to a better performance in the visual perception
as depicted in [15].

Taking advantage of new structural design and loss functions, we can acquire considerably
high-quality SR images both in the accuracy and the texture details. Specifically, the accuracy refers
to the pixel alignment, which is commonly measured by the peak-signal-to-noise-ratio (PSNR) and
the structural similarity index (SSIM) [2,4,5,7,16,17]. Moreover, the texture details are highlighted
in some SR methods, such as [3,8,18,19], trying to generate satisfying images in visual perception
by minimizing the feature distance between the SR image and its HR counterpart in some specific
pre-trained CNN layers.

To sum up, in this paper, we propose a new unsupervised single-image DL-SR method with
multi-gram loss (UMGSR) (Our code is available in the address: https://github.com/qizhiquan/
UMSR). To address the aforementioned issues and improve visual performance, we dig three
main modifications to the existing approaches. Firstly, we implement a specific unsupervised
mechanism. Based on the self-similarity in [20], we denote the original input image as the GHR.
Then, the degradation operation is equipped to gain the corresponding GLR counterpart. The training
dataset is constituted with the GHR-GLR pairs. Secondly, we build a high-efficient framework with
the residual neural network [21] as building blocks and introduce a two-step global residual learning
to extract more information. The experimental results confirm that our approach performs well at
the texture generation. Thirdly, we introduce the multi-gram loss following [22], which is commonly
used in the texture synthesis. Accordingly, we form the loss function in UMGSR by combining the
MSE loss, the VGG perceptual loss, and the multi-gram loss. Benefiting from these modifications,
our model eventually achieves better performance in visual perception than both existing supervised
and unsupervised SR methods. A comparison of SR images with different DL-SR methods is shown
in Figure 1.

There are two main contributions in this paper:

e  We design a new neural network architecture: UMGSR, which leverages the internal information
of the LR image in the training stage. To stably train the network and convey more information
about the input, the UMGSR combines the residual learning blocks with a two-step global
residual learning.

o  The multi-gram loss is introduced to the SR task, cooperating with the perceptual loss. In detail,
we combine the multi-gram loss with the pixel-level MSE loss and the perceptual loss as the final
loss function. Compared with other unsupervised methods, our design can obtain satisfying
results in texture details and struggle for SR image generation similar to the supervised methods.
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Figure 1. A comparison of some SR results. The figure shows the generation of ZSSR (an unsupervised
DL-SR method), EDSR (a supervised method with best PSNR score), SRGAN (method good at the
perceptual learning), ResSR (the generator of SRGAN), and our proposed method with three different

loss functions. From the details, we can infer that more pleasant details are shown in the last pictures.
The generations of different loss functions further provide change route of details.

2. Related Work

SR is one of basic computer vision tasks. In the realm of SR, there are mainly three distinct regimes:
interpolation-based methods [23,24], reconstruction-based methods [25], and pairs-learning-based
methods [1-5,7,11,20,26]. A lot of works are done to address this issue. like [27-29]. Recently, DL
models achieve greatly success in many CV area, like [14,30-32]. In SR area, DL-SR methods
become hugely successful, in terms of the performance both in accuracy and perceptual feeling.
Most content achievements refer to outstanding DL-based approach and can be divided into three
branches: supervised SR methods, unsupervised methods, and Generative Adversarial Networks
(GAN) related methods.

Supervised SR methods. After AlexNet [33] firstly demonstrates the enormous advantage of DL
over shallow methods in image classification, a large body of work applies deep CNN to traditional
computer vision tasks. Regarding SR, the first DL-SR method is proposed by Dong et. at. in [4,34],
which is a predefined upsampling method. It scales up of the LR image to the required size before
training. Firstly, a traditional SR method (bicubic) is used to get the original scaled SR image. Then,
a three layers CNN is employed to learn the non-linear mapping between the scaled SR image and the
HR one. Noting that despite only three convolutional layers are involved, the result demonstrates a
massive improvement in accuracy over traditional methods.

Later, researchers succeed in building sophisticated SR networks to strive for more accurate
performance with relatively reasonable computation resource. For example, a new upsampling
framework: the Efficient Sub-Pixel five layers Convolutional Neural Network (ESPCN), is proposed
in [7]. Information of different layers is mixed to obtain the SR result. Meanwhile, the training process
works with the small size LR input, and the scale-up layer is based on a simple but efficient sub-pixel
convolution mechanism. Because most layers deal with small feature maps, the total computation
complexity of ESPCN is considerably dropped. The sub-pixel scaling strategy is widely used in
subsequent algorithms, such as SRGAN [3] and EDSR [1].

On the other hand, as mentioned in SRCNN, while it is a common sense that a deeper model
accompanied with better performance, increasing the number of layers might result in non-convergence.
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To bridge this gap, Kim et al. design a global residual mechanism following the residual neural
network [21], to obtain a stable and deeper network. This mechanism eventually develops into two
approaches: Very Deep Convolutional Networks (VDSR) [5] and Deeply Recursive Convolutional
Network (DRCN) [35]. Due to the residual architecture, both networks can be stacked with more than
20 convolution layers, while the training process remains reasonably stable.

The following SR research mostly focuses on designing new local learning blocks. To building
a deep and concise network, Deep Recursive Residual Network (DRRN) is proposed in [6],
which replaces the residual block of DRCN with two residual units to extract more complex features.
Similar to DRCN, by rationally sharing the parameters across different residual blocks, the total
parameters of DRRN are controlled in a small number, while the network can be further extended
to a deeper one with more residual blocks. In the DenseSR [36], new feature extracting blocks from
DenseNet [37] contribute to fairly good results. To leverage the hierarchical information, Zhang et al.
propose Residual Dense Block (RDB) in Residual Dense Network (RDN) [17]. Benefiting from the
learning ability of local residual and dense connection, RDN achieves state-of-the-art performance.
Besides, the Deep Back-Projection Networks (DBPN) [2] employs mutually up-down sampling stages
and error feedback mechanism to generate more accurate SR image. Features of LR input are precisely
learned by several repetitive up and down stages. DBPN attains stunning results, especially for
large-scale factors, e.g., 8 x.

Unsupervised SR methods. Instead of training on LR-HR image pairs, unsupervised SR methods
leverage the internal information of single LR image. In general, there are a large body of classical SR
methods follow this setting. For example, [38,39] make use of many LR images of the same scene but
differing in sub-pixels. If the images are adequate, the point-spread function (PSF) can be estimated to
generate the SR image. The SR generations are from a set of LR images with blurs, where pixels in
the fixed patch following a given function. However, in [40], the maximum scale factor of these SR
methods is proved to be less than 2. To overcome this limitation, a new approach trained with a single
image is introduced in [20]. As mentioned in the paper, there are many similar patches of the same
size or across different scales in one image. Then, these similar patches build the LR-HR image pairs,
according to the single input and scaled derivatives for PSF learning. The data pre-processing in our
work is similar to their idea. However, we adopt a DL model to learn the mapping between LR and SR
images.

In addition, Shocher et al. introduce “Zero-Shot” SR (ZSSR) [11], which combines CNN and
single-image scenario. Firstly, the model estimates the PSF as traditional methods. Then, a small CNN
is trained to learn the non-linear mapping from the LR-HR pairs generated from the single-input
image. In the paper, they prove that ZSSR surpasses other supervised methods in non-ideal conditions,
such as old photos, noisy images, and biological data. Another unsupervised DL-SR model is the deep
image prior [26], which focuses on the assumption that the structure of the network can be viewed as
certain prior information. Based on this assumption, the initialization of the parameter serves as the
specific prior information in network structure. In fact, this method suffers from over-fitting problem
if the total epochs go beyond a limited small number. To our knowledge, the study of unsupervised
DL-SR algorithm hardly receives enough attention, and there is still a big space for improvement.

GANSs related methods. Generative Adversarial Networks (GANs) [41] commonly appears in
image reconstruction tasks, such as [3,19,42,43], and is widely used for more realistic generation.
The most important GAN-SR method is SRGAN [3], which intends to generate 4x upsampling
photo-realistic images. SRGAN combines the content loss (MSE loss), perceptual loss [43],
and adversarial loss in its last loss function. It can obtain photo-realistic images, although its
performance on PSNR and SSIM indexes is relatively poor. In fact, our experiments also support their
controversial discovery: a higher PSNR image does not have to deliver a better perceptual feeling.
Besides, in [19], the FAN (face alignment) is introduced into a well-designed GAN model to yield
better facial landmark SR images. Their experiments demonstrate significant improvements both in
quantity and quality. For the restriction of facial image size, they use 16 x 16 as input to produce
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64 x 64 output image. However, the FAN model is trained on a facial dataset, and it is only suitable
for facial image SR problem. Inspired by the progress in GANs-based SR, we combine the SRGAN
and Super-FAN in our architecture. We also make refined modification to address the unsupervised
training issue.

3. Methodology

In this section, all details of the proposed UMGSR are shown in three folds: the dataset generation
process, the proposed architecture, and the total loss. Referring to training DL-SR model upon
unsupervised conditions, how to build the training data solely based on the LR image is the primary
challenge to our work. Moreover, we propose a novel architecture to learn the map between generated
LR and HR images. We also introduce a new multi-gram loss to obtain more spatial texture details.

3.1. The Generation of Training Dataset

How generating LR-HR image pairs from one LR input [ is the fundamental task for our
unsupervised SR model. Indeed, our work is a subsequent unsupervised SR learning following [11,20,44,45].
To generate satisfactory results, we randomly downscale I"" in a specific limited scale, which comes
from the low visual entropy inside one image. Therefore, we obtain hundreds of different sizes IFR
and perform further operations based on these HR images.

Most supervised SR methods learn from dataset involving various image contents. The training
data acts as the pool of small patches. There are some limitations for this setting: (1) the pixel-wise loss
leads to over-smooth performance in the details; (2) supervised learning depends on specific image
pairs and perform poorly when applied to significantly different images, such as old photos, noisy
photos, and compressed phone photos; (3) no information of test image is involved in the training stage
while it is crucial for the SR generation. Therefore, supervised SR models try to access the collection
of external reference without the internal details of the test image. Figure 2 shows the mentioned
drawbacks of supervised methods.

It can be inferred from the comparison that handrails of SR image in Glasner’s [20] looks better
than its counterpart of VDSR [5]. There are several similar repetitive handrails in the image, and details
of different part or across various scale can be shared for their similarity. Training with these internal
patches obtains better generations than the ones with external images. Normally, the visual entropy
of one image is smaller than that of a set of different images [46]. Moreover, as mentioned in [11,46],
lower visual entropy between images leads to better generation. Based on this consideration, learning
with one image will result in an equal or better qualitative result than diverse LR — HR image pairs.
In our work, we continue this line of research by training with internal information, as well as
incorporating more features. From Figure 1, we can see that our unsupervised method achieves
a similar result as the state-of-the-art SR method in common conditions. For non-ideal images,
it performs better.

Normally, the objective of SR task is to generate I°R images from I-R inputs, and information

of JHR
IHR

acts as the supervised information during training. However, there are no or few available
images for training in some specific conditions. Unsupervised learning seems to be a decent
choice. In this circumstance, how to build the HR-LR image pairs upon a single image is a fundamental
challenge. In our work, we formulate the dataset from the LR image by downsampling operation and
data enhancement strategy. This maximized use of internal information contributes to a better quality
of I°R. Based on the generated training dataset, the loss function is shown as:

n
Loss = arg min Z (IHR — GPR(IERY) 1)
i=1
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Bicubic EDSR (supervised)

ZSSR HR
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Figure 2. The comparison of supervised and unsupervised SR learning under "non-ideal" downscaling
kernals condition. The unsupervised DL-SR method (ZSSR) firstly estimate the PSF, and learning
internal information by a small CNN. The supervised method is one of the best ones named EDSR
which is trained by a lot of image pairs. The comparing result shows that the unsupervised method
surpasses the supervised method in the repetitive details, which potentially indicates the validity of
internal recurrence for SR generation.

To obtain a comprehensive multi-scale dataset, we implement the data augmentation strategy
on input image which is further down-scaled in a certain range. The process is in following. Firstly,
an input image I acts as the 1R
a down-scaled method to produce various different scaled HR images IZ.HR,i =1,2,---,n,which are
dealt with several different ratios. Secondly, we further downscale these I/'R with a fixed factor to

get their corresponding LR images I'R (i =1,2,... n). Lastly, all these image pairs are augmented by

image father. To use more spatial structure information, we introduce

rotation and mirror reflections in both vertical and horizontal directions. The final dataset contains
image pairs with different shapes and contents. More information about the change of pixel alignment
comes from a variety of scale images. In summary, all training pairs contain similar content architecture.
Hence, the more pixel-level changing information among images of different sizes is involved, and
then the better result will be yielded.

3.2. Unsupervised Multi-Gram SR Network

Based on ResSR, our model incorporates with a two-step global learning architecture inspired
by [19]. Some specific changes are implemented for the specific of unsupervised SR purposes.
Architectures of our UMGSR, ResSR, and Super-FAN are shown in Figure 3.

There is limited research on unsupervised DL-SR. To our knowledge, ZSSR [11] obtains a
significant success in accurate pursuing route. They introduced a smaller and simpler CNN SR
image-special model to obtain SR upon smaller diversity I/’R and I'R from the same father image than
any supervised training image pair. They announced that a simple CNN was sufficient to learn the SR
map. At the same time, to some extent, the growth track of better PSNR supervised method indicates
an obvious affinity between the network complexity and the SR generation accuracy. For example,
EDSR [1] reports that their significant performance is improved by extending the model size. Therefore,
we propose a more complex unsupervised model—UMGSR—shown in Figure 3c.

The total architecture of UMGSR. Generally speaking, the SR network can be divided into
several blocks according to the diverse image scales during training. Taking 4 x for example, there are
three different inner sizes: the original input, the 2x up-scaling, and the 4 x up-scaling. For simplicity,
we define these intermediate blocks as Lg1, Lsp, and Lg4. Several blocks are stacked to learn the specific
scale information in the corresponding stage. Then, ResSR leverages 16 residuals as L, for hierarchical
convolution computation. The final part contains a 2x scaled block Ly and a final 4x scaled one Lgy.
In general, the total architecture of ResSR can be denoted as 16 —1 — 1 (i.e., Ls; — Lsp — Lsa).
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Figure 3. The architectures of ResSR, Super-FAN, and our UMGSR. (a) ResSR; (b) Super-FAN;
(c) Ours UMSR.

From the comparison in Figure 3a-c, the architectures of three methods are: 16 —1—1,12 -4 -2,
and 12 — 4 — 2 respectively. The first part of the network contains one or two layers to extract features
from the original RGB image. To this end, former methods mostly use one convolutional layer.
By contrast, we use two convolutional layers for extracting more spatial information as in DBPN [2].
The first layer leverages a 3 x 3 kernel to generate input features for residual blocks. It is worth
pointing out that there are more channels in the first layer for abundant features. For the purpose of
acting as a resource of global residual, a convolutional layer with a 1 x 1 kernel is applied to resize
layers same as the output of branch. For middle feature extracting part, the total residual blocks in
all three models are similar. The main difference refers to the number of scaled feature layers. In fact,
as pointed out in super-FAN, only using a single block at higher resolutions is insufficient for sharp
details generation. Based on super-FAN, we build a similar residual architecture for a better generation.
In detail, the middle process is separated into two sub-sections, and each subsection focuses on a
specific 2x scaled information learning. Inheriting the feature from the first part, layers in the first
subsection extract features with the input size. Because more information of the input is involved here,
more layers (12 layers) are employed in the first subsection, which aims at extracting more details of
the image and producing sharper details. In contrast to the first subsection, the second one contains
three residual blocks for further 2x scale generation.

Global residual learning. Another important change is a step-by-step global residual learning
structure. Inspired by ResNet, VDSR [5] firstly introduces global learning in SR, which succeeds in
steady training a network with more than 20 CNN layers. Typically, the global learning can transmit the
information from the input or low-level layer to a fixed high-level layer, which helps solve the problem
of dis-convergence. Most of the subsequent DL-SR models introduce global learning strategy in their
architectures to build a deep and complicated SR network. As shown in Figure 3a, the information



Electronics 2019, 8, 833 8of 17

from the very layer before the local residual learning and the last output layer of the local residual
learning are combined in the global residual frame. However, only one scaling block for SR image
generation is not enough for the large-scale issue. Therefore, in UMGSR, we arrange the global residual
learning in each section: two functional residual blocks with two global residual learning frames.
In fact, the first global learning fulfills stable training, and the closely adjacent second section can
leverage similar information of the input image.

Local residual block architecture. Similar to SRGAN, all local parts are residual blocks which
has proved to achieve better features learning results. During the training stage, we also explore the
setting as in EDSR [1] abandoning all batch normalization layers. In general, the local residual block
contains two 3 x 3 convolutional layers and a ReLU activation layer following each of them. Results of
ResSR and EDSR elucidate the superior learning ability of this setting.

3.3. Pixel, Perceptual, and Gram Losses

In the realm of SR, most DL-SR methods train models with the pixel-wise MSE loss. Because there
is direct relationship between MSE loss and standard PSNR index which commonly measures final
performance. In [43], a novel perceptual loss is proposed to learn texture details. The new loss
calculates Euclidean distance between two specially chosen layers from a pre-trained VGG19 [47]
network. In SRGAN [3], the perceptual loss is firstly introduced to SR, and it shows great power in the
generation of photo-realistic details.

Another loss for feature learning is the gram loss [13] which is widely used in the realm of style
transfer. Gram loss performs as a global evaluating loss, which measures the style consistent. To extract
more information about spatial structure, we use multi-gram loss in this paper. Ultimately, the loss
function of UMGSR combines MSE loss, perceptual loss, and the multi-gram loss. More details are
shown in the followings.

Pixel-level loss. Pixel-level loss is used to recover high-frequency information in Il-SR with
supervised I/'R. Normally, traditional /; or I, norm loss is widely used in DL-SR model, and they
can produce results with satisfactory accuracy. In our UMGSR, the MSE loss is also introduced as the
principle pixel-level loss for high accuracy. It is defined as:

sW sH

LoSsmse = ) Z — Gp, (IER)?, ()
ZWH w=1h=

where W and H are shape factors of input, and s is the scale factor.
The MSE loss contributes to finding the least distance in pixel-level among all possible solutions.
When measuring the accuracy, models achieve the best PSNR and SSIM without using other loss.

However, the ISR

suffers from the over-smooth issue, which leads to an unreal feeling in visual.
A detailed illustration will be shown in the experimental part. To deal with this problem, we further
propose perceptual loss and multi-gram loss.

Perceptual loss. To obtain more visual satisfying details, we apply the perceptual loss [43] as in
SRGAN [3], which minimizes the Euclidean distance of a pre-trained VGG19 [47] layer between the
corresponding HR and SR images. It aims at better visual feeling results, as well as reducing of PSNR.

To facilitate the understanding, we illustrate the architecture of VGG19 in Figure 4.
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Figure 4. The architecture of VGG19.

In SRGAN, only one specified layer of VGG19 is involved in the perceptual loss, i.e., VGGs 4
(the fourth convolution before the fifth pooling layer). Different layers of the network represent various
levels of feature. In other words, the former part learns intensive features, and the latter one learns
larger coverage information. As a result, we argue that one layer for perceptual loss is not enough.
To fix this weakness, we propose a modified perceptual loss by mixing perceptual losses in several
different layers of VGG19. In our experiments, we use the combination of VGG, VGGy 3, VGG 4,
and VGGs 4 with different trade-off weights, i.e.,

lossp = a1Vap + a2V + a3Vas + asVs s, 3)
E;‘L:l o = 1.

In fact, this new loss helps us abstract feature information in different feature sizes. Although it is
proved in [7] that the perceptual loss in high-level layer promotes better texture details, we still insist
that the training of DL-SR network is a multi-scale learning process, and more information involved
can potentially lead to better results. During experiments, we propose a perceptual loss to generate
visual transition details from high-frequency information.

Multi-gram loss. In style transfer, the gram matrix measures the relationship among all inner
layers in a chosen channel. It supplies the global difference information of all image features. The gram
loss is first introduced to DL in [13], to train a DL network with gram loss as a style loss and MSE loss
as a content loss between two images. In SR, I/'R and I iSR share similar spatial architecture and features.
More spatially invariant can be extracted by the feature correlations in different sizes. Compared with
style transfer, we introduce the multi-gram loss [22] in UMGSR to generate better visual details as [22],
which first proposes the multi-gram loss from the Gaussian pyramid in a specific layer. Our redesign
of the multi-gram loss for the SR purpose is shown as follows:

S 1 ) ,
G;’js — MrNr Zf FiT'fSP];fSI
B =% (C5-G;) 4)
L(¥X, %) = Yo Lo YR w, ES.

In detail, the first function calculates the gram matrix in a specific layer. All i, j,r,s represent
different feature maps: i, j in the r'" layer and the s scale octave of the Gaussian pyramid. The second
function measures the gram loss between the source image and its counterpart. The last function refers
to the specially chosen layers, where we expect to extract the gram loss. The values of v and w are
chosen from 1 or 0, to keep or abandon the gram loss of one certain scale layer, respectively.
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The multi-gram loss determines the overall global texture in image compared to the perceptual loss
on local features. Each of them can be served as the complementary role to another. The experiments
show their positive effect on the details of the final SR output. In general, the final loss of UMGSR is
constituted by summing up all the three losses with specific trade-off factors as:

Lossy = aLosspse + BL0SSp + yL0SSgram- (5)

4. Experiments

In this part, we conduct contrast and ablation experiments to evaluate our proposed UMGSR.
All of our models are trained on a NVIDIA TITAN XP GPU with 4x scale factor. There are three parts
as follows:

4.1. Setting Details

Because just one image acts as the input of UMGSR, we choose all input images I'" from three
different benchmark datasets (Set14 dataset [48], DIV2K dataset [49], and PIRM dataset [15]), to conduct
a fair comparison with other supervised and unsupervised methods. The images with content
consistent to various complicated conditions are qualified as the realistic ones.

Training setting details. As mentioned in the methodology part, we firstly apply the data
augment strategy to form the training dataset from I"". To obtain IR (i=1,2,...,n), we randomly scale
I' in the range of 0.5 to 1, following with rotation on I/’R in both horizontal and vertical directions. In
addition, we do not apply random cropping, so that more information of I can be kept. The initial
learning rate is set to be 0.001, with half reducing when remaining epochs are half down. We perform
Adam (81 = 0.9, Bo = 0.999) to optimize the objective. The patch size is 30 x 30, and the corresponding
HR size is changed to 120 x 120. The IZ.LR (i=1,2,...,n) images are with smaller size since they are
4 x —8x down-scaled from the I'" images. We set the total training epochs as 4000.

Ablation setting. In the following part, we demonstrate the influence of proposed changes in
UMGSR by ablation analysis. To this end, firstly, we train our model only with MSE loss. Secondly,
we use both the MSE loss and the perceptual loss. Here, we also consider the comparison between
single perceptual loss and the incorporating one to evaluate its influence. Finally, we investigate the
performance with the total loss, combining the MSE, the perceptual, and the multi-gram loss. Except for
the loss function, all other settings are kept consistently. We parallelly compare the generations of UMGSR
(with different loss functions and structures), EDSR(https:/ /github.com /thstkdgus35/EDSR-PyTorch),
SRGAN(https:/ /github.com/tensorlayer/srgan), and ZSSR (https:/ / github.com/assafshocher/ZSSR).
All generations are obtained by the pre-trained models from the url links. All results are compared
in PSNR (Y channel), which measures the accuracy in pixels, and another total distribution index:
the spectral image. Moreover, we further present the detail comparison of the same patch from
all generations.

Structure setting. UMGSR with 15 residual blocks is shown in Figure 3. In detail, the former
12 blocks are used to extract the first 2 x features from the input. The remaining three residual blocks
inherit information from previous 2 scaled blocks and achieve 4 x up-scaling. All filter sizes equal to
30 x 30, and all residual blocks include 64 channels for feature learning in contrast to 256 channels in
the deconvolutional part. We train the model with the 1008 HR-LR image pairs from one image.

4.2. Ablation Experiments

Training when f and v are equal to zero. As most DL-SR methods, we use the MSE loss as the
basic loss function. In this setting, our model is similar to the ResSR except for single difference in the
total architecture. To show changes of new structure, we compare them with only structure difference.
The final results of these two methods are shown in Figure 5.


https://github.com/thstkdgus35/EDSR-PyTorch
https://github.com/tensorlayer/srgan
https://github.com/assafshocher/ZSSR
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£

Original SRRes with MSE Two steps MSE network

Figure 5. Details comparison between SRRes and two-step learning with MSE loss. From the left
box, we can acquire that clear growth ring is generated with new structure. It is also shown in the
spectral image.

From the results, we can see that our two-step network produces pictures with more natural
feeling than ResSR. In addition, spectral comparison in Figure 5 shows that the two-step network
generates more accurate features. There is less blur information in the red rectangular area where
two-step strategy is used.

Training when < equals to zero. In this part, we introduce the perceptual loss to the loss function.
To be specified, layers VGGy o and VGGy3 of VGG19 are used in the final loss function by fixing
a1 = 0.3 and a3 = 0.7 in (3). Here, to comprehensively distinguish the effect of perceptual loss, we
display the comparison between training with only the perceptual loss and with the combination of
MSE and perceptual loss in Figure 6.

(b) MSE Loss only (10000 epochs for butterfly image and 4000 epochs

Figure 6. The comparison on perceptual loss and MSE loss: (a)just perceptual loss. (b)only MSE loss.

From the detail contrast, we can tell that with single perceptual loss, many features in local block
are missing. In our opinion, this phenomenon is due to the upsampling stage where the input must be
enlarged by Bicubic to the required input size of VGG network, i.e., 224 x 224. However, the Isg and
Iyr images in UMGSR is 120 x 120. As a result, a lot of unfitting information appears in up-scaled
images. This local mismatching information further results in poor generations.
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Training with all loss settings. In this part, we use the loss by incorporating the MSE loss,
the perceptual loss, and new multi-gram loss. With the multi-gram loss, the network learns feature
map in both global and local aspects. Because multi-gram loss measure spatial style losses, it leads
to better visual feeling results both in details and shapes. Referring to super-parameters, « = 1 and
B =7 =2 x 107°. This setting is proved to be useful by SRGAN. In general, the final loss function is:

LoSSsopa1 = LOSSmse + 2 X 10_6Lossvgg5,4 + 2X 10_6Lossgmm . 6)
—_— ——m———
):;5:1 (Gmm;’;l +Grum§’;2 )/5

The multi-gram loss is somehow similar to the perceptual loss. Both learn loss from inner layers
of a pre-trained VGG network with the final SR image and its corresponding HR image as the inputs.
For multi-gram loss, the VGG, and VGGs, are chosen to be the specified loss layers. All chosen
layers are down-scaled to five pyramid sizes for spatial adaption. The size of the chosen layers must be
large enough. Then, five different sub-layers-like pyramid structure are used to calculate gram losses
as mentioned in Section 3.3. Similar to the perceptual loss, extra noise appears in the SR results if the
model trained only with multi-gram loss.

The final PSNR of images are summarized in Table 1, and the visual comparison is shown in
Figure 7. With the introduction of multi-gram loss, more pleasant features appear in generations,
which can be clearly observed in Figure 1. Furthermore, the MSE changing chart shows the advantage
of final loss (combination of MSE, perceptual loss, and multi-gram loss) in Figure 8.

(a) EDSR (b) SRGAN (c) ZSSR (d) UMSR (e) HR

Figure 7. Comparison on supervised and unsupervised methods. (a)EDSR; (b)SRGAN; (c)ZSSR;
(d)UMSR; (e)HR.
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Table 1. Comparison on different methods with DIV2K dataset. The image is 4x scaled and no
cropping is used during the test period. We report the PSNR scores.

PSNR EDSR ZSSR SRGAN UMGSR(MSE) UMGSR (MSE + Percp) UMGSR (Total Loss)

Imagel 27.74 2472 24.05 25.05 25.02 24.89
Image2  25.03  23.81 22.83 23.96 24.03 23.87
Image3 2745  26.74 24.46 24.78 24.93 24.87

MSE loss in GAN process

0.009
0.008
0.007 \
0.006

0.005

0004 \
0.003 \.——/ M S MAAAN e e

0.002

0.001
0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

e JMSR M+V M

Figure 8. Comparison the MSE error of results with MSE loss (M), MSE and perceptual loss (M+V),
and MSE, Perceptual loss and Multi-gram loss (UMGSR).

4.3. Discussion

In this paper, we compare the proposed UMGSR with other state-of-the-art supervised and
unsupervised methods with both traditional PSNR value and the power-spectrum image contrast.
Referring to the unsupervised setting of UMGSR, more analysis needs to be involved, to better evaluate
its performance. On the other hand, the latest research in [50] suggests that there is a trade-off between
distortion and perception. Our research pays much attention to the visual satisfactory generation,
which hurts the PSNR to some extent. Hence, traditional accuracy measurement, such as MSE, PSNR,
and SSIM [51] cannot justify the advantage of our method properly.

We exhibit the SR results of five different methods, EDSR, ZSSR, SRGAN, UMGSR (MSE),
and UMGSR (total loss), with HR images in Figure 9. The PSNR scores are shown in Table 1. In detail,
image 1 is from DIV2K [49]. It acts as the training image of EDSR. According to the PSNR values,
EDSR achieves the best result.

On the other hand, from Figure 7, we can infer that UMGSR produces SR image with more carving
details, leading to better visual feeling than EDSR. The conclusion is in keeping with the viewpoint of
SRGAN: higher PSNR does not guarantee a better perceptual result. This phenomenon is fairly obvious
in the comparison between UMGSR with MSE loss and with total loss. In unsupervised SR learning,
PSNR of ZSSR is much higher than ours while their SR images are in worse visual details. To highlight
the difference among these methods, we compare the SR images by their 3D power-spectrum [52]
in Figure 9. From the spectrum distribution, we can clearly see the distribution of the whole image.
It distinctly shows that our method is much better than ZSSR and EDSR, which generate obvious faults.
We assume that it is due to the mixture loss leading to better texture generation ability in our model.
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2500

Figure 9. The power spectra of the second image in Figure 7: HR, EDSR, ZSSR, UMGSR with MSE
loss, and UMGSR with total loss. Smooth edge of spectra reflects more colorful details and sharp fault

means the lack of some color range. Even though abundant power spectra does not mean accurate,
it indeed prove more vivid details in the image. As a result, our model can generate dramatic features
than accurate pursuing models(EDSR, ZSSR).

To better evaluate these models, we show generations in the same chosen patch in Figure 7.
These results show that traditional accuracy-pursuing SR methods generate rough details and better
shape lines, while UMGSR (total loss) results in satisfactory performance in image details, which are
even better than the supervised SRGAN. This is also verified in 3D power-spectrum image, where our
result is quite similar to the HR.

In general, high-frequency information (like shape lines) is more sensitive to accuracy driven
methods, such as EDSR. Meanwhile, SR images generated by these methods hardly provide pleasant
visual feeling. Their ensembles are like drawn or cartoon images. For example, Roma Desert place
(The second test image -3rdand 4th rows in Figure 7) generated by EDSR shows sharper edges but
untrue effect. Visual feeling pursuing models (like SRGAN and UMGSR) generate more photo-realistic
features accompanied by inaccurate information in pixel-level. For example, SRGAN introduces rough
details in the local parts far away from the ground truth, especially for the large flat space. In our
opinion, this is the common weakness of GAN related SR methods. In particular, our two-step learning
partly overcomes it. Accordingly, the SR images of UMGSR show better shapes than SRGAN along
with better visual feeling than EDSR.

5. Conclusions and Future Work

In this paper, we propose a new unsupervised SR method: UMGSR, for the scenario of
no supervised HR image involved. Compared with former supervised and unsupervised SR
methods, UMGSR mainly introduces both a novel architecture and a new multi-gram loss. With these
modifications, our UMGSR can address SR issue with single input in any condition. Experimental
results show that UMGSR can generate better texture details than other unsupervised methods.
In the future work, we will pay more attention to combining our model with GANs on supervised
SR problems.
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