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Abstract: Divers’ health state after underwater activity can be assessed after the immersion using
precordial echo Doppler examination. An audio analysis of the acquired signals is performed
by specialist doctors to detect circulating gas bubbles in the vascular system and to evaluate
the decompression sickness risk. Since on-site medical assistance cannot always be guaranteed,
we propose a system for automatic emboli detection using a custom portable device connected to the
echo Doppler instrument. The empirical mode decomposition method is used to develop a real-time
algorithm able to automatically detect embolic events and, consequently, assess the decompression
sickness risk according to the Spencer’s scale. The proposed algorithm has been tested according to
an experimental protocol approved by the Divers Alert Network. It involved 30 volunteer divers
and produced 37 echo Doppler files useful for the algorithm’s performances evaluation. The results
obtained by the proposed emboli detection algorithm (83% sensitivity and 76% specificity) make
the system particularly suitable for real-time evaluation of the decompression sickness risk level.
Furthermore, the system could also be used in continuous monitoring of hospitalized patients with
embolic risks such as post surgery ones.

Keywords: emboli detection; decompression sickness; empirical mode decomposition method

1. Introduction

Diving related illness has become a public health concern [1] as diving is worldwide growing in
popularity [2]. Amateur diving has changed decompression sickness (DCS) from being a specialized
problem to becoming a health risk for many thousands of people. DCS is a well-known risk for
divers equipped with self-contained underwater breathing apparatus (compressed air or artificial gas
mixture), although its reported incidence in the diving community is generally low (about 1%) [3].
DCS is thought to result when rapid pressure reduction (e.g., during ascent from a dive, ascent to
altitude or in aerospace-related events) causes gas previously dissolved in blood or tissues to form
bubbles in blood vessels [4]. Gas bubbles may originate from inert gas supersaturation or the traumatic
injection of gas into the arterial circulation following pulmonary barotrauma [5]. The main objective is
to provide a system capable of acquiring, processing and transmitting remotely the signal of interest.
Thus, the trained staff in the emergency central can continuously monitor a multiplicity of people and
can organize the intervention in the most appropriate way [6].

The present paper focuses on decompression associated with the sudden decrease in pressure
during underwater ascent, usually occurring during free or assisted dives. During a dive, the body
tissues absorb nitrogen from the breathing gas in proportion to the surrounding pressure. As long
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as the diver remains at pressure, the gas presents no problem. If the pressure is reduced too quickly,
nitrogen comes out of solution and forms bubbles in the tissues and bloodstream. When high levels of
bubbles occur, complex reactions can take place in the body, usually in the spinal cord or brain. If large
numbers of bubbles enter the venous bloodstream, congestive symptoms in the lung and circulatory
shock can then be occurred. When this happens, the quicker the treatment begins, the better the chance
for a full recovery. The early management of DCS is the recompression [7]. Since no specific tests for
DCS exist, acute DCS is a purely clinical diagnosis that requires a fair amount of clinical suspicion to
avoid missing cases [8]. Many preventive studies have been conducted [9] but further efforts focused
on early detection of DCS are necessary.

In several previous studies on the correspondence between venous gas emboli (VGE) and the
risk of developing DCS for various modes of decompression [10], it has been shown that a diver can
have a large quantity of bubbles without any symptoms of DCS. As a consequence, the presence of
gas bubbles alone is of no diagnostic value in individual cases [11]. On the other hand, most of the
studies also show that absence of detectable bubbles is a good predictor of decompression safety. Thus,
if an association between gas bubbles and DCS risk could be established with some degree of accuracy,
bubble detection could be used as a tool for validation of the safety of decompression procedures.

Gas bubbles in liquids are strong reflectors of sound so ultrasound-based methods are well
suited for detection of circulating vascular gas bubbles. Doppler [12] and in particular ultrasound
Doppler [13,14] is employed both in medical and in industrial applications for estimating fluid velocity.
Doppler systems are most commonly used [15] and ultrasonic detection of circulating VGE after
diving is considered a useful index for safe decompression [16]. Doppler ultrasound (DU) monitoring
provides an audio signal that, through aural analysis, allows a trained observer to detect the number
of embolic event in divers. Only moving bubbles, i.e., intra-vascular bubbles, may be detected by this
method. Doppler shift signals also arise from other moving objects in the 3D volume of blood sensed
by the ultrasound probe, including blood cells, heart valves and muscle contraction.

Aural detection of decompression-induced bubbles is usually performed in the precordial region
(the preferred location being the pulmonary artery) or in peripheral veins such as the subclavian or
femoral [16].

Precordial DU is the most sensitive non-invasive monitoring [17]. Theoretically, precordial
monitoring allows for an estimate of bubble production in the entire venous system, as all the returning
blood from the body must flow through the pulmonary artery. However, in the precordial region
background noise is ever present, created by the heart wall producing heartbeats, valves and greater
blood flow. On the other side, peripheral monitoring only provides information regarding the bubble
production in one part of the body showing a significant decrease in background noise [18]. Despite
the reliability of the human ear, aural scoring is known to be observer-dependent [19]. In order to train
and facilitate the tasks of an observer, an automatic tool for the objective analysis of echo Doppler
signals is necessary to avoid interpretation errors [20].

Doppler signals from blood vessels contain both the echo related to bubble events and background
noise. Noise in echo Doppler signal can be eliminated through dedicated hardware solutions such
as the proposal in [14]. The background signal may be classified as a non-stationary but almost
periodic process, whereas the bubble events are transient non-stationary random processes [21–24].
The Finite impulse response (FIR) technique with windowed Fourier series method (also called
short-time Fourier transform, STFT) has been proposed for subclavian Doppler ultrasound VGE
signals [25]. One of the pitfalls of STFT is that both time and frequency resolutions become fixed
for all frequencies and times respectively [26]. Multiresolution analysis (MRA) methods, such as
Wavelet decomposition, overcome most of the limitations of the Fourier transform. Wavelet transform
is suitable for non-stationary analysis as it allows us to separate the frequency content of a signal
without losing the information in the time domain [27,28]. Fast discrete wavelet transform (DWT) has
been used to analyze precordial [29] and transcranial [22,30] DU audio signals. From experimental
results [31], it was found that almost all gas bubble signals present in transcranial Doppler audio
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can be detected by the wavelet coefficients in the fourth scale. One drawback of using DWT for gas
bubble detection is the reduced frequency resolution at lower scales, in which gas bubble signal is
found mostly.

Another method for analyzing non-stationary, non-linear signals is the empirical mode
decomposition (EMD) [32,33]. EMD is an adaptive data-driven technique allowing to localize any event
in the time as well as in the frequency domain. Like the Fourier or wavelet transforms, EMD reduces
a time signal into a set of basis signals; unlike STFT or DWT, however, basis functions are derived
from the signal itself. Each basis function of the EMD, known as an intrinsic mode function (IMF),
captures the energy associated with a particular time scale. Real world signals such as DU signals
have often multiple causes and each of these causes may happen at specific time intervals. This type
of information is evident in a set of IMFs, but quite hidden in STFT or DWT analysis. EMD has been
applied for the off-line detection of VGE in the precordial region [15]. Such an approach relies on the
regular occurrence of artifacts in the background signal compared to the transient nature of the embolic
signals. EMD is more suitable for detecting single bubbles of big entity (i.e., greater than 25 microns)
than other algorithms, but small or showers of bubbles may be undetectable. Moreover, although
excellent sensitivity has been achieved with this method when run on precordial Doppler audio
recordings, specificity (false positives) was reported as a problem [15]. To overcome such limitations, a
new EMD-based approach for analyzing echo Doppler audio recorded in precordial region is presented.
The proposed method employs an adaptive threshold aiming at providing quantitative information
about individual bubble occurrence in DU data, unlike the semi-quantitative information available
from aural grading.

2. Materials and Methods

Since a unique clinical acquisition protocol for the divers in post immersion does not
exist, the Divers Alert Network (DAN) decided to set up one [34]. The DAN has started an
extensive acquisition campaign with the purpose to obtain the diver’s profiling for security reasons,
the identification of individual risk, more detailed decompression tables and in order to monitor health
state of the diver after the dive. According to the DAN, a DU monitoring has widespread application
as it is non-invasive, relatively inexpensive and does not use ionizing radiation. In this study we
start from a dataset of DU recordings provided by the DAN. The dataset consists of 37 audio files
acquired by 30 divers, 60% male and 40% female from 25 to 65 years old. DU audio recordings were
obtained from an extensive diving research project where the safety of the decompression profiles was
assessed through the ultrasound registration. Such an acquisition campaign provided DU recordings
from Maldive and Madagascar areas. Sensitive data of the dives have been acquired for each diver,
both professional and amateur. All individuals who volunteered for the campaign gave their informed
consent for inclusion before they participated in the study. The study was conducted in accordance
with the Declaration of Helsinki, and the protocol was approved by DAN medical team.

Divers were monitored after surfacing using a 2 MHz Doppler probe (FD1, Huntleigh Ltd., Cardiff,
UK). Uncompressed audio recordings were stored in linear pulse-code modulation (LPCM) format
using a digital recorder (Tascam DP-004, TEAC America Inc., Santa Fe Springs, California, USA) not
affected by audio saturation during the acquisition. Such devices were chosen for their relatively
low price-performance ratio. This device is well suited for real-time monitoring of bubble events
thanks to long life battery (about 500 min for both, Huntleigh FD1 and Tascam DP-004) and small
size (140 mm × 70 mm × 27 mm—Huntleigh FD1, 155 mm × 33.5 mm × 107 mm—Tascam DP-004)
and weight (295 g—Huntleigh FD1, 360 g—Tascam DP-004). The device is easy to use as it does not
require any preliminary setup or configuration. Its technical specifications (sensitivity 92 dB/mW
and frequency response in the 10–22,000 Hz range) guarantee optimal performances for use with
both musical instruments and audio playback. The acquisition protocol consisted of two 45 s long
acquisitions separated by a 10 s pause. Most of the bubbles were expected to be detected during the
first acquisition, performed when the diver surfaces. Since showers of bubbles may remain trapped
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in tissues and thus cannot be detected by the echography, divers were asked to perform a series of
three compressions bending the legs. Indeed, physical effort allows the bubbles to break away from
the tissues and to flow into the blood stream. The second 45 s Doppler acquisition is performed in
order to detect such bubbles. Each audio recording provided by the DAN [34] consists of the three
acquisition phases described.

3. Bubbles Detection Algorithm

In this study, a signal processing algorithm for automatic emboli detection from echo Doppler
audio recorded in precordial region is presented. The proposed algorithm is based on the EMD
technique which is able to separate the contribution of bubble movement from other sources of sound
in DU signal [15]. The EMD technique is based on the decomposition of a signal into a series of
non-stationary elemental components called IMFs. IMFs are all of the same length and form a complete
and nearly orthogonal basis for the original signal [32]. The decomposition takes place in the time
domain then each IMF allows for frequency information to be preserved. Decomposition results in a
set of ordered IMF components. Each successive IMF contains lower frequency oscillations than the
previous one. Given a signal x(t), the effective algorithm of EMD can be summarized as [32,35]:

1. identify all extrema of x(t);
2. interpolate between minima (and maxima) ending up with envelope emin(t) (and emax(t));
3. compute the mean r(t) between emin(t) and emax(t);
4. extract the detail signal c(t) = x(t)− r(t);
5. iterate on the residual signal r(t).

Interpolation in step 2 was performed using cubic splines [32]. The detail signal c(t) is referred to
as an IMF if it satisfies the following requirements:

• the number of IMF extrema (the sum of the maxima and minima) and the number of zero-crossings
must either be equal or differ at most by one;

• at any point of an IMF, the mean value of the envelope defined by the local maxima and the
envelope defined by the local minima shall be zero.

The above procedure has to be refined by a sifting process [32] which consists of iterating steps 1
to 4 S times, until c(t) can be considered as zero-mean according to a stopping criterion. Once this is
achieved, the corresponding residual is computed and step 5 applies. Huang empirically established
that an optimal sifting was obtained when 3 ≤ S ≤ 5 [36] and Chappell used S = 3 [15]. The signal x(t)
can then be represented in the form:

x(t) =
n

∑
j=1

cj(t) + rn(t) (1)

where n is the number of IMFs extracted from x(t). Theoretically, the decomposition process ends
when the residual signal becomes a monotonic function. The EMD of one of DU signals used for this
work is reported in Figure 1.

Although the EMD method was not designed as a sparse decomposition method, it can be used
for this purpose [37]. In a sparse representation of a signal, only a few coefficients are significantly
different from zero [38]. In order to separate these nonzero coefficients from the others, the proposed
method employs an adaptive threshold chosen to minimize Stein’s unbiased risk estimate (SURE) [39].
The term “adaptive” refers to the fact that SURE threshold is data-driven. A block diagram representing
the algorithm for automatic detection of gas bubbles is shown in Figure 2.
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Figure 1. Empirical mode decomposition (EMD) of a real-world Doppler ultrasound (DU) signal
obtained with S = 3 and n = 2.

Figure 2. Block diagram of the main steps of the algorithm.

3.1. Pre-Processing of Input Signal

Pre-processing has been performed on the original audio recordings in order to automatically
filter out the features that can negatively affect the detection performances. Useless parts in Doppler
audio files are the central pause and first and last seconds of acquisitions. Initial and final seconds of
audio are related to probe positioning so they are characterized by sudden peaks of noise. The two
acquisitions have been isolated from the central pause by identifying the noise peaks due to probe
placement. For this purpose the signal was windowed using non-overlapping rectangular pulse
functions of duration 0.1 s and selecting the maximum value within each window. A zoom on original
Doppler audio signal is shown in Figure 3 together with the windowing function.
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Figure 3. Zoom on original audio signal with windowing.

In order to distinguish the initial transient from the first acquisition, the differences between
consecutive windows in normalized audio signal were calculated. The first useful window in the first
part of DU signal was identified as the one for which the difference exceeds a threshold of 0.3. Such a
threshold has been empirically selected by analyzing the initial transient of all 37 audio files provided
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by the DAN. The proposed algorithm did not take into account the last two seconds of audio files since
no shower of bubbles is expected to be detected after 15 s following physical effort [34]. The frame
with maximum amplitude within 50 s from the beginning of the audio signal has been identified as
the end of the first acquisition. Samples contained in such a frame and in the previous two frames
were considered as useless signal as they were related to probe motion. Analogously, the beginning of
useful signal in second acquisition was identified as the first sample in the third frame following the
one with maximum amplitude. Finally, the two segments of audio signal were sequentially merged
into a single synthetic signal. Figure 4 shows an example of such a signal to be processed by the
detection algorithm.
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Figure 4. Synthetic audio signal after pre-processing stage.

3.2. EMD Implementation

In the present study we chose parameters S and n in an empirical way. We performed EMD on a
randomly chosen set of 25 DU signals with n = 3 using S from 1 to 20 for each IMF. Aural detection was
also performed by 8 expert observers on such signals. By comparing the results of the tests, we found
that large values for S (S ≥ 10) cause a reduction both in the number of bubbles detected and in the
related Spencer level [40,41]. Therefore, with the aim of finding a unique value for S, applicable to the
entire data set, various experimental tests have been carried out with S between 1 and 9. From the
analysis of the different outputs it emerged that the optimal value for S is equal to 5. So we choose to
use S = 5 as number of iteration that represents the termination rule of the algorithm. Moreover, we
chose to calculate EMD with n = 1 as c1(t) contains all bubbles which are clearly distinguishable from
heartbeats by aural analysis. We also noted the almost total absence of background noise between
adjacent peaks in c1(t).

3.3. Threshold Calculation and IMF Windowing

In order to distinguish air bubbles from heartbeats and background noise, the computation of the
embolic signal intensity to average background ratio (EBR) parameter is needed. We evaluated EBR as
the peak to threshold ratio (P2TR) as suggested by Aydin [22]:

P2TR = 10log
Apeak

Ath
. (2)

The threshold Ath was set by borrowing ideas from Donoho and Johnstone [42] who studied the
problem of nonlinear estimation of signals under a sparse representation. In particular, we used a
data-driven threshold starting from input signal x(t) [43]:

Ath = (σB

√
2log(N)), (3)
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where N is the length of x(t) and σB is the noise parameter estimated by means of the standardized
median absolute deviation (MAD) of x(t) [44] and defined as in (4):

σB =
median|x(t)−median(x(t))|

0.6745
. (4)

Assuming that the minimum duration of a bubble event is 10 ms [25], the signal c1(t) has been
windowed with non-overlapping 10 ms long rectangular pulses. The signal Apeak was then found by
considering the maximum value of windowed c1(t) in each frame.

3.4. Bubble Detection Refining and Determination of Embolism Risk

For each frame in Apeak, a bubble event was detected each time P2TR exceeded the threshold Ath
and then stored in a two-dimensional array structure together with the corresponding time instant of
occurrence. Since bubble duration can be longer than a single frame length, in this way embolic events
occurred in adjacent frames can be easily grouped as a single bubble event. Shower identification and
determination of individual gas embolism risk have then been performed on DU signals. A shower
may be defined as a continuous flow of bubbles occurring as a result of some form of muscular
contraction. In this work, each pair of embolic events occurred in distinct frames with maximum
spacing in time of 20 ms were grouped to form a shower of bubbles. The last part of the proposed
detection algorithm is about the determination of Spencer level and the corresponding individual
embolism risk [18,40,41]. It is possible as the proposed algorithm has been designed to store the instant
of occurrence as well as the duration of all bubble events and showers.

4. Results

The proposed signal processing algorithm has been evaluated using the dataset provided by
DAN. In particular, the performance has been verified by comparing the provided output with the
notes handwritten by experts listening the same echo Doppler files. File’s annotations report are
provided by independent blind teams. DAN medical experts stated that the estimate provided by
each blind team can differ of ±0.5 degrees around the presumed real value. Therefore, ±0.5 represents
the real error margin in manual annotations made by each blind team. It represents a compromise
that does not invalidate the reliability of the measure and still provides a reliable indication on the
decompression sickness risk. According to a joint analysis with DAN medical experts, we assumed a
report was acceptable if the Spencer level estimated by automatic algorithm did not differ more than
±0.5 degrees on the Spencer level from the assessment made by the blind teams. The comparison
between the Spencer level manually performed by DAN and the automatically performed by the
algorithm is shown in Table 1.

Table 1. Comparison between the Spencer level obtained from the Drivers Alert Network (DAN)
annotation and the empirical mode decomposition (EMD) algorithm ones.

Spencer Level Number of File Matching (%) Matching with Threshold (%) Not Matching (%)

0 12 91.67 0 8.33
0.5 5 100 0 0
1 11 81.82 18.18 0

1.5 3 66.67 33.33 0
2 1 0 100 0

2.5 2 100 0 0
3 1 100 0 0

3.5 1 100 0 0
4 1 100 0 0
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The manual reports, provided by DAN, contain, in addition to the Spencer level, the instant of
occurrence of each bubble in each files, through which we calculated the percentage of specificity and
sensitivity of the algorithm based on the Table 2.

Table 2. Performing sensitivity and specificity.

Algorithm Output
DAN Annotations

Total
Bubble Not Bubble

Bubble TP FP T+
Not Bubble FN TN T−

D+ D− N

The Sensitivity Se and the Specificity Sp were obtained using the Equations (5) and (6). The average
Se obtained for all tested file is 83% and the average Sp is 76%.

Se =
TP
D+

(5)

Sp =
TN
D− (6)

5. Discussion

The results show that the proposed algorithm performance are suitable for the automatic
estimation of decompression sickness risk. In one case it misclassifies a DU signal with a Spencer level
of zero. Analyzing this particular case emerged that the overestimation of the Spencer level is due
to the noises introduced during the re-positioning of the echo Doppler probe after the compressions
bending the legs in the second part of the test. These noises are identified as bubbles by the algorithm
leading to an incorrect estimate of decompression sickness risk. In other analyzed cases where there is
no complete correspondence with the assessments provided by the three blind teams (matching with
threshold) the algorithm overestimates the Spencer level due to the noises and the manual positioning
of the probe.

In order to validate the obtained results from the EMD technique, the power spectral density
(PSD) of DU signals was calculated. The main idea of using PSD is to detect a change in frequency
content for signals with and without gas bubbles. In order to calculate a reference PSD (PSDre f ) we
need to choose a frame with no gas bubbles within DU signals. Starting from the whole signal x(t)
we applied a 10 ms-long (441 samples) Hamming window to x(t) with 256 overlapping samples and
computed FFT on such a signal. The presence of gas bubbles was evaluated using signals x(t), c1(t)
and c3(t), where c3(t) represents the IMF obtained from EMD with n = 3 and S = 5. c3(t) was chosen
since no bubbles are expected to be found in this signal while heartbeats are still audible. The three
signals under test were windowed using non-overlapping rectangular pulse functions of 10 ms and the
PSD was evaluated for each frame (PSD f rame). Each PSD f rame was compared with PSDre f . When all
components of PSD f rame exceeded PSDre f an embolic event was detected and the instant of occurrence
was stored. Figures 5–7 show a comparison between PSD f rame and PSDre f for the three signals x(t),
c1(t) and c3(t), respectively.

From the conducted tests, we conclude that c1(t) can be considered as the best base signal for
bubble detection in DU recordings since it represents an optimal compromise in terms of number of
detected bubbles and noise.

The increase in PSD f rame compared to PSDre f is mainly due to the background noise rather than
the presence of bubbles. On the other hand, c3(t) is not to be considered for detection purposes since it
provided a number of bubbles even greater than that obtained using signal c1(t).
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Further tests have been performed using different widths for the windowing function of the base
signal. In particular, we chose 20 ms, 50 ms, 0.1 s, 0.5 s and 1 s. We obtained that a value of 20 ms
provides the best agreement between results of PSD-based algorithm and aural grading scores.
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Figure 5. Comparison between power spectral density (PSD) PSD f rame and PSDre f for signal x(t).
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6. Conclusions

The automatic detection of bubbles is a particularly interesting problem that needs to be analyzed
because its solution would open new ways for prevention and treatment of decompression sickness
symptoms that affects divers and not only. Using the proposed EMD algorithm we properly identified
the degree of embolism risk for over 83% of the set of available audio files. In order to have a reliability
level of the EMD algorithm, we compared the results with those of a second algorithm based on
PSD. This has led to an accurate match between results obtained from EMD and PSD algorithms and
DAN annotations. The EMD algorithm is based on an adaptive threshold calculated using SURE
method. Further analysis is needed to investigate the use of adaptive thresholds based on heuristic
variance techniques or on the minimum and maximum mean square value. We found that PSD
technique is able to identify signal regions in which there is more energy due to the presence of bubbles.
This is influenced by the presence of heartbeats, and then it would be appropriate to test a series of
algorithms that allow an accurate peak’s detection of pre/post physical effort and exploit such data
as an additional information to take in account. The algorithm is currently used and tested by the
DAN Europe during its acquisition campaigns. Further acquisition campaigns have been planned
by DAN to increase the dataset of files available with the aim of improving the performance of the
developed algorithms. An embedded implementation of the algorithms described was also developed
and provided to DAN for testing the whole system composed by acquisition unit, elaboration unit and
transmission unit. An embedded version of the algorithm could be used in a telemedicine system to
assist divers remotely. The algorithm results (Extended Spencer Scale, Spencer Scale or the number of
bubbles and showers) can be send to an hyperbaric medical that can re-examine the echo Doppler file
and confirm the diver therapy before field intervention.
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Abbreviations

The following abbreviations are used in this manuscript:

DCS Decompression sickness
VGE venous gas emboli
DU Doppler ultrasounds
STFT short-time Fourier transform
MRA Multiresolution analysis
DWT Discrete wavelet transform
EMD Empirical mode decomposition
IMF Intrinsic mode function
DAN Divers Alert Network
TP− True Positive
FP− False Positive
FN False Negative
TN True Negative
D+ Total Frames With Bubbles
D− Total Frames Without Bubbles

https://www.daneurope.org/web/guest
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T+ Total Frames With Detected Bubbles
T− Total Frames Without Detected Bubbles
N Total Frames
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