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Abstract: An ultra-low-power and high-accuracy on-off bandgap reference (BGR) is demonstrated
in this paper for implantable medical electronics. The proposed BGR shows an average current
consumption of 78 nA under 2.8 V supply and an output voltage of 1.17 V with an untrimmed accuracy
of 0.69%. The on-off bandgap combined with sample-and-hold switched-RC filter is developed to
reduce power consumption and noise. The on-off mechanism allows a relatively higher current in
the sample phase to alleviate the process variation of bipolar transistors. To compensate the error
caused by operational amplifier offset, the correlated double sampling strategy is adopted in the BGR.
The proposed BGR is implemented in 0.35 µm standard CMOS process and occupies a total area of
0.063 mm2. Measurement results show that the circuit works properly in the supply voltage range of
1.8–3.2 V and achieves a line regulation of 0.59 mV/V. When the temperature varies from −20 to 80 ◦C,
an average temperature coefficient of 19.6 ppm/◦C is achieved.
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1. Introduction

Along with the continuous development of modern society and growing demand for high-quality
life, implantable medical electronics are increasingly adopted in healthcare medical devices such as
cardiac pacemakers [1–3]. These devices are usually battery powered and need to have ultra-low
power consumption of a few microwatts or less [4–8]. Since they would probably be placed where
they are not easily removed or recharged, they have to continue working for a relatively long time.
A number of important analog circuits for high-precision signal processing, such as voltage regulators,
analog to digital converters (ADCs) and digital to analog converters (DACs), are used in almost every
biomedical system. All of them demand an accurate bandgap reference (BGR) [9]. In these devices,
BGRs provide the voltage references for other important functional blocks and are supposed to be
working all the time. Thus, the required average current dissipation of BGR is in the range of several
tens of nano-ampere [10–12].

To meet the requirement for low power, subthreshold voltage references without bipolar transistors
have been developed and used widely [10–12]. However, these VTH-based references often suffer
from degraded performance in accuracy since the threshold voltage (VTH) of MOSFET changes too
much (about 50–100mV) with process variation. Trimming is usually employed to solve this issue.
However, the temperature coefficient would be worse after trimming [12]. A conventional bipolar
junction transistor (BJT)-based BGR can provide a fairly precise reference voltage, but it requests
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larger power consumption. When we try to budget a lower current consumption for BJT-based BGR,
resistors with very large values are needed, and the VBE of BJT also varies dramatically. VBE variation
introduces large fluctuations to the output reference voltage. Even for relatively larger budgeted
power consumption, trimming is still generally required for BJT-based BGR because of the existence of
mismatch and offset [13].

In this paper, an ultra-low power, high accuracy BGR is presented. The proposed reference
provides a 1.17 V output under 2.8 V supply voltage with 78 nA average current consumption.
An on-off bandgap combined with sample-and-hold switched-RC filter is developed to reduce power
consumption and noise. The on-off mechanism increases the working current of the BJT-based BGR
during the sample period, which decreases VBE spread. A correlated double sampling (CDS) strategy
is adopted to cancel the offset of the operational amplifier (Opamp), which is fulfilled by a sampling
capacitor block combined with chopper mechanism. The conflict between low power and high accuracy
is preliminarily settled. The theoretical foundation and specific circuit design are described in Section 2.
Section 3 presents the simulation and measurement results as well as a performance comparison.
Finally, conclusions are summarized in Section 4.

2. Proposed Bandgap Reference

2.1. Error Analysis of the BJT-Based BGR

The key point of this paper is to utilize the techniques of offset cancelling, correlated double
sampling and switched-RC to improve the accuracy of the raw BGRs under stringent power
consumption constraints. A conventional BJT-based BGR is employed here for demonstration.
The core circuit of the BJT-based BGR is shown in Figure 1. The reference voltage generated by it is
given by:

VREF = VBE2 +
R2

R1
∆VBE. (1)

When considering non-ideal factors relevant with VBE and Opamp offset, Equation (1) can be
approximately rewritten as

VREF
′ = VBE2

′ +
R2

R1
(∆VBE + Vos) (2)

where the superscript ′ denotes the erroneous quantity. High mismatch characteristic of MOS transistors
can introduce considerate offsets to Opamp especially under extreme low power consumption. The VBE
spread is also critical because it directly translates an error in VREF. The proposed circuit concentrates
on canceling these two sources of errors which have large magnitudes of effects on the accuracy of
BGR output voltage.
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2.2. Architecture of the Proposed BGR Circuit

The systematic architecture of the proposed BGR is shown in Figure 2, which consists of an
on-off VBE-based BGR with chopper mechanism, a sampling-capacitor block, and a sample-and-hold
switched-RC filter. Also, there is a digital block to generate the low-duty-cycle clocks used in the
on-off BGR, which is manually designed as the analog circuits to reduce the turnover rate of the clocks
and thus save power. The on-off BGR takes advantages of the conventional VBE-based BGR topology.
When consuming dozens of microampere (µA), the conventional VBE-based BGR operates reliably and
has little process variation spread. During the hold period, the on-off BGR is turned off to save power.
The sampling-capacitor block is based on the technique of correlated double sampling (CDS), which
samples twice in a working (on) period, before and after the conversion of the chopper connection
state in the on-off BGR, respectively. Therefore, the offset of the Opamp Vos is cancelled out. When
the BGR block entered the off state, the switched-RC filter takes the average of the last twice sampled
voltages, holds it until next working (on) state, and gets rid of the out-of-band noise through the
function of filtering.
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Figure 2. Block diagram of the proposed BGR.

2.3. Chopper Mechanism and Correlated Double Sampling

Figure 3 shows the implementation of the on-off BGR which employs chopper mechanism.
A near-zero power consumption start-up structure is adopted. The parameter values of the main
components in the BGR core circuit are as follows. The emitter area of Q1 and Q2 is 2 × 2 µm.
R1 = 10 kΩ and R2 = 80 kΩ. The size of MP1/2 is 8 µm/16 µm × 6 while the size of the switch transistors
is 4 µm/1 µm × 1. The sizes of the transistors are designed to be large for good matching and low flicker
noise. Considering the low speed characteristic of the designed circuit, the lengths of the transistors
are selected at least 3 times of the 350 nm minimum channel length for lower static leakage current.

Under phase Φ1 and Φ2, the BGR power cycle is controlled by the clock ON/OFF CLK as shown
in Figure 3b. With the duty cycle D = 0.25% (TON = 250 us, TON + TOFF = 100 ms), a working current
of 16 uA is budgeted for the BGR block to achieve an average power consumption as low as 40 nA.
The base-emitter voltage of transistor Q2 is given by

VBE2 = VT ln(
IC

JSA
), (3)

where IC and JS are the working collector current and reverse saturation current per unit area of the
transistor, respectively, and A is the emitter area. We assume the current variation is IX. Then the
relative error can be deduced as in Equation (5).

VBE2
′ = VT ln(

IC + IX

JSA
) (4)

ε =
VBE

′
−VBE

VBE
=

ln( IC+IX
JSA )

ln( IC
JSA )

− 1 ≈
1

ln( IA
JSA )

·
IXD
IA

, (5)
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where ε represents the relative error, and IA = IC. D is the average current. When the working collector
current IC is increased by an on/off duty cycle of 0.25%, the relative error spread of VBE is 400 times less.

The chopper blocks are controlled by the 10Hz CH_CLK to cancel the offset of the Opamp under
phases Φ3 and Φ4. In the middle of the on-phase of BGR, the chopper blocks convert connection
status from (X2—A, X1—B) to (X1—A, X2—B). In the next on-phase, the connection status changes
back. Another chopper block is introduced in the signal path of the designed Opamp to assure that a
negative feedback loop be formed according to the chopper status in the on-off BGR.
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Figure 4 shows the sampling-capacitor circuit using the technique of correlated double sampling
(CDS) [14,15]. The values of the sampling capacitors are selected as C1 = C2 = C0 = 40 µm × 40 µm
(1.6 pF). In the control of double sampling clocks CLK_1 and CLK_2, whose clock timings are shown in
Figure 4b, C1 and C2 sample the output of the on-off BGR VREF before and after the chopper connection
state conversion during TS1 and TS2, respectively, in a working (on) period. C0 samples during the
interval TS and sums up the two sampled voltages in it. Using Equation (2), only the Opamp offset
is considered,

V1
′ = VBE2 +

R2

R1
(∆VBE + Vos) = Vdes +

R2

R1
Vos (6)

V2
′ = VBE2 +

R2

R1
(∆VBE −Vos) = Vdes −

R2

R1
Vos (7)

V1
′C + V2

′C + V0C = V′0 ∗ 3C If, V′0 = V0 So, V′0 =
V1
′ + V′2

2
= Vdes, (8)
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where C1 = C2 = C0 = C, V1
′ is the voltage on C1 which is sampled before the connection state

conversion, V2
′ is the voltage on C2 sampled after the conversion, V0 is the current voltage on C0 and

V0
′ is the sample voltage in next cycle on C0. Eventually, Vdes is the original design value of VREF.

When the stable condition is reached, V0 is the average value of V1
′ and V2

′, canceling the error of
VREF caused by the Opamp offset.
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2.4. Sample-and-Hold Switched-RC Filter

Figure 5 shows the circuit implementation of the sample-and-hold switched-RC filter. A MOS-R
is used to achieve a high RC filtering resistance of 25 MΩ with small chip area. To alleviate the
effect of injection and clock feedthrough, a dummy MOS switch M2 is added in series with the actual
switch M1 [13].

Since the drain-bulk and drain-source leakage is critical to the accuracy and stability of VREF
output, especially during a long hold time of 100 ms, a simple feedback buffer A1 is used to reduce the
voltage drop. In the hold phase, the bulk and source nodes of M1 are buffered to VREF through M7,
eliminating charge leakage at CS.

Moreover, the filter emulates a much lower filter pole frequency by pulse-switching them.
Compared to the RC filter in Figure 2, the effective pole frequency in Figure 5 is given by [13]:

fLPF =
D

2πRSCS
(9)

with CS = 10 pF, RS = 25 MΩ, and D = 0.06% (TS = 60 us, TH + TS = 100 ms), a filter pole of 0.4 Hz can
be achieved, which is about two decades lower than the noise integration bandwidth. Consequently,
out-of-band noise could be filtered more thoroughly.
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3. Simulation and Measurement Results

The Offset-Cancelation Switched-RC Bandgap Reference presented in this paper has been applied
in an implanted cardiac pacemaker ASIC, featured with low power, high reliability and low speed.
Consequently, 0.35 µm CMOS technology is employed, which is not advanced but adequately qualified
for such applications [1,2]. Also, a lithium-iodine battery with a typical supply voltage of 2.8 V is
usually used for cardiac pacemakers, which has a sufficient level of safety and good discharging
characteristics [4].

For on-off BGRs with small duty cycles, the settling time for start-up is usually concerned. Figure 6
shows the transient output voltage of the proposed circuit at the supply voltage of 2.8 V and temperature
of 27 ◦C. It takes about 0.6 ms to reach steady state. Monte Carlo 200 simulation runs have been
done after layout parasitic extraction, considering the process variation and mismatch. The results
are presented in Figure 7a. The mean value (µ) of the proposed BGR is 1.1689 V with the standard
deviation (σ) of 4.6 mV, and the coefficient of variation is calculated to be about 0.39%. The simulated
temperature dependence of the output reference voltage VREF is plotted in Figure 7b. The temperature
coefficient (TC) of the proposed BGR is 9.43 ppm/◦C with temperature ranging from −20 to 80 ◦C.

Electronics 2019, 8, x FOR PEER REVIEW 6 of 11 

 

CLK_3_

CL
K_

3_

CLK_3

CL
K_

3

CL
K_

3_

VBUF

CLK_3_

A1
VBUF

VREF

CS

VREF1

VREF2

V b
ias

MOS-R

M5

M6

M1 M2 M3

M4

M7

TS

THCLK_3

TS=60us & TS+TH=100ms

 
Figure 5. Proposed sample-and-hold switched-RC filter circuit and control clock timing. 

3. Simulation and Measurement Results 

The Offset-Cancelation Switched-RC Bandgap Reference presented in this paper has been 
applied in an implanted cardiac pacemaker ASIC, featured with low power, high reliability and low 
speed. Consequently, 0.35 μm CMOS technology is employed, which is not advanced but adequately 
qualified for such applications [1,2]. Also, a lithium-iodine battery with a typical supply voltage of 
2.8V is usually used for cardiac pacemakers, which has a sufficient level of safety and good 
discharging characteristics [4]. 

For on-off BGRs with small duty cycles, the settling time for start-up is usually concerned. Figure 
6 shows the transient output voltage of the proposed circuit at the supply voltage of 2.8 V and 
temperature of 27 °C. It takes about 0.6 ms to reach steady state. Monte Carlo 200 simulation runs 
have been done after layout parasitic extraction, considering the process variation and mismatch. The 
results are presented in Figure 7a. The mean value (μ) of the proposed BGR is 1.1689 V with the 
standard deviation (σ) of 4.6 mV, and the coefficient of variation is calculated to be about 0.39%. The 
simulated temperature dependence of the output reference voltage VREF is plotted in Figure 7b. The 
temperature coefficient (TC) of the proposed BGR is 9.43 ppm/°C with temperature ranging from –
20 to 80 °C.  

 

Figure 6. The output voltage of the proposed circuit. Figure 6. The output voltage of the proposed circuit.



Electronics 2019, 8, 814 7 of 11Electronics 2019, 8, x FOR PEER REVIEW 7 of 11 

 

 
(a) 

 

(b) 

Figure 7. (a) 200 Monte Carlo simulation results. (b) Temperature coefficient simulation at 2.8V 
supply. 

The proposed BGR circuit is implemented in 0.35 μm standard CMOS process. Figure 8 shows 
the BGR micrograph of the die. The core circuit occupies an area of 0.063 mm2, which could be 
optimized after an elaborate layout design. The total current consumption is measured as 78 nA on 
average from 30 samples. The digital clock generation block consumes 26 nA average current, which 
means that the percentage of the overhead power consumption by the clock generation block is 33.3% 
or one third. Figure 9 shows the distribution of the measured output voltage in 30 samples with 2.8 
V supply voltage at 27 °C. The mean value (μ) is 1.167 V with the standard deviation (σ) of 8.1 mV. 
The proposed BGR can achieve an accuracy of 0.69% in the measurement. The accuracy of 0.69% is 
achieved without trimming and could be considered to be adequate for most implantable biomedical 
electronics. The low power feature is obtained due to the low duty cycle (D = 0.25%) operation of the 
on-off BRG. Moreover, the following correlated double sampler and the switched-RC filter just 
consume about 12 nA average current and occupy about 0.03 mm2 chip area of the total 0.063 mm2 chip area, 
but guaranteed the good performance of the on-off BRG. The on-off BGR achieves an untrimmed 
measured accuracy of 0.69%, which is comparable with the accuracy of BGRs with current consumptions of 
hundreds of times larger, just at a small price. 

Figure 7. (a) 200 Monte Carlo simulation results. (b) Temperature coefficient simulation at 2.8 V supply.

The proposed BGR circuit is implemented in 0.35 µm standard CMOS process. Figure 8 shows the
BGR micrograph of the die. The core circuit occupies an area of 0.063 mm2, which could be optimized
after an elaborate layout design. The total current consumption is measured as 78 nA on average from
30 samples. The digital clock generation block consumes 26 nA average current, which means that
the percentage of the overhead power consumption by the clock generation block is 33.3% or one
third. Figure 9 shows the distribution of the measured output voltage in 30 samples with 2.8 V supply
voltage at 27 ◦C. The mean value (µ) is 1.167 V with the standard deviation (σ) of 8.1 mV. The proposed
BGR can achieve an accuracy of 0.69% in the measurement. The accuracy of 0.69% is achieved without
trimming and could be considered to be adequate for most implantable biomedical electronics. The low
power feature is obtained due to the low duty cycle (D = 0.25%) operation of the on-off BRG. Moreover,
the following correlated double sampler and the switched-RC filter just consume about 12 nA average
current and occupy about 0.03 mm2 chip area of the total 0.063 mm2 chip area, but guaranteed the
good performance of the on-off BRG. The on-off BGR achieves an untrimmed measured accuracy of
0.69%, which is comparable with the accuracy of BGRs with current consumptions of hundreds of
times larger, just at a small price.
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Figure 9. Measured results for 30 samples.

Figure 10 shows VREF versus temperature ranging from −20 to 80 ◦C and the measured TC ranges
from 13.7 ppm/◦C to 38.2 ppm/◦C with an average TC of 19.6 ppm/◦C. Figure 11 shows the measured
reference voltage versus the supply voltage at 27 ◦C. When the supply voltage changes from 1.8 V
to 3.2 V, the BGR voltage variation is less than 0.83 mV. The reference voltage can achieve the line
regulation of 0.59 mV/V. For measurement convenience, when measuring the power supply rejection
ratio (PSRR), the on-off period is set at 10 ms instead of 100 ms, which will not affect the authenticity of
the measured results. Figure 12 shows the PSRR results, which is better than 58.6 dB before 200 kHz.
There are peaks at multiples of 100 Hz (1/10 ms) due to the characteristic of sampling. When the
frequency of the fluctuation on the supply is the same as the sampling rate, the effect of the supply
fluctuation on the sampled output voltage is also the same during the on phase in every sampling
period and thus will be attenuated.

The performance of the proposed BGR circuit is summarized in Table 1, and these results are
compared with other published references. From Table 1, it is observed that this work has the best
line regulation and temperature coefficient in the untrimmed voltage references, while it also has
advantages in the aspects of current consumption and untrimmed accuracy. However, the limitations
of such on-off BGR are analyzed as follows. First, a small ripple at the switching moment still exists
after switched-RC filtering. For continuous-time applications, this issue should be considered. Second,
because the BGR output voltage is sampled in the capacitor, it has limited driving ability.
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Table 1. Comparison table.

Parameter [16] [17] [18] [19] This Work

Process 65 nm 180 nm 130 nm 180 nm 350 nm
Publication Year JSSC 2017 TCAS-II 2015 ISSCC 2015 TCAS-II 2017 2019
Accuracy (σ/µ) 0.39%(T) 3.9%(UT) 0.67%(UT) 2%(T),1 0.69%(UT)

Type VTH VTH VBE VTH VBE
TC (ppm/°C) 5.6(T) 64(T) 75(UT) 84.5(UT) 19.6(UT)

Supply 0.8 V 0.45 V 0.5 V 0.4 V 2.8 V
Output Voltage 428 mV 120 mV 500 mV 212 mV 1.17 V

Current Consumption 16.3 µA 32.4 nA 64 nA 480 nA 78 nA
Line regulation 1 mV/V 1.2 mV/V 10 mV/V 2 mV/V 0.59 mV/V

(T): trimmed. (UT): untrimmed. 1: 3σ.

4. Conclusions

An ultra-low power, high accuracy BGR designed for implantable medical electronics is presented
in this paper. To solve the conflict between low power and high accuracy, an on-off bandgap combined
with sample-and-hold switched-RC filter is developed. A higher working current is allowed to
alleviate VBE spread, which directly causes error to output voltage, but also keeps the average power
consumption as low as 220 nW with the voltage supply of 2.8 V. Furthermore, to improve the accuracy
ulteriorly, the error brought by the Opamp offset is eliminated by applying correlated double sampling
strategy. As a result, the measured voltage accuracy of 0.69% is achieved without trimming, which is
adequate for most implanted medical electronics. The circuit shows a line regulation of 0.59 mV/V in
the supply voltage range of 1.8–3.2 V and a TC of 19.6 ppm/◦C in the temperature ranging from −20 to
80 ◦C. The proposed BGR circuit meets all the requirements of implantable medical electronics. It is
very suitable for application in biomedical systems.
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