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Abstract: A secret image sharing (SIS) scheme inserts a secret message into shadow images in a way
that if shadow images are combined in a specific way, the secret image can be recovered. A 2-out-of-2
sharing digital image scheme (SDIS) adopts a color palette to share a digital color secret image into
two shadow images, and the secret image can be recovered from two shadow images, while any
one shadow image has no information about the secret image. This 2-out-of-2 SDIS may keep the
shadow size small because by using a color palette, and thus has advantage of reducing storage.
However, the previous works on SDIS are just 2-out-of-2 scheme and have limited functions. In this
paper, we take the lead to study a general n-out-of-n SDIS which can be applied on more than two
shadow. The proposed SDIS is implemented on the basis of 2-out-of-2 SDIS. Our main contribution
has the higher contrast of binary meaningful shadow and the larger region in color shadows revealing
cover image when compared with previous 2-out-of-2 SDISs. Meanwhile, our SDIS is resistant to
colluder attack.
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1. Introduction

A secret image sharing (SIS) scheme inserts a secret message into shadow images in a way that if
shadow images are combined in a specific way, the secret image can be recovered. A SIS scheme is
usually referred to by a threshold (k, n) SIS, where k ≤ n, and can insert a secret image into n shadow
images (referred to as shadows). In a (k, n)-SIS, we may recover the secret image by using any k
shadows, but cannot recover the secret image from (k− 1) or fewer shadows. There are various types
of SIS. Here, we give a brief survey for three major types of SIS schemes: the visual cryptography
scheme (VC), the polynomial-based SIS (PSIS), and the bit-wise Boolean-operation based SIS.

The so-called VC [1–6] has a novel stacking-to-see property such that the involved participants
can easily stack shadows to visually decode the secret through the human eye. This property makes
VC applicable in many scenarios. Although VC has the ease of decoding, it has poor visual quality of
reconstructed image. Another SIS adopts (k− 1)-degree polynomial like Shamir’s secret sharing [7]
to design (k, n)-PSIS [8–15]. There are two major differences between VC and PSIS: the quality of
recovered image and the decoding method. Unlike VC provided with the poor visual quality, the
recovered secret image of PSIS is distortion-less. However, the decoding of VC only needs stacking
operation but PSIS uses the computation of Lagrange interpolation to recover secret image. Some SIS
schemes are based on Boolean operations [16–20]. Note: the stacking operation of VC, strictly speaking,
is also a Boolean OR operation. However, this OR operation of VC is pixel-wise operation, which
applied on black-and-white dots. However, Boolean operation in [16–20] is bit-wise operations, and
can obtain a high-quality secret image (a distortion-less image like PSIS scheme). Besides, using -wise
Boolean has much lower complexity when compared with Lagrange interpolation.
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Recently, Wei et al. use the bit-wise XOR operation to design a (2, 2) sharing digital image scheme
(SDIS) [17] to share a 256-color (or true color) digital image. Wei et al.’s (2, 2)-SDIS is also a type of
(k, n)-SIS where k = n = 2. Wei et al.’s (2, 2)-SDIS is the first SIS scheme using a 256-color palette.
This color palette has 256 colors, where each color is composed of red (R), green (G), and blue (B) color
planes. Each color and is chosen from a palette of 16,777,216(=224) colors (24 bits: each color plane has
8 bits). In VGA cards, 256 on-screen colors are chosen from a color palette, and these colors are most
visible to the human eye and meanwhile conserve a bandwidth. When using a color palette, each pixel
is represented by a color index in a 256-color color palette. Consider an example, a 256× 256-pixel
image. The file size is 256× 256× 1 bytes (color indices) +256× 3 bytes (color palette) = 66,304 bytes,
but is 256× 256× 3 = 196,608 bytes for using 24-bit true color format. Thus, the file size of a color
image can be kept small when represented by a color palette. Because Wei et al.’s (2, 2)-SDIS is based
on color palette, and thus it has the advantage of reducing storage.

However, there are three weaknesses in Wei et al.’s SDIS: the incorrect assignment of color palette
data for the color index 255, the erroneous recovery in secret image, and the partial region in shadow
revealing the cover image. In [19], Yang et al. address these weaknesses and propose a new (2, 2)-SDIS.
Both Wei et al.’s (2, 2)-SDIS and Yang et al.’s (2, 2)-SDIS are simple 2-out-of-2 scheme and have limited
applications. In this paper, we take the lead to study a general (n, n)-SDIS, which can be applied on
any n ≥ 3. The main weakness of Wei et al.’s (2, 2)-SDIS is the incorrect assignment of color palette
data for some color indices, and this is tackled by using a complicated approach, partitioned sets, in
Yang et al.’s (2, 2)-SDIS. In the proposed (n, n)-SDIS, because of the number of shadows more than
two, i.e., n ≥ 3, a simple approach reducing Hamming weigh of a temporary block is adopted to
easily solve this weakness. In addition, performance of our (n, n)-SDIS are enhanced when compared
with the previous (2, 2)-SDIS. The rest of this paper is organized as follows. Section 2 reviews Wei
et al.’s (2, 2)-SDIS and Yang et al.’s (2, 2)-SDIS. The proposed (n, n)-SDIS is presented in Section 3.
Also, an approach of enhancing visual quality of color meaningful shadow is introduced. A very
extreme attack, the (n − 1)-colluder attack, on the proposed (n, n)-SDIS is discussed in Section 4.
The experiment, discussion and comparison are in Section 5. Finally, Section 6 concludes the paper.

2. Preliminaries

Notations in this paper and their descriptions are listed in Table 1. These notations are used
throughout the whole paper to describe all the schemes, Wei et al.’s (2, 2)-SDIS [17], Yang et al.’s
(2, 2)-SDIS [19], and the proposed (n, n)-SDIS.

In [17], Wei et al. first proposed a simple (2, 2)-SDIS to insert a 256-color digital image SI into two
binary noise-like shadows (NS1 and NS2). In Wei et al.’s (2, 2)-SDIS, every 9-bit block B, i.e., b1 − b9,
is obtained from the 256-color secret image SI and the color palette CP. Afterwards, the block B is
subdivided into two blocks B(1) and B(2) on shadow 1 NS1 and shadow 2 NS2, respectively, by using
XOR operation. As shown in Figure 1, B = B(1) ⊕ B(2), where each bit bi = b(1)i ⊕ b(2)i , 1 ≤ i ≤ 9.
Both shadow blocks of B(1) and B(2) are Y blocks. Accomplish all blocks until all pixels in SI and
the data in CP are processed. Because every pixel in SI is represented as a block, shadow sizes are
nine times expanded. The first 8 bits b1 − b8 in B represents a color index, and the ninth bit b9 in every
block of NS1 (i.e., the bit b(1)9 ) is collected to covey the CP information. Therefore, from the XOR-ed
results NS1 ⊕ NS2 we may obtain color indices and the CP to recover SI. There are other two types of
shadows for Wei et al.’s (2, 2)-SDIS. Noise-like shadows (NS1, NS2) can be extended to two binary
meaningful shadows (BS1, BS2) and two color meaningful shadows (CS1, CS2), on which binary cover
image BCI and color cover image CCI can be, respectively, visually viewed. In addition, Wei et al.’s
(2, 2)-SDIS can also be extended to directly insert a true color SI without using CP.



Electronics 2019, 8, 802 3 of 22

Table 1. Notations and Descriptions.

Notation Description

CP a 256-color color palette

SI a secret image with the size with the size (M× N) pixels

CCI, BCI binary (black-and-white) over image and color cover image with the size (M× N) pixels

NSi n noise-like shadows with the size (3M× 3N) (respectively, (5M× 5N)) subpixels for 256-color
(respectively, true color) secret image, where i = 1, 2, ..., n

BSi binary meaningful shadows with the size (3M× 3N) (respectively, (5M× 5N)) subpixels for
256-color (respectively, true color) secret image

CSi color meaningful shadows with the size (3M× 3N) (respectively, (5M× 5N)) subpixels for
256-color (respectively, true color) secret image

B a 3× 3-subpixel block B including 8-bit color index b1 − b8 and one bit b9 (Note: the bit b9 in B
is collected to covey the CP information for the proposed (n, n)-SDIS)

Br a 3× 3-subpixel block Br including the first three 8-tuples, (r1 − r8), (g1 − g8), and (bl1 − bl8),
are used to represent R, G and B color planes, and the other one bit in Br is p9.

B(i) a 3× 3-pixel block on shadow i, where i = 1, 2, ..., n, including 8-bit bi
1 − bi

8 and one bit bi
9.

(Note: the ninth bit in every block B(1) (i.e., b(1)9 ) of NS1 is collected to covey the CP information
for Wei et al.’s (2, 2)-SDIS and Yang et al.’s (2, 2)-SDIS)

xByW x black subpixels and y white subpixels in a block

X , Y X and Y blocks have 6B3W and 5B4W subpixels, respectively

H(•) Hamming weight function, the number of ′′1′′ in a binary vector

W(•) Operation of Wei et al.’s (2, 2)-SDIS, i.e., W(B) = B(1) ⊕ B(2) where both are Y blocks

Y(•) Operation of Yang et al.’s (2, 2)-SDIS, i.e., Y(B) = B(1) ⊕ B(2) where one is X block and the

other is Y block
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Figure 1. Blocks of (2, 2)-SDIS: (a) secret block B, shadow blocks B(1) and B(2) (b) diagrammatical
representation of Wei et al.’s (2, 2)-SDIS with binary meaningful shadows.
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For more clearly describing Wei et al.’s (2, 2)-SDIS, Figure 1b illustrates diagrammatical
representation of Wei et al.’s (2, 2)-SDIS with binary meaningful shadows, which includes three
processes: (i) obtaining color indices of secret pixels, color palette data, and cover pixels, (ii) secret
sharing, and (iii) secret recovery. Consider a secret pixel pi with a color index (b1, b2, ..., b8) =

(10011100) = 156, and we may have (b(1)1 , b(1)2 , ..., b(1)8 ) = (110001100) with b(1)9 = 1 for carrying

about CP data (suppose we embed ′′1′′ for this time), and (b(2)1 , b(2)2 , ..., b(2)8 ) = (010110101) with

b(2)9 = 1. Then, we have (b(1)1 , b(1)2 , ..., b(1)8 ) ⊕ (b(2)1 , b(2)2 , ..., b(2)8 ) = (b1, b2, ..., b8). Meantime, both

blocks B(1) = (b(1)1 , b(1)2 , ..., b(1)9 ) and B(2) = (b(2)1 , b(2)2 , ..., b(2)9 ) are 5B4W blocks. For the corresponding
position of this secret pixel pi, the cover pixels of BCI1 and BCI2 are white and black, respectively. We
reverse the shadow B(1) = (b(1)1 , b(1)2 , ..., b(1)9 ) = (110001101) block to (001110010) (4W5B) to represent

the white color pixel in BCI1, and we do not change B(2) = (b(2)1 , b(2)2 , ..., b(2)9 ) = (010110101) (5B4W)

to represent the black color pixel in BCI2. In secret recovery, the color index can be easily derived from
the exclusive OR result from (b(1)1 , b(1)2 , ..., b(1)8 )⊕ (b(2)1 , b(2)2 , ..., b(2)8 ). In addition, the CP data can be

obtained from every b(1)9 in BS1.
However, Wei et al’s (2, 2)-SDIS has some weaknesses. For the color index 255, it has a problem

with embedding the data of color palette. In addition, Wei et al.’s (2, 2)-SDIS with color meaningful
shadows cannot correctly extract the block data for white cover pixels, and this will cause erroneous
recovery in the secret image. Moreover, Wei et al.’s SDIS uses Y blocks on both shadows. Five black
dots in a block B may not sufficiently demonstrate the visual quality of meaningful shadows.

It is obvious that more black subpixels in every block may enhance the visual quality of meaningful
shadows BS1 and BS2, and CS1 and CS2. Accordingly, in [19], Yang et al. adopted X block and Y
block half and half on blocks B(1) and B(2), such that the average number of black subpixels in B(1) and
B(2) is enhanced from 5 to 5.5. This enhancement improved the visual quality of meaningful shadows.
Meanwhile, Yang et al.’s (2, 2)-SDIS also solved the other two weaknesses of Wei et al.’s (2, 2)-SDIS.

3. Motivation and Design Concept

As described in Section 2, there are three weaknesses in Wei et al.’s SDIS: (1) the incorrect
assignment of the color palette data for the color index 255, (2) the partial regions in meaningful
shadows showing the content of the cover image, and (3) the erroneous recovery in secret image
if the cover pixel is white in color meaningful shadows. Yang et al.’s (2, 2)-SDIS already tackled
these weaknesses.

By delving into these three weaknesses, we can see that the third weakness is a minor weakness
caused from an intrinsic nature of color. A trivial approach in [19], using a near white color pixel instead
of white pixels in cover image, is very efficient in addressing this weakness. Therefore, the approach
can be still adopted in the proposed (n, n)-SDIS for solving this minor weakness. Our contribution is
not just the extension from 2-out-of-2 scheme to n-out-of-n scheme. The proposed (n, n)-SDIS, where
n ≥ 3, has better solutions for other two major weaknesses. Because the number of shadows is more
than two, we can easily solve the first weaknesses (note: the detail will be described in Section 3).
However, Yang et al.’s (2, 2)-SDIS uses a very complicated approach by partitioned sets to solve this
weakness. For the second weakness, our (n, n)-SDIS uses X blocks in most shadows This approach
has large average black subpixels in shadow blocks to enhance visual qualities of meaningful shadows.
In addition, the proposed (n, n)-SDIS embeds the CP information in b9 but both (2, 2)-SDISs [17,19]
use b(1)9 in shadow block B(1). The bit b9 obtained from the XOR-ed result B is more securely protected

than the bit b(1)9 in one shadow block B(1).
A secret block B = (b1...b9) has 8 bits (b1...b8) to represent a color index, and one bit b9 for

representing the data of color palette CP. Together with CP, this color index can represent a pixel
in secret image SI. All 9-bit blocks are obtained from the secret image SI and the color palate CP.
Suppose that T is a 9-bit temporary block. Equations (1) and (2) are main statements in this paper, on
which we can design the proposed (n, n)-SDIS. As shown in Equation (1), we may randomly generate



Electronics 2019, 8, 802 5 of 22

(n− 2) X blocks B(ij), 1 ≤ j ≤ n− 2, and then determine a temporary block T via these (n− 2) blocks
and the block B (see upper equation in Equation (1)). The content of T is provisional. Afterwards, T is
divided into two blocks {B(j1), B(j2)} where {j1, j2} = {1, 2, ..., n} − {i1, ..., in−2}. Using lower equation
in Equation (1), we may insert T into two blocks based on Wei et al.’s (2, 2)-SDIS or Yang et al.’s
(2, 2)-SDIS, which is dependent on the Hamming weigh of block T. In next subsection, we prove that
lower equation in Equation (1) can be successfully accomplished. Via Equation (1), we can derive
B = B(1) ⊕ B(2) ⊕ ...⊕ B(n) in Equation (2).

T = B⊕

(n−2) random X blocks︷ ︸︸ ︷
B(i1) ⊕ ...⊕ B(in−2)

T = ⊕

other two blocks︷ ︸︸ ︷
B(j1) ⊕ B(j2)

(1)


T = B⊕ B(i1) ⊕ ...⊕ B(in−2)

⇒ B = T ⊕ B(i1) ⊕ ...⊕ B(in−2)

⇒ B = B(j1) ⊕ B(j2) ⊕ B(i1) ⊕ ...⊕ B(in−2)

⇒ B = B(1) ⊕ ...⊕ B(n), ({j1, j2}
⋃{i1, ..., in−2} = {1, ..., n})

(2)

Equation (2) implies that the block B can be subdivide into n shadow blocks B(1), B(2), ..., B(n), and
meanwhile can be recovered from B = B(1) ⊕ ...⊕ B(n). All the n shadows in the proposed (n, n)-SDIS
are illustrated in Figure 2. The operation of lower equation in Equation (1) using Wei et al.’ (2, 2)-SDIS
is shown in Figure 2a, and using Yang et al.’s (2, 2)-SDIS is shown in Figure 2b.

X X X X Y

21 ( )( )
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( 2) shadow blocks ~1( )1 ( )( )
( 2( 2 nii
n B B

1 2( ) ( )
2 shadow blocks  and 
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(b)

Figure 2. Shadows of the proposed (n, n)-SDIS: (a) using Wei et al.’s (2, 2)-SDIS for B(j1) and B(j2) (b)
using Yang et al.’s (2, 2)-SDIS for B(j1) and B(j2).

Moreover, in [17], the authors claimed that the (2, 2)-SDIS has a novel application to cover the
transmission of confidential images. For example, as a supplementary aid to existing symmetric
cryptography standards like DES which requires a pre-shared key, the (2, 2)-SDIS remains a safe
and less risky means for key distribution. Because the prosed scheme is extended from 2-out-of-2 to
n-out-of-n, it implies that our (n, n)-SDIS can be applied on a group key distribution, which includes
n members in this group. Besides the application in key distribution, the proposed scheme can be
also applied to protection of secret image among multiple users. For instance, the colorful image of
traffic or medical information are confidential, and our scheme provides a secure and high efficiency
approach to safely keeping such image among n users, only all n users are able to recover the image
with high quality.
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Finally, in a shadow NSi, 1 ≤ i ≤ n there are X blocks with percentage of n−1.5
n (= 1

2 ×
n−1

n +
1
2 ×

n−2
n ), and Y blocks with percentage of 1.5

n (= 1
2 ×

1
n + 1

2 ×
2
n ), respectively. The more X blocks

have the large number of black subpixels and may enhance visual qualities of meaningful shadows,
and these percentages have more effective performance for large n.

4. The Proposed (n, n)-SDIS

4.1. Sharing and Recovering Algorithms

A block diagram of the proposed (n, n)-SDIS is illustrated in Figure 3. Shadows NS1 − NSn are
noise-like, which is the same as Boolean-operation based SIS [18]. For the proposed (n, n)-SDIS, we
can complement the blocks for the corresponding white cover pixels to generate binary meaningful
shadows (BS1 − BSn) from noise-like shadows (NS1 − NSn), i.e., 6B3W (or 5B4W) for black color and
3B6W (or 4B5W) for white color. However, the scheme in [18] does dot has this property. On the other
hand, to implement color meaningful shadows (CS1, CSn), the 1s in blocks are replaced with the color
of the corresponding cover pixel, and leave 0s blank. Therefore, we only describe how to generate
noise-like shadows, and how to recover the secret image and color palette from n noise-like shadows.
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Figure 3. Block diagram of the proposed (n, n)-SDIS

For noise-like shadows (NS1, NSn), detailed procedures of sharing and recovering procedures
are briefly described step by step as follows.

Sharing Procedure

(S-1) Obtain the block B = (b1, b2, ...b9) from the secret image SI and the color palate CP.
(S-2) Randomly generate (n− 2) X blocks B(i1), B(i2), ..., B(in−2).
(S-3) By (n− 2) random blocks and the block B, calculate the temporary block T via T = B⊕ B(i1) ⊕

...⊕ B(in−2).
(S-4) If H(T) is 9, we reduce its Hamming weight to H(T) = 7 via modifying any one shadow block

of {B(i1), ..., B(in−2)}.
/* (1) In Lemma 1, we prove that the reduction of Hamming weight can always be accomplished
(2) After step (S-4), the Hamming weight distribution is 0 ≤ H(T) ≤ 8 */.

(S-5) If H(T) is odd (H(T) = 1, 3, 5, 7) then construct two other shadows B(j1), B(j2) by Y(T) =

{B(j1), B(j2)}; else by W(T) = {B(j1), B(j2)}, where {j1, j2}
⋃{i1, ...in−2} = {1, 2, ..., n}.

/* In Lemma 2, we prove that {B(j1), B(j2)} can be obtained from Y(T) for odd H(T), and from
W(T) for even H(T). */
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(S-6) Process all the blocks, and output shadow blocks B(1)...B(n) on n noise-like shadows NS1 − NSn,
respectively.

Recovering procedure:

(S-1) Obtain B by XOR-ing (B(1) ⊕ ...⊕ B(n)) via from n noise-like shadows NS1 − NSn.

/* Theorem 1, demonstrates that we can obtain the original block from B = (B(1) ⊕ ...⊕ B(n)) */
(S-2) Recover the color index (b1 − b8) and the data of color palette b9, respectively, from B.
(S-3) Repeat the above until all blocks in NS1 ⊕ ...⊕ NSn are processed, and finally SI and CP can

be recovered.

4.2. Extension of (n, n)-SDIS to Share True Color Secret Image

Same as (2, 2)-SDIS and VC in [5], the proposed (n, n)-SDIS can be used to share a true color
image. To share a true color secret image, we use a 25-subpixel block Br, which the first three 8-tuples,
r1, ..., r8, g1, ..., g8, and bl1, ..., bl8, are used to represent R, G and B color planes. The other one bit in Br

is p9. This 25-subpixel block Br is shown in Figure 4a. Because we share R, G and B colors directly, we
do not need to use the bit p9 to covey any information. Thus, this bit p9 could be abandoned, or used as
authentication bits to provide authentication capability like VC in [6] and PSIS in [10]. Collect (x1...x8),
where x ∈ {r, g, bl}, and append the bit p9 to form red, green, and blue shadow blocks Bx where
x ∈ {r, g, bl} as shown in Figure 4b.

(a)  (b)

1r 2r 3r

6r 7r 8r

3g 4g 5g

4r 5r

1g 2g

6g 7g

8g 1b 2b

5b 6b 7b

3b 4b

8b 9p

1r 2r 3r

6r

7r

4r 5r

8r 9p

1g 2g 3g

4g 5g 6g

7g 8g 9p

1bl 2bl 3bl

4bl 5bl 6bl

7bl 8bl 9p

Figure 4. Blocks for sharing true clor image: (a) 25-bit BT (b) 9-bit Br, Bg, Bbl .

Detailed procedures of the proposed (n, n)-SDIS for sharing and recovering true color image are
briefly described step by step as follows.

Sharing procedure:

(S
′
-1) Obtain 24-bit true color r1, ..., r8, g1, ..., g8, and bl1, ..., bl8 from the secret image SI, and random

generate a bit p9 to form a 25-bit block Br, as shown in Figure 4a.
/* Parity bit p9 is not used to covey any information, and thus it can be randomly generated */

(S
′
-2) Subdivide the true color block BT to red, green, and blue shadow blocks Br, Bg, Bbl .

(S
′
-3) Using Br, Bg, Bbl as 9-bit block B in (S-1), respectively, to generate n shadow blocks B(i)

r , B(i)
g , B(i)

bl ,
where 1 ≤ i ≤ n, through (S-1) (S-6).

(S
′
-4) Collect every first 8 bits in B(i)

r , B(i)
g , B(i)

bl , and append a black subpixel in the 25-th subpixel to
generate a 25-bit shadow block B(i), where 1 ≤ i ≤ n.
/* Because we do not use the 25-th bit p9 in the XOR-ed result BT to convey any information, we
can use black subpixel in 25-th subpixel for all shadow blocks to enhance the number of black
subpixels. */

(S
′
-5) Process all the blocks, and output blocks B(1) − B(n) on n noise-like shadows NS1 − NSn,

respectively.

Recovering procedure:

(R
′
-1) Obtain every 25-bit block BT by XOR-ing (B(1) ⊕ B(2) ⊕ ... ⊕ B(n)) via XOR-ing n noise-like

shadows NS1 − NSn.
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(R
′
-2) Recover a true color from the first 24 bits in BT , i.e., r1, ..., r8, g1, ..., g8, and bl1, ..., bl8.

(R
′
-3) Repeat the above until all blocks in (NS1 ⊕ NS2...⊕ NSn) are processed, and finally a true color

SI is obtained.

4.3. Enhancing Visual Quality of Color Meaningful Shadow

Consider sharing 256-color (respectively, true color) SI, noise-like shadows NSi, 1 ≤ i ≤ n, are
3M× 3N (respectively, 5M× 5N) times expanded. Based on noise-like shadow NSi, we can fill in 1s in
shadow blocks with the color of the corresponding cover pixel in CCI, and leave 0s blank to generate
color meaningful shadow CSi. Consider the case sharing 256-color SI. As shown in Figure 5a, there
is a pixel with a blue color C in CCI. Suppose that the block B(i) at corresponding position for this

pixel in NSi is (b(i)1 ...b(i)9 ) = (110101101) (see Figure 5b), and this block B(i) is a X block with 6B3W
sub-pixels (see see Figure 5c). By putting the blue cover pixel C into all black sub-pixels in Figure 5c,
we have color meaningful shadow CS(i) in Figure 5d. Noise-like shadow and color meaningful shadow
have the same size 3M× 3N subpixels and 9 times expanded when compared with CCI.

(a)    (b) (c) (d)

( )

1

i
b

( )

2

i
b

( )

3

i
b

( )

4

i
b

( )

5

i
b

( )

6

i
b

( )

7

i
b

( )

8

i
b

( )

9

i
bC

C C

C C

C C

Figure 5. Block patterns: (a) a pixel with a color in CCI (b) the corresponding block B(i) in NSi (c) the
corresponding 6B3W block in NSi (d) the corresponding block in CSi

As shown in Figure 5d, the color at 1s in a block are the same. This is because SI and CCI have
the same size with M× N pixels. To enhance visual quality of CSi, we use a large color cover image
CCI

′
with 3M× 3N pixels (note: the original CCI has only M× N pixels). Obviously, this larger CCI

′

has the high resolution than CCI. As shown in Figure 6, our new approach uses a large CCI
′

(see
Figure 6a). By putting the color pixels in to into all 1s of B(1) in Figure 6b, we have the CS

′
i in Figure 6c.

Because the color meaningful shadow CS
′
i has more colors, and will have the high resolution. By the

same argument, this approach can also be applied to sharing true color SI.

C1 C2

C6

C7 C9

C4

C3

C8

C5

C1 C2

C6

C7 C9

C4

(a) (b) (c)

Figure 6. Block patterns: (a) 9 color pixels with color C1 − C9 in CCI
′

(b) the corresponding block B(i)

in NSi (c) the corresponding color block in CS
′

i.

5. Theorem and Security Analysis

5.1. Main Theorems and Examples

Lemma 1. Suppose that the block T in Equation (1) is all-1 block, i.e., H(T) = 9. We may change any
two positions (one is 1 → 0 and the other is 0 → 1) in any one block B(ij), 1 ≤ j ≤ n − 2, such that the
equation B = T⊕ B(i1) ⊕ ...⊕ B(in−2) holds, and H(T) is reduced from 9 to 7. Meanwhile, all (n− 2) blocks
B(ij), 1 ≤ j ≤ n− 2, are still X blocks.
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Proof. As shown in Equation (1), all these (n− 2) blocks B(i1) − B(in−2) are X blocks. We choose one
block B(ij), and modify any two positions of 1 → 0 and 0 → 1. This modification will change the 1
in the block T to 0 at these two chosen modified positions. After that, H(T) is reduced to 9− 2 = 7.
Meanwhile, because we change two positions by 1→ 0 and 0→ 1, respectively, the Hamming weight
H(B(ij)) is unchanged, and this shadow block B(ij) is still a X block.

Lemma 2. Blocks B(j1), B(j2) in step (S-5) can be obtained from Y(T) for odd H(T), and from W(T) for
even H(T).

Proof. Let X1 be X block, and both Y1 and Y2 be Y blocks. We first prove that the possible Hamming
weights of (Y1, Y2) are 0, 2, 4, 6, 8, and the possible Hamming weights of (X1, Y2) are 1, 3, 5, 7. Because
both blocks Y1 and Y2 have the same Hamming weight 5, the number of positions of 1→ 0 and 0→ 1
crossing from vectors Y1 to Y2 should be the same. Suppose that this number is y. Therefore, the
(Y1, Y2) has the following form (see Equation (3)), where 0 ≤ y ≤ 4. Obviously, the Hamming weight
of (Y1Y2) in Equation (3) is 2y, and thus H(Y1Y2) may be 0, 2, 4, 6, 8.


Y1 =

y︷︸︸︷
1...1

y︷︸︸︷
0...0

5−y︷︸︸︷
1...1

5−y︷︸︸︷
0...0

Y2 =
↓

0...0
↑

1...1
l

1...1
l

0...0
Y1 ⊕Y2 = 1...1 1...1 0...0 0...0

(3)

Consider the XOR-ed block (X1 ⊕Y2). Because blocks X1 and Y2 have Hamming weights 6 and 5,
respectively. The number of positions of 1→ 0 and 0→ 1 crossing from vectors X1 to Y2 should differ
with one. Suppose that the number crossing from vectors X1 to Y2 of 1→ 0 is x + 1, and the number of
0→ 1 is x. Therefore, the (X1 ⊕Y2) has the following form (see Equation (4)), where 0 ≤ x ≤ 3. The
Hamming weight of (X1Y2) in Equation (4) is (2x + 1), and thus H(X1 ⊕Y2) may be 1, 3, 5, 7.

X1 =

x+1︷︸︸︷
1...1

x︷︸︸︷
0...0

5−x︷︸︸︷
1...1

3−x︷︸︸︷
0...0

Y2 =
↓

0...0
↑

1...1
l

1...1
l

0...0
X1 ⊕Y2 = 1...1 1...1 0...0 0...0

(4)

Because Wei et al.’s (2, 2)-SDIS uses two Y blocks (say Y1 and Y2), therefore using Wei et al.’s
(2, 2)-SDIS has H(Y1 ⊕Y2) with even values 0, 2, 4, 6, 8. On the other hand, there are one X block and
one Y block (say X1 and Y2) when using Yang et al.’s (2, 2)-SDIS. Thus, using Yang et al.’s (2, 2)-SDIS
has H(X1 ⊕Y2) with odd values 1, 3, 5, 7. Finally, the above implies that {B(j1), B(j2)} can be obtained
from Y(T) for odd H(T) = 1, 3, 5, 7, and can be obtained from W(T) for even H(T) = 0, 2, 4, 6, 8.

The following theorem shows that the proposed (n, n)-SDIS is a n-out-of-n sharing scheme that
we can recover SI and CP from n noise-like shadows (NS1 − NSn), and cannot obtain SI and CP from
(n− 1) or fewer shadows.

Theorem 1. The proposed (n, n)-SDIS is n-out-of-n sharing scheme that the XOR-ed result of n shadow blocks
can represent 0 255 color indices and the data of color palette.

Proof. We first prove that sharing procedure can successfully generate n shadow blocks B(i), 1 ≤ i ≤ n.

Suppose that a block B = (

colorindex︷ ︸︸ ︷
b1...b8 ,

colorpalette︷︸︸︷
b9 ) is composed of 8-bit color index (0 255) and 1-bit data of

color palette, which are obtained from SI and CP. By Equation (1), we first randomly generate (n− 2)
X blocks B(ij), 1 ≤ j ≤ n− 2, and then calculate the temporary block T via T = B⊕ B(i1)⊕ ...⊕ B(in−2).

After step (S-4), the Hamming weight distribution of H(T) is 0 8 (see Lemma 1). By Lemma 2, we
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can obtain {Bj1 , B(j2)} from Y(T) (respectively, W(T)) for odd (1, 3, 5, 7) (respectively, even (0, 2, 4, 6, 8)
H(T). Finally, we have n shadow blocks {B1, ..., Bn}. Process all the blocks, and we can generate n
noise-like shadows.

Next, we consider the recovery. As shown in Equation (2), we can recover the original block B =

(b1...b9) from B = B(1)⊕ ...⊕ B(n). Therefore, we can determine the color index (b1...b8) and the data of
color palette b9. After obtaining all blocks, we can recover SI and CP. Because of B = B(1) ⊕ ...⊕ B(n),
it is obvious that we cannot recover the original block B via (n− 1) or fewer shadow blocks.

Let the ratio of average number of black subpixels in a block (i.e., the regions in shadows showing
the content of cover image) for Wei et al.’s (2, 2)-SDIS, Yang et al.’s (2, 2)-SDIS, and the proposed
(n, n)-SDIS be RW , RY, RP. In addition, let the contrasts of binary meaningful shadows for Wei et al.’s
(2, 2)-SDIS, Yang et al.’s (2, 2)-SDIS, and the proposed (n, n)-SDIS be CW , CY, CP. The following
theorem demonstrates RW ≤ RY ≤ RP and CW ≤ CY ≤ CP.

Theorem 2. The ratio of average numbers of black subpixels in a 9-bit block for Wei et al.’s (2, 2)-SDIS, Yang et
al.’s (2, 2)-SDIS, and the proposed (n, n)-SDIS are RW = 5

9 , RY = 5.5
9 , RP = 6−1.5/n

9 where RW < RY < RP.
The contrasts of binary meaningful shadows for Wei et al.’s (2, 2)-SDIS, Yang et al.’s (2, 2)-SDIS, and the
proposed (n, n)-SDIS are CW = 1

9 , CY = 2
9 , CP = 3−3/n

9 , where CW < CY < CP.

Proof. Wei et al.’s (2, 2)-SDIS has all Y blocks on both shadows, and thus RW = 5
9 . On the other

hand, both shadows of Yang et al.’s (2, 2)-SDIS are composed of X and Y blocks half and half.

Therefore, we have RY = (6+5)/2
9 = 5.5

9 . For the proposed (n, n)-SDIS, Step (S-5) implies that Yang
et al.’s (2, 2)-SDIS and Wei et al.’s (2, 2)-SDIS are evenly used in the proposed (n, n)-SDIS. This is
because the Hamming weights H(T) are odd and even half and half. Therefore, the value of RP is
derived as follows. 

RP = 1
2 ×

usingWeiet.al(2,2)−SDIS︷ ︸︸ ︷
((n− 2)× 6 + 2× 5)/n

9 +

1
2 ×

usingWeiet.al(2,2)−SDIS︷ ︸︸ ︷
((n− 1)× 6 + 1× 5)/n

9
= 3−1/n

9 + 3−0.5/n
9 = 6−1.5/n

9

(5)

It is obvious that RP ≥ 5.5
9 with equality for n = 3. From these values RW = 5

9 , RY = 5.5
9 , RP =

6−1.5/n
9 , we have RW < RY < RP

The contrast is the difference of blackness for black block and white block. In binary meaningful
shadows BS1 − BSn, we complement the blocks for the corresponding white cover pixels to generate
white shadow blocks. Thus, if the number of black subpixels in a black shadow block is nB, then the he
number black subpixels in a white shadow block is 9− nB. Thus, we have CW = 5−(9−5)

9 = 1
9 , CY =

5.5−(9−5.5)
9 = 2

9 , CP = 6−1.5/n−(9−6+1.5/n)
9 = 3−3/n

9 . It is obvious that CP ≥ 2
9 with equality for n = 3.

From these values CW = 1
9 , CY = 2

9 , CP = 3−3/n
9 we have CW < CY ≤ CP.

An illustrative example gives a quick understanding for the proposed (n, n)-SDIS.

Example 1. Share and recover the following information (c, d) = (176, 0) and (49, 1), where c is the color
index and d is the data of color palette, by the proposed (4, 4)-SDIS.

Given (c, d) = (176, 0), we have the block B = (

c︷ ︸︸ ︷
b1...b8,

d︷︸︸︷
b9 ) = (

176︷ ︸︸ ︷
10110000,

0︷︸︸︷
0 )2. By step (S-2),

we randomly generate two X blocks (say B(1), B(2)). Suppose that these two random blocks are
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B(1) = (101110110) and B(2) = (111101001) with H(B(1)) = H(B(2)) = 6, and then we obtain the
temporary block T via the following equation.

T = B⊕ B(1) ⊕ B(2)

= (101100000)⊕ (101110110)⊕ (111101001)
= (111111111)

(6)

Because of H(T) = 9, we should modify any two positions (one is 1→ 0 and the other is 0→ 1) in one
block (say B(2)), to reduce H(T) from 9 to 7. For example, we may modify B(2) as (111101100). Finally,
we have T = (111111010) with H(T) = 7, and meanwhile the new block B(2) = (111101100) is still a
X block. Since H(T) = 7 is odd, we apply Yang et al.’s (2, 2)-SDIS to obtain Y(111111010) = 7, which

can be determined from Equation (7). Finally, all four shadow blocks are B(1) = (101110110), B(2) =

(111101100), B(3) = (110110101), B(4) = (001001111), where B(1), B(2), B(3) are X blocks, and B(4) is
Y block. 

B(3) = (110110101) : X
⊕

B(4) = (
↓
0
↓
0
↑
1
↓
0
↓
0
↑
1
l
1
↑
1
l
1) : Y

T = (111111010)

(7)

Consider another case (c, d) = (49, 1). We have the block B = (

49︷ ︸︸ ︷
001100011,

1︷︸︸︷
1 )2. From step

(S-2), we randomly select two X blocks (say B(1), B(2)). Suppose that these two random blocks
are B(1) = (011111001) and B(2) = (110011011), and then we obtain the temporary block T via
Equation (8). 

T = B⊕ B(1) ⊕ B(2)

= (001100011)⊕ (011111001)⊕ (110011011)
= (100000001)

(8)

Since H(T) = 2 is even, we apply Wei et al.’s (2, 2)-SDIS to obtain Y(100000001) = (B(3), B(4)),
which can be determined from Equation (9). Finally, all four blocks are B(1) = (011111001), B(2) =

(110011011), B(3) = (110101010), B(4) = (010101011), where B(1), B(2) are X blocks, and B(3), B(4) are
Y blocks. 

B(3) = (110101010) : Y
⊕

B(4) = (
↓
0
l
1
l
0
l
1
l
0
l
1
l
0
l
1
↑
1) : Y

T = (100000001)

(9)

For recovery, consider the case: B(1) = (101110110), B(2) = (111101100), B(3) =

(110110101), B(4) = (001001111). The XOR-ed result is B = B(1) ⊕ B(2) ⊕ B(3) ⊕ B(4) = (101100000),
and thus (c, d) = (176, 0). For the other case: B(1) = (011111001), B(2) = (110011001), B(3) =

(110101010), B(4) = (010101011), the XOR-ed result is B = B(1) ⊕ B(2) ⊕ B(3) ⊕ B(4) = (101100000).
Therefore, we have (c, d) = (49, 1).

Let R
′
P be the ratio of average numbers of black subpixels in a 25-bit shadow block for the

proposed (n, n)-SDIS sharing true color image. The following theorem demonstrates R
′
P > RP, i.e., the

meaningful shadows of sharing true color secret image have the better visual quality than those of
sharing 256-color secret image.

Theorem 3. The ratio of average numbers of black subpixels in a 25-bit block for the proposed (n, n)-SDIS
sharing true color image is R

′
P = 17

25 −
0.16

n , where R
′
P > RP.
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Proof. If the blocks B(i)
r , B(i)

g , B(i)
bl are X (respectively, Y ) blocks, then the first 8 bits in B(i)

r , B(i)
g , B(i)

bl

has 6 black subpixels with C6
8

C6
9

percentage and 5 black subpixels with C5
8

C6
9

percentage (respectively,

5 black subpixels with C5
8

C5
9

percentage and 4 black subpixels with C4
8

C5
9

percentage). The average number

of black pixels for the first 8 bits in B(i)
r , B(i)

g , B(i)
bl is 6 × C6

8
C6

9
+ 5 × C5

8
C6

9
= 16

3 for X blocks, and is

5× C5
8

C5
9
+ 4× C4

8
C5

9
= 40

3 for X blocks. Therefore, the average number of black subpixels in every 8 bits

in the first 24 bits of B(i) is 16n−4
3n , as derived below.

1
2 ×

usingWeiet.al(2,2)−SDIS︷ ︸︸ ︷
((n− 2)× 16/3 + 2× 40/9)/n+

1
2 ×

usingYanget.al(2,2)−SDIS︷ ︸︸ ︷
((n− 1)× 16/3 + 1× 40/9)/n

= 24n−8
9n + 24n−4

9n = 16n−4
3n

(10)

Because the 25-th bit in shadow block is always 1, and thus the value of R
′
P is determined as

R
′
P = 3×(16n−4)/3n+1

25 = 17
25 −

0.16
n . The following equation implies R

′
P > RP.{

R
′
P = 17

25 −
0.16

n > 6
9 −

0.16
n > 6

9 −
1.5/9

n
6−1.5/n

9 = RP
(11)

5.2. Security Analysis: The (n− 1)-Colluder Attack

Here, we consider an attack way that (n− 1) participants collude together and want to figure out
SI and CP. The (n− 1)-colluder attack is a very extreme attack for the proposed (n, n)-SDIS, because it
needs (n− 1) participants jointly providing their shadows for guessing SI and CP. We first discuss the
(n− 1)-colluder attack on Wei et al.’s (2, 2)-SDIS and Yang et al.’s (2, 2)-SDIS. Suppose that Participant
1 wants to predict SI and CP from his own shadow NS1. Because the color palette CP information is
conveyed by the ninth bit b(1)9 of every block on NS1. Therefore, the CP can be completely obtained
from NS1. Even though Participant 1 has the color palette CP, but he cannot obtain the information
about color index. An attacker has 1

256 ≈ 0.004 probability to figure out the correct color index
(b1...b8) of block B without any shadow. This value of 1

256 is a brute-force probability, which tries all
possible 256 colors in the color palette. However, for the (n− 1)-colluder attack, Participant 1 has B(1).
By cryptanalytic attacks relying on knowing one shadow (the first eight bit of B(1)), Participant 1 may
guess the color index. Let the successful probability to recover the block B for Wei et al.’s (2, 2)-SDIS
and Yang et al.’s (2, 2)-SDIS be PW and PY, respectively, when collecting one shadow. Because both
shadow blocks of Wei et al.’s (2, 2)-SDIS are all Y blocks (5B4W), obviously PW is 1

C5
9
= 1

126 ≈ 0.008.

On the other hand, shadow blocks of Yang et al.’s (2, 2)-SDIS are evenly composed of X blocks and

Y blocks. Thus, PY =
1/C6

9+1/C5
9

2 = 1/84+1/126
2 ≈ 0.01. Both probabilities 0.08 and 0.01 are higher than

the brute-force probability 0.004. However, these probabilities 0.08 and 0.01 are still practically secure
for guessing 256 colors.

Let the successful probability to recover the block B for (n− 1)-colluder attack, for the proposed
(n, n)-SDIS, be PP. In the following theorem, we theoretically prove PP = 1

C6
9
− 3

2n × ( 1
C6

9
− 1

C5
9
).

Theorem 4. The successful probability to recover the block B in the proposed (n, n)-SDIS for (n− 1)-colluder
attack is PP = 1

C6
9
− 3

2n × ( 1
C6

9
− 1

C5
9
), where PW ≤ PY ≤ PP.
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Proof. Suppose that there are (n− 1) shadows (say B(1) − B(n−1)) for reconstruction, on which we
may guess the type of shadow block in the corresponding position of B(n). The block B(n) has X
block and Y block with 2n−3

2n probability and 3
2n probability, respectively, which are derived below.

1
2 ×

Weietal′s(2,2)SDIS︷ ︸︸ ︷
C2

2 · C1
n−2

Cn−1
n

+ 1
2 ×

Yanget.al′s(2,2)−SDIS︷ ︸︸ ︷
C1

1 · C1
n−1

Cn−1
n

= 2n−3
2n

(B(n) : X )

1
2 ×

Weietal′s(2,2)SDIS︷ ︸︸ ︷
C1

2 · Cn−2
n−2

Cn−1
n

+ 1
2 ×

Yanget.al′s(2,2)−SDIS︷ ︸︸ ︷
C1

1 · Cn−1
n−1

Cn−1
n

= 3
2n

(B(n) : Y )

(12)

If B(n) is X block (respectively, Y block), there is 1
C6

9
(respectively, 1

C5
9
) probability to guess the

correct color index (b1...b8), which is better than brute-force probability 1
256 . Thus, PP is calculated

as follows.

PP =

X block︷ ︸︸ ︷
2n− 3

2n
× 1

C6
9
+

Y block︷ ︸︸ ︷
3

2n
× 1

C5
9
=

1
C6

9
− 3

2n
× (

1
C6

9
− 1

C5
9
) (13)

Since PW = 1
C5

9
and PY =

1/C5
9+1/C6

9
2 , we have PW < PY. About PY and PP, the relation is derived

as follows. 

PP = 1
C6

9
− 3

2n × ( 1
C6

9
− 5

9 ) =
2n−3

2n ×
1

C6
9
+ 3

2n ×
1

C5
9

= n
2n ×

1
C6

9
+ ( n−3

2n ×
1

C6
9
+ 3

2n ×
1

C5
9
)

≥ n
2n ×

1
C6

9
+ ( n−3

2n ×
1

C5
9
+ 3

2n ×
1

C5
9
)

=
1/C5

9+1/C6
9

2 = PY

(14)

For n = 3, the value of PP is PP =
1/C5

9+1/C6
9

2 = PY, and PP approaches to 1
C6

9
for large n. In fact, the

value of 1
C6

9
= 1

84 ≈ 0.012 is almost the same as Py ≈ 0.01. For this extreme case, the (n− 1)-colluder

attack, the security of the proposed (n, n)-SDIS is close to that of Yang et al.’s (2, 2)-SDIS. By the
same argument, for other cases collecting (n− 2) or shadows, the possible combination of collected
shadows is more difficult to analyze compared with collecting (n− 1) shadows, and even less than the
brute-force probability.

In the proposed (n, n)-SDIS, the color palette information is conveyed by b9 (the ninth bit in B),
but not the ninth bit b(1)9 of the block B(1) in NS1. Therefore, the color palette CP may be obtained
from only one shadow for Wei et al.’s (2, 2)-SDIS and Yang et al.’s (2, 2)-SDIS. Even though an attacker
has the CP information, he still cannot obtain the secret image SI. For the proposed (n, n)-SDIS, the
color palette information in B is securely protected and only can be determined from XOR-ing n
blocks B(1) ⊕ ...⊕ B(n). This makes the cryptanalysis is more difficult for the proposed (n, n)-SDIS.
The following theorem demonstrates the successful probability PC to recover a correct color in CP for
the proposed (n, n)-SDIS when collecting (n− 1) shadows.

Theorem 5. The successful probability to recover a correct color in CP for the proposed (n, n)-SDIS when
collecting (n− 1) shadows is PC = ( 2

3 −
1/6

n )24.
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Proof. Each color information in CP is encapsulated in 24 blocks, which every block should be derived
from B = B(1) ⊕ ...⊕ B(n). If colluders have (n− 1) shadows (say NS1 − NSn−1), for a block B, they
have the XOR-ed result B

′
= B(1) ⊕ ...⊕ B(n−1), and can guess that the shadow block B(n) is X block

and Y block with 2n−3
2n probability and 3

2n probability, respectively. For X block, it implies that
we have 6

9 probability that the bit b9 is the complementary bit b
′
9 in B

′
. On the other hand, we have

5
9 probability that the bit b9 is the complementary bit b

′
9 in B

′
for Y block. Therefore, the average

probability of guessing b9 is derived as

X block︷ ︸︸ ︷
2n− 3

2n
× 6

9
+

Y block︷ ︸︸ ︷
3

2n
× 5

9
= 2

3 −
1/6

n Note: every block has one-bit
color palette information, and a true color is represented by 24-bit R, G, and B color planes. Because
colluders can guess the bit b9 with 2

3 −
1/6

n probability, PC is ( 2
3 −

1/6
n )24.

Therefore, the value PC = ( 2
3 −

1/6
n )24 is less than ( 2

3 )
24 ≈ 5.94× 10−5, and this implies that the

color palette cannot be recovered under (n− 1)-colluder attack.

6. Evaluation and Comparisons

6.1. Experimental Results

Seven experiments (Experiments A − H) are conducted to evaluate the proposed (n, n)-SDIS
from various aspects: (A) noise-like shadows NS1, NS2, NS3 sharing 256-color image for (3, 3)-SDIS
(B) binary meaningful shadows BS1, BS2, BS3 sharing 256-color image for (3, 3)-SDIS (C) color
meaningful shadows CS1, CS2, CS3 sharing 256-color image for (3, 3)-SDIS (D) color meaningful
shadows CS1, CS2, CS3 sharing true color image for (3, 3)-SDIS (E) binary meaningful shadows
(NS1 − NS4) and color meaningful shadows (CS1 − CS4) for (4, 4)-SDIS (F) binary meaningful
shadows (NS1−NS5) and color meaningful shadows (CS1−CS5) for (5, 5)-SDIS (G) color meaningful
shadows CS

′
1, CS

′
2, CS

′
3 sharing 256-color image for (3, 3)-SDIS by the approach of enhancing

visual quality.
Experiments A− D are the (3, 3)-SDIS. Experiment A has noise-like shadows, and other four

experiments are meaningful shadows. Experiments D demonstrates sharing true color secret image.
Experiments E and F demonstrate binary and color meaningful shadows for (4, 4)-SDIS and (5, 5)-SDIS,
respectively. In Experiment G, we redo Experiment C to enhance the visual quality of color meaningful
shadows by using the approach in Figure 6.

In all experiments, five binary cover images BCI1 − BCI5 with black-and-white printed texts
A , B , C , D , E , and five color cover images CCI1 − CCI5 with photos of birds are used.

In addition, two secret images SI1 (Lena: 256-color image), SI2 (Kaleidoscope: true color image)
are used. All these images BCI1 − BCI5 (see Figure 7), CCI1 − CCI5 (see Figure 8), and SI1, SI2

(see Figure 9) are 256× 256 pixels.

(a) (b) (c) (d) (e)

Figure 7. Five color cover images with photos of birds: (a) BCI1 (b) BCI2 (c) BCI3 (d) BCI4 (e) BCI5.

(a) (b) (c) (d) (e)

Figure 8. Five color cover images with photos of birds: (a) CCI1 (b) CCI2 (c) CCI3 (d) CCI4 (e) CCI5.
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(a) (b)

Figure 9. Two secret images: (a) SI1: 256-color Lena (b) SI2: true color Kaleidoscope.

Because shadows may be 9 or 25 times expanded in experiments, for demonstrating all the
images in a single page, the shadow images in experiments are not correctly proportional.

Experiment A. Three noise-like shadows NS1 − NS3 of the proposed (3, 3)-SDIS sharing a 256-color
secret image are demonstrated.

The secret image SI1: 256-color Lena in Figure 9a is used to test the proposed (3, 3)-SDIS.
Each noise-like shadow has 2n−3

2n = 6−3
6 = 50% X blocks and 3

2n = 3
6 = 50% Y blocks, which are

the same as Yang et al.’s (2, 2)-SDIS. As shown in Figure 10, three noise-like shadows are expanded to
768× 768 pixels. Via recovering procedure, we can recover the original 256-color secret image Lena.

(a) (b) (c)

Figure 10. Noise-like shadows of the proposed (3, 3)-SDIS: (a) NS1 (b) NS2 (c) NS3.

Experiment B. Three binary meaningful shadows BS1 − BS3 of the proposed (3, 3)-SDIS sharing a
256-color secret image are demonstrated.

By revering (respectively, unchanging) the color of subpixels in a block of B(1), B(2), and B(3) on
NS1, NS2 and NS3 in Experiment A to represent the white (respectively, black) color in BCI1 − BCI3

(A, B, and C in Figure 7a–c). The proposed (3, 3)-SDIS has the contrast CP = 3−(3/n)
9 = 3−(3/3)

9 = 2
9

(see Theorem 2). It is observed that the printed-texts A, B, and C are revealed indeed on BCI1 − BCI3,
with the size of 768× 768 pixels (see Figure 11a–c). Consider recovery. We first transfer the 3B6W
block and 4B5W block to 6B3W block and 5B4W block, respectively. Afterwards, via the recovering
procedure, we may recover the 256-color secret image Lena.

(a) (b) (c)

Figure 11. Binary meaningful shadows of the proposed (3, 3)-SDIS: (a) BS1 (b) BS2 (c) BS3.

Experiment C. Three color meaningful shadows CS1 − CS3 of the proposed (3, 3)-SDIS sharing a
256-color secret image are demonstrated.
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By adopting the color pixels in CCI1 − CCI3 into black subpixels in blocks B(1), B(2), and B(3) on
NS1, NS2 and NS3, respectively, we generate three color meaningful shadows CS1 − CS3 with the size
of 768× 768 pixels. Each color meaningful shadow has RP = 6−(1.5/n)

9 = 6−(1.5/3)
9 = 5.5

9 . As shown
in Figure 12a–c, it is observed that the images of three photos of birds in Figure 8a–c are revealed
on CS1 − CS3. Consider recovery. We first transfer the color subpixel in every block to ′′1′′s and
white subpixel to ′′0′′. Afterwards, via the recovering procedure, we may recover the 256-color secret
image Lena.

(a) (b) (c)

Figure 12. Color meaningful shadows of the proposed (3, 3)-SDIS: (a) CS1 (b) CS2 (c) CS3.

Experiment D. Three color meaningful shadows CS1 − CS3 of the proposed (3, 3)-SDIS sharing a true
color secret image are demonstrated.

The secret image SI2: true color Kaleidoscope is used to test the proposed (3, 3)-SDIS sharing a
true color secret image. For a secret pixel, we use the information of R, G, and B color planes to form
a 25-bit block. By adopting the color pixels in CCI1 − CCI3 into three 25-subixle shadow blocks, we
can generate three color meaningful shadows CS1 − CS3 with the size of 1280× 1280 pixels (25 times
expanded). Each color meaningful shadow has R

′
P = 17

25 −
0.16

n = 0.627 (see Theorem 3) larger than
RP = 5.5

9 = 0.611 in Experiment C, to show the content of cover image. As shown in Figure 13a–c, it is
observed that the images CCI1 − CCI3 are revealed on CS1 − CS3. Via the recovering procedure, we
may recover the true color secret image Kaleidoscope.

Experiment E. Four binary meaningful shadows BS1 − BS4 and four color meaningful shadows
CS1 − CS4 of the proposed (4, 4)-SDIS sharing a 256-color secret image are demonstrated.

Four binary cover images printed-texts in Figure 7a–d, and four color cover images CCI1 − CCI4

in Figure 8a–d are used. Finally, four binary meaningful shadows BS1− BS4, and four color meaningful
shadows CS1 − CS4 are illustrated in Figure 14a,b, respectively. All these shadows have the sizes of
768× 768 pixels. Binary meaningful shadows of (4, 4)-SDIS have CP = 3−(3/n)

9 = 3−(3/4)
9 = 2.25

9 , and

color meaningful shadows of (4, 4)-SDIS have RP = 6−(1.5/n)
9 = 6−(1.5/4)

9 = 5.625
9 . Both values are

greater than 2
9 (Experiment B) and 5.5

9 (Experiment C), respectively.

Experiment F. Five binary meaningful shadows BS1 − BS5 and five color meaningful shadows CS1 −
CS5 of the proposed (5, 5)-SDIS sharing a 256-color secret image are demonstrated.

Five color cover images printed-texts in Figure 7a–e, and five color cover images CCI1 − CCI5 in
Figure 8a–e are used. Finally, fiver binary meaningful shadows BS1 − BS5, and five color meaningful
shadows CS1 − CS5 are illustrated in Figure 15a,b, respectively. All these shadows have the sizes of
768× 768 pixels. Binary meaningful shadows of (5, 5)-SDIS have CP = 3−(3/n)

9 = 3−3/5
9 = 2.4

9 , and

color meaningful shadows of (5, 5)-SDIS have RP = 6−(1.5/n)
9 = 6−1.5/5

9 = 5.7
9 . Both values are better

than those of (3, 3)-SDIS.

Experiment G. Redo Experiment C, but use the approach of enhancing visual quality of color
meaningful shadows. Three CS

′
1 − CS

′
3 are demonstrated.

In Experiment C, three 256× 256-pixel color cover images CCI1 − CCI3 in Figure 8a–c are used.
To enhance the visual quality of CS1 − CS3, we use another three 768× 768-pixel CCI

′
1 − CCI

′
3, which
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has high resolution. These three images CCI
′
1−CCI

′
3 are omitted here for brevity. By using the approach

in Figure 6, we use color pixels in CCI
′
1 − CCI

′
3 into black subpixels in blocks B(1), B(2), and B(3) on

NS1, NS2 and NS3, respectively to generate three color meaningful shadows CS
′
1 − CS

′
3 with the size

of 768× 768 pixels. As shown in Figure 16a–c, it is observed that Figure 16 has better visual quality
than Figure 12. However, the photos CCI1−CCI3 used in this experiment may not clearly demonstrate
the enhancement. Here, we use a cover image, a colorful centered fractal, for testing. Figure 17(a-1,b-1)
shows two color meaningful shadows using the original one and new enhancement, respectively. For
clear observation, cropped image areas of Figure 17(a-1,b-1) are shown in Figure 17(a-2,b-2). Visual
inspection of cropped image areas in Figure 17(a-2,b-2) reveals that the original method spoils some
edges and fine details in shadow images. Our enhancement has clear color sharpness, especially the
clearness of edges.

For fairer comparison, we adopt visual quality assessment, the structural similarity (SSIM)
index, and the feature similarity (FSIM) index to compare Figure 17(a-1) and Figure 17 (b-1). Let the
original image be a colorful centered fractal with the size 768 ∗ 768 pixels. According to the image
quality assessment from Laboratory for Computational Vision in New York University (please refer to
https://www.cns.nyu.edu/~lcv/ssim/#usage), to calculate SSIM and FSIM for color images, it would
be better to convert the color image to gray image with the formula 0.2989R + 0.5870G + 0.1140B, and
then calculate its SSIM and FSIM. Finally, SSIM and FSIM of Figure 17(a-1) are 0.2532 and 0.8400, and
SSIM and FSIM of Figure 17(b-1) are 0.3300 and 0.8498, respectively. These values of SSIM and FSIM
demonstrate a consistency with the performance in Figure 17(a-2,b-2).

(a) (b) (c)

Figure 13. Color meaningful shadows of the proposed (3, 3)-SDIS sharing a true color secret image:
(a) CS1 (b) CS2 (c) CS3.

(a-1) (a-2) (a-3) (a-4)

(b-1) (b-2) (b-3) (b-4)

Figure 14. Binary snd color meaningful shadows of the proposed: (a) BS1 − BS4 (b) CS1 − CS4.

https://www.cns.nyu.edu/~lcv/ssim/#usage
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(a-1) (a-2) (a-3) (a-4) (a-5)

(b-1) (b-2) (b-3) (b-4) (b-5)

Figure 15. Binary snd color meaningful shadows of the proposed: (a) BS1 − BS5 (b) CS1 − CS5.

(a) (b)   (c)

Figure 16. Color meaningful shadows of (3, 3)-SDIS by the approach of enhancing visual quality:
(a) CS

′
1 (b) CS

′
2 (c) CS

′
3.

(a-1) (a-2)

(b-1) (b-2)

Figure 17. Color meaningful shadows and enlarged parts of cropped image area for (3, 3)-SDIS:
(a) using the original method (b) using the approach of enhancing visual quality.

6.2. Discussion and Comparison

6.2.1. Enhancing RP

In step (S-2), we first randomly generate (n− 2) X blocks B(i1), B(i2), ..., B(in−2). Afterwards, in
step (S-5), we evenly use Wei et al.’s (2, 2)-SDIS and Yang et al.’s (2, 2)-SDIS to generate two other
shadows B(j1), B(j2), where {j1, j2} = {1...n} − {i1...in−2}. Finally, RP is 6−(1.5/n)

9 (see Equation (5)).
In fact, we may further enhance RP by using W block instead of X block to generate (n − 2)
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B(i1), B(i2), ..., B(in−2), where W block may be 7B2W or 8B1W. When using W = 6B3W, the approach
changes back to the original (n, n)-SDIS. By this approach, the RP is enhanced to 7−3.5/n

9 and 8−5.5/n
9

for W = 7B2W and W = 8B1W, as derived in Equations (15) and (16), respectively.
RP = 1

2 ×

Weietal′s(2,2)SDIS︷ ︸︸ ︷
((n− 2)× 7 + 2× 5)/n

9 +

1
2 ×

Yanget.al′s(2,2)−SDIS︷ ︸︸ ︷
((n− 2)× 7 + 1× 5 + 1× 6)/n

9
= 3.5−(2/n)

9 + 3.5−(1.5/n)
9 = 7−(3.5/n)

9

(15)


RP = 1

2 ×

Weietal′s(2,2)SDIS︷ ︸︸ ︷
((n− 2)× 8 + 2× 5)/n

9

+ 1
2 ×

Yanget.al′s(2,2)−SDIS︷ ︸︸ ︷
((n− 2)× 8 + 1× 5 + 1× 6)/n

9
= 4−(3/n)

9 + 4−(2.5/n)
9 = 8−(5.5/n)

9

(16)

Consider (n − 1)-colluder attack for the case using W block with Hamming weight w.
The following theorem demonstrates the successful probability to recover the block B under
(n− 1)-colluder attack.

Theorem 6. When using W block in the proposed (n, n)-SDIS, the successful probability to recover the block
B for (n− 1)-colluder attack is RP = 2n−4

2n ×
1

Cw
9
+ 1

2n ×
1

C6
9
+ 3

2n ×
1

C5
9
.

Proof. Suppose that using W block with Hamming weight w in step (S-2). Consider the case that
colluders already have (n− 1) shadows (say B(1) − B(n−1)) for reconstruction. Based on these (n− 1)
shadows, colluders may guess the type of shadow block B(n) in the other shadow, The block B(n) has
W block, X block and Y block with 2n−4

2n probability, 1
2n probability and 3

2n probability, respectively,
which are derived below. Note: if W is 6B3W Equation (17) is reduced to Equation (12).

1
2 ×

Weietal′s(2,2)SDIS︷ ︸︸ ︷
C2

2 × C1
n−1

Cn−1
n

+ 1
2 ×

Yanget.al′s(2,2)−SDIS︷ ︸︸ ︷
C1

1 × C1
1 × C1

n−2
Cn−1

n

= 2n−4
2n (B(n)is W block)

1
2 ×

0
+ 1

2 ×

Yanget.al′s(2,2)−SDIS︷ ︸︸ ︷
C1

1 × C1
1 × Cn−2

n−2
Cn−1

n
= 1

2n (B(n)is X block)

1
2 ×

Weietal′s(2,2)SDIS︷ ︸︸ ︷
C1

2 × Cn−2
n−2

Cn−1
n

+ 1
2 ×

Yanget.al′s(2,2)−SDIS︷ ︸︸ ︷
C1

1 × C1
1 × Cn−2

n−2
Cn−1

n
=

3
2n (B(n)is Y block)

(17)

There is probability 1
Cw

9
, 1

C5
9

, 1
C6

9
to guess the correct block B when B(n) is W block, X block, and

Y block, respectively. Therefore, the PP is calculated as follows.

PP =

W︷ ︸︸ ︷
2n− 4

2n
× 1

Cw
9
+

X︷ ︸︸ ︷
1

2n
× 1

C5
9
+

Y︷ ︸︸ ︷
3

2n
× 1

C5
9

(18)
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The value of PP is 1
C7

9
− 0.038

n and 1
C8

9
− 0.204

n for w = 7 and 8. The values are about 1
C7

9
= 1

36 and
1

C8
9
= 1

9 , respectively, for large n. Even though these values are larger than PP = 1
C6

9
− 3

2n (
1

C6
9
− 1

C5
9
)

for using W block in step (S-2), it is still practically secure for applications. This is because our CP

information is protected in the XOR-ed result, but not conveyed on b(1)9 in B(1) like (22)-SDIS [17,19].
For example, when using 8B1W as W block. If colluders have (n− 1) shadows (say NS1 − NSn−1 ),
for a block B, they have the XOR-ed result B

′
= B(1) ⊕ ...⊕ B(n−1), and can guess the shadow block

B(n) is W block with a very high probability for large n (note: 2n−4
2n → 1 for large n). It implies that

there is about 8
9 probability that the bit b9 in B is the complementary bit b

′
9 of B

′
. By using the same

argument in proof of Theorem 5, for this case, the successful probability to recover a correct color in
CP is PC = ( 8

9 )
24 ' 0.059. Therefore, we cannot get the correct CP back. Although colluders may

recover the first 8 bits (b1 − b8) in B, i.e., a color index by complementing the first 8 bits (b
′
1 − b

′
8) in B

′

with 1
9 probability. This probability of guessing a color index is larger than the brute-force probability

1
256 . However, colluders do not have the correct CP, and thus they cannot recover the original SI.
Obviously, it is more difficult to apply (n− 1)-colluder attack on using 7B2W as W block, because PC

is ( 7
9 )

24 ' 0.0024. This is why we claim that using W block is still practically secure for applications.
To demonstrate the above phenomenon, we use 8B1W as W block in the proposed (5, 5)-SDIS.

Five color meaning shadows using color cover images CCI1 − CCI5 in Figure 8a–e are illustrated in
Figure 18a, where the approach of enhancing visual quality in Section 4.3 is also adopted. Figure 18b
are the 256-color SI (Lena), and its corresponding CP. The recovered 256-color secret image SI

′
and

the color palette CP
′

are shown in Figure 18c. It is observed that these five color meaning shadows
in Figure 18a have high resolutions with RP = 8−5.5/n

9 = 0.767 for n = 5, which have better visual
qualities than those in Figure 15b. From, Figure 18c, there is not any secret information of CP and SI
leaked for (n− 1)-colluder attack.

(a-1) (a-2) (a-3) (a-4) (a-5)

(b-1) (b-2) (c-1) (c-2)

Figure 18. The proposed (5, 5)-SDIS using 8B1W block (a) five color meaningful shadows (b)
256-color SI and its corresponding CP (c) the recovered 256-color SI1 and color palette CP

′
under

(n− 1)-colluder attack.

6.2.2. Comparison

We extend (2, 2)-SDIS to the proposed (n, n)-SDIS. Because the percentage of X block is greater
than 50%, the resolution of binary and color meaningful shadows are enhanced. Note: Yang et al.’s
(2, 2)-SDIS uses X block and Y block half and half, while Wei et al.’s (2, 2)-SDIS only uses Y
blocks. On the other hands, Wei et al.’s (2, 2)-SDIS has the incorrect assignment of color palette data
for the color index 255. This problem comes from from all-1 9-bit vector. In [19], Yang et al. adopted a
complicated approach using partitioned sets to address this problem. In the proposed (n, n)-SDIS, the
number of shadows of (n, n)-SDIS is more than two, i.e., n ≥ 3. Thus, we can easily adopt a simple
approach by reducing H(T) to H(T) = 7 in step (S-4) via modifying any one shadow block to solve
this problem. Meantime, as described in Section 5.1, we may enhance RP and simultaneously retain
the practical security by using W block.

As shown in Table 2, a complete comparison is given among Wei et al.’s (2, 2)-SDIS, Yang et al.’s
(2, 2)-SDIS, and the proposed (n, n)-SDIS. The comparison includes the structure of block, percentages
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of blocks, the region in color meaningful shadows revealing cover image, the contrast of binary
meaningful shadows, enhancing RP, the embedding of color palette data, where to embed color palette
data, enhancing visual quality of color meaningful shadows, encoding/decoding complexity, and the
security. About the security, although the successful probability to recover B under (n− 1)-colluder
attack PP = 1

C6
9
− 3

2n (
1

C6
9
− 1

C5
9
) ' 1

C6
9

= 0.012 for large n is larger than PW = 1
C5

9
= 0.008 and

PY =
1/C6

9+1/C5
9

2 = 0.01. This value is still practical secure for practical application. Besides, the CP of
the proposed (n, n)-SDIS cannot be obtained under (n− 1)-colluder attack, but the CP of (2, 2)-SDIS
can be obtained from only one shadow. Based on this observation, the proposed (n, n)-SDIS is much
securer than (2, 2)-SDIS.

Table 2. Comparison of Three SDIS Schemes.

Wei et al.’s (2, 2)-SDIS Yang et al.’s (2, 2)-SDIS The Proposed (n, n)-SDIS

number of shadows 2 2 n ≥ 3

structure of block Y block X and Y blocks X and Y blocks

percentage of block Y :100% X :50%, Y :50% X : 2n−3
2n , Y : 3

2n

region in color shadows
revealing cover image

RW = 5
9 RY = 5.5

9 RP = 6−1.5/n
9

RW < RY ≤ RP

contrast of binary
meaningful shadows

CW = 1
9 CY = 2

9 CP = 3−3/n
9

CW < CY ≤ CP

enhancement of RP No No Yes

embedding the data of color
palette data

having a problem for the
color index 255

using partitioned sets for
some color indices

using a simple approach by
reducing Hamming weight

where to embed color palette
data

the bit b(1)9 in B(1) the bit b(1)9 in B(1) the bit b9 in the XOR-ed B

enhancing visual quality of
color meaningful shadows

No No Yes

encoding/decoding
complexity

XOR operation XOR operation; lookup
table

XOR operation

security

probability to
recover B
under (n−
1)-colluder

PW = 1
C5

9
PY =

1/C5
9+1/C6

9
2 PP = 1

C6
9
− 3

2n (
1

C6
9
− 1

C5
9
)

PW < PY ≤ PP

probability
to obtain CP
under (n −
1)-colluder

CP can be obtained from
only one shadow

CP can be obtained from
only one shadow

PC = ( 2
3 −

1/6
n )24

7. Conclusions

In this paper, we discussed the general (n, n)-SDIS, which can be applied to any n ≥ 3.
The proposed (n, n)-SDIS is skilfully implemented on basis of previous (2, 2)-SDIS. Our main
contribution is theoretically to prove the proposed (n, n)-SDIS being able to resist (n− 1) colluder
attack. Meanwhile, the contrast of binary meaningful shadow and the region in color shadows
revealing cover image are both enhanced. The main weakness of Wei et al.’s (2, 2)-SDIS is the incorrect
assignment of color palette data for some color indices, and this is tackled by using partitioned sets
in Yang et al.’s (2, 2)-SDIS. In the proposed (n, n)-SDIS, because of the number of shadows more
than two, i.e., n ≥ 3, a simple approach reducing Hamming weigh of a temporary block can be
adopted to easily solve this weakness. Since the proposed (n, n)-SDIS is based on color palette and
resistant to (n− 1)-colluder attack, and also enhances the visual quality of meaningful shadows, it is
suitable for modern visual communication applications where features such as secure transmission,
storage sensitive, and high-quality image reconstruction are required.
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