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Abstract: The design of an embedded flight controller for a quadrotor micro air vehicle, which is
subject to uncertainties and perturbations, is addressed. In order to obtain robustness against bounded
uncertainties and disturbances, an adaptive sliding mode controller is proposed. The control adaptive
gains allow using only necessary control to satisfy the task, reducing the chattering effect and at the
same time reject external perturbations. Furthermore, a stability analysis of the closed-loop system is
given. Finally, simulations and experimental results carried out on a commercial micro air vehicle
demonstrate the feasibility and advantages of the proposed flight controller.
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1. Introduction

The study about Unmanned Aerial Vehicles (UAVs), particularly the quadrotor systems,
has grown exponentially, such that many applications have been developed due to their advantages
such as vertical take-off and landing, hovering, and maneuverability. Then, quad-rotors are
employed in inspection-, mapping-, and surveillance-related tasks. Recently, Micro Air Vehicles
(MAVs) (according to the definition in [1], these vehicles have a mass < 0.1 kg and a size < 0.15
m) have attracted attention because they can access confined and denied GPS spaces such as inside
buildings, pipelines, halls, factories, schools, and more. Since MAVs are designed to operate in the
above places, they require more advanced controllers to achieve the commanded tasks.

Many commercial quadrotors are available on the market. Nonetheless, we focus on the Parrot
mini drone rolling spider, which due to its tiny size is classified as an MAV. These drones are safe and
reliable, and they include sensors, such as an altimeter, an ultrasonic sensor, an Inertial Measurement
Unit (IMU), and a camera. A remarkable advantage is that, it is possible to test low level control due
to the recently open architecture for MATLAB by means of the Simulink Support Package for Parrot
Minidrones [2] or by getting started with MIT’s Rolling Spider MATLAB Toolbox [3].

Regarding the small size of UAVs, uncertainties and external disturbances affect the performance
of the vehicle. Hence, tasks conducted by these MAVs require control approaches able to provide
accuracy, efficient consumption of energy, and robustness. In order to control a quadrotor MAV subject
to uncertainties and external disturbances, adaptive control [4], robust control [5], optimal control [6],
and intelligent control [7] have been developed. Nevertheless, the aforementioned results depend
of the knowledge of the system or a training process for the last one. Even more, they show limited
robustness under external perturbations.

Robust control techniques for UAVs, with some approaches such as [8], where a robust attitude
control scheme subject to actuator faults and wind gust was investigated, require much information
estimated via an extended state observer. On the other hand, sliding mode controllers appear as one
of the most available approaches due to their advantages such as robustness as pointed out in [9–15].
Nonetheless, the controller parameters remain fixed, and the tuning of these gains could be complex.
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The super twisting approach is a powerful sliding mode controller, which has been employed in
flight control for quadrotors in [16–18]. The algorithm is robust to bounded and derivative bounded
perturbations, but the magnitude of these bounds must be known in order to guarantee stability.
On the other hand, adaptive strategies have arisen to deal with the control effort such as in [19,20].
However, the tuning of these algorithms is very difficult. Previous investigations were relative to
standard size UAVs (more than 0.5 kg), and they proved their strategies on quadrotors of typically
more than a kilogram of weight. Hence, it is clear that tiny vehicles such as micro air vehicles have
more sensitivity to external perturbations compared with the standard size, demanding robust and
adaptive controllers to guarantee the commanded task.

Contribution

An embedded flight controller for a quadrotor MAV subject to uncertainties and perturbations is
the main contribution of this paper. An adaptive sliding mode technique is the core of the approach,
where the advantages rely on not overestimating the magnitude of the gain and robustness against
bounded disturbances. Due to adaptive gains, only necessary control is employed to satisfy the
task, reducing the chattering effect and at the same time being able to reject external perturbations.
Furthermore, a stability analysis of the closed-loop system is provided. Finally, simulations and
experimental results carried out on a commercial rolling spider micro drone demonstrate the feasibility
and advantages of the proposed flight controller.

The organization of this paper is as follows: Section 2 provides the modeling of the micro air
vehicle, whereas the design of the embedded flight controller is detailed in Section 3. Experimental
results are described in Section 4. At the end, some conclusions are given.

2. Mathematical Model

In this section, the mathematical model of the parrot rolling spider micro quadrotor is presented.
The kinematics and dynamics of the MAV moving in space are described by the following state
variables p = [x, y, z]T ∈ R3 and Θ = [φ, θ, ψ]T ∈ {−π, π}, which are the linear and angular positions,
respectively in the inertial reference frame, whereas ν = [u, v, w]T ∈ R3 and ω = [p, q, r]T ∈ R3 are
velocities expressed in the body reference frame (see Figure 1).

Figure 1. Referential frames’ configuration.
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Thus, following the Newton–Euler convention, the quad-rotor model is given by [21]:

ṗ = R1(Θ)v (1)

Θ̇ = R−1
2 (Θ)ω (2)

F = m(v̇ + ω× v) (3)

τ = Iω̇ + ω× Iω, (4)

where m is the aircraft mass and the rotation matrix R1(Θ) ∈ SO(3) and R2(Θ) ∈ R3×3 transform the
body frame to inertial frame. The matrices are denoted by:

R1(Θ) =

 cψcθ −sψcφ + cψsθsφ sψsφ + cψsθcφ

sψcθ cψcφ + sψsθsφ −cψsφ + sψsθcφ

−sθ cθsφ cθcφ

 (5)

and:

R2(Θ) =

 1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

 (6)

where sx, cy, and tz are sin(x), cos(y), and tan(z), respectively.
The inertia assuming that the vehicle is symmetric I ∈ R3×3 is given by:

I =

 Ix 0 0
0 Iy 0
0 0 Iz

 (7)

The force and torque vectors are described by:

F = Fg + Fm (8)

τ = τm + τgy (9)

where,

Fg = R−1
1 (Θ)

 0
0

mg

 =

 −mgSθ

mgCθSφ

mgCθCφ

 (10)

is the gravity vector. On the other hand, the sum of each thrust produced by a motor-propeller
represents the total thrust acting on the z-axis of the body frame, defined as:

Fm =

 0
0

−(T1 + T2 + T3 + T4)

 , (11)

where Ti for i = 1, 2, 3, 4 is the thrust provided by each motor. In contrast, torques are produced
by differences in rotor speeds, obtaining roll, pitch, and yaw motions, which are defined according
an “X” configuration:

τm =


l√
2
(T2 + T3 − T1 − T4)

l√
2
(T1 + T2 − T3 − T4)

−Q1 + Q2 −Q3 + Q4

 , (12)
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where l is an arm of the quadrotor. Qi for i = 1, 2, 3, 4 is the rotor torque. The gyroscopic effects are
denoted by:

τgy =

 −jrq(Ω1 −Ω2 + Ω3 −Ω4)

jr p(Ω1 −Ω2 + Ω3 −Ω4)

0

 , (13)

where jr is the rotor inertia, p, q are the angular velocities in the body frame, and Ωi for i = 1, 2, 3, 4 is
the angular rate of the ith rotor. However, assuming standard approximations of the thrust and torque,
these are expressed as follows:

Ti = kTΩ2
i (14)

Qi = kQΩ2
i , (15)

where kT is a constant of thrust and kQ is a torque constant. Therefore, the actual torques, i.e.,
τφ, τθ , τψ, τ, which represent the roll, pitch, yaw, and throttle torques, respectively, are explicitly
given by: 

τφ

τθ

τψ

τ

 =


− l√

2
kT − l√

2
kT

l√
2

kT − l√
2

kT
l√
2

kT
l√
2

kT − l√
2

kT − l√
2

kT

−kQ kQ −kQ kQ
kT kT kT kT




Ω2
1

Ω2
2

Ω2
3

Ω2
4

 . (16)

Finally, the parameters of the rolling spider micro drone are displayed in Table 1.

Table 1. Quadrotor MAV model parameters [22].

Parameter Value Unit

Weight m 0.068 kg
Arm length l 0.062 m

Gravity g 9.81 m/s2

Inertia moment Ix 6.86× 10−5 kgm2

Inertia moment Iy 9.2× 10−5 kgm2

Inertia moment Iz 1.366× 10−4 kgm 2

Thrust coefficient KT 0.01 N/(rad2/s2)
Torque coefficient KQ 7.8263× 10−4 Nm/(rad2/s2)

3. Embedded Flight Control Design

In this section, the proposed flight controller is addressed. The control objective was to stabilize
the quadrotor MAV in spite of uncertainties and external perturbations. An adaptive sliding mode
strategy was used as the core of the proposed method. Then, in order to design the controller, we used
a simplified model under the following assumptions:

Assumption 1. We considered that linear and angular accelerations in the body frame are equal to the inertial
frame, and this is based on the small angles theorem.
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Assumption 2. We separated the problem into the actuated system, which refers to the φ, θ, ψ and z dynamics
and an underactuated system, corresponding to the x and y dynamics. Hence, the model for control design
purposes is given by:

Actuated


φ̈ =

(Iy−Iz)
Ix

θ̇ψ̇− jr
Ix

Ωa θ̇ +
τφ

Ix
+ dφ

θ̈ = (Iz−Ix)
Iy

φ̇ψ̇ + jr
Iy

Ωaφ̇ + τθ
Iy
+ dθ

ψ̈ =
(Ix−Iy)

Iz
θ̇φ̇ +

τψ

Iz
+ dψ

z̈ = τ
m (CφCθ) + g + dz

(17)

Underactuated

{
ẍ = τ

m (CψSθCψ + SφSψ) + dx

ÿ = τ
m (CψSθSψ + SφCψ) + dy

(18)

Thus, we proposed two controllers, one in order to control the actuated system, where an
adaptive sliding mode control is adopted, and a virtual control concept used to solve the
underactuated dynamics.

3.1. Actuated System

Consider the uncertain and disturbed actuated dynamics as:

ζ̈ = f (ζ, t) + g(ζ)u + d(t) (19)

y = h(ζ) (20)

where the state is denoted by ζ = [φ, θ, ψ, z]T , and:

f (ζ, t) = f0(ζ, t) + fu(ζ, t) (21)

g(ζ) = g0(ζ) + gu(ζ) (22)

u = [τφ, τθ , τψ, Tt]
T (23)

d(t) = [dφ, dθ , dψ, dz]
T , (24)

where f0(t, x) = [a1, a2, a3, a4]
T and g0(x) = [b1, b2, b3, b4] are the nominal model, whereas fu(x, t) =

∆[a1, a2, a3, a4]
T and gu(x) = ∆[b1, b2, b3, b4] are parametric uncertainties. Furthermore, a1 =

(Iy−Iz)
Ix

θ̇ψ̇ − jr
Ix

θ̇Ωa, a2 = (Iz−Ix)
Iy

φ̇ψ̇ + jr
Iy

φ̇Ωa, a3 =
(Ix−Iy)

Iz
θ̇φ̇, a4 = g, b1 = 1

Ix
, b2 = 1

Iy
, b3 = 1

Iz
,

b4 = 1
m (cφcθ), and d(t) includes uncertainties and perturbations satisfying |d(t)| ≤ L, where L > 0 is

an upper bound of the perturbation. Hence, by defining the error as:

e = ζ1d − ζ1, ė = ζ2d − ζ2, (25)

where ζ1d = [φd, θd, ψd, z]T and ζ2d = [φ̇d, θ̇d, ψ̇d, żd]
T are the tracking references. Now, we define the

following sliding surface:
s = ė + λe (26)

where λ > 0. Then, deriving Equation (26), one gets:

ṡ = ë + λė

= ξ̈1d − f (ξ, t) + g(ξ)u + λ
(
ξ̇1d − ξ̇1

)
(27)

Thus, considering a feedback controller:

u = g(ξ)−1 ( f (ζ, t)− ζ̈1d − λ(ζ̇1d − ζ̇1) + ua
)

(28)
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where the auxiliary control ua is given by the following adaptive sliding mode strategy:

ua = −Ka(t)|s|1/2sign(s)− k2s (29)

where Ka(t) is the control gain, which adapts according to:

K̇a(t) =

{
ksign(|s| − µ), if Ka > Kmin,
Kmin, if Ka ≤ Kmin,

(30)

and k2∗ > 0 is a design fixed gain. This controller Equation (29) adapts one of its gains Equation (30) in
order to establish minimal control effort according to Kmin and maintain stability, where k regulates
the rate of adaptation; as a consequence, this parameter regulates how fast the controller responds
to perturbations. µ is a parameter to detect the loss of the sliding mode and thus increase the
gain if required. As has already been presented, this control method is robust against bounded
perturbations/uncertainties, and the control gain is not overestimated, reducing the chattering effect.

3.2. Underactuated System

In order to control the x and y coordinates, the virtual control strategy is followed, where the
objective is to achieve xd, yd desired coordinates. Then, by defining now the error as:

e = ξd − ξ =

[
xd − x
yd − y

]
(31)

with time derivative:

ė = ξ̇d − ξ̇ =

[
ẋd − ẋ
ẏd − ẏ

]
(32)

Now, given a desired trajectory xd, yd, ψd, the x, y positions can be reached via desired roll and
pitch angles φd, θd. From Equation (18), the following virtual control is obtained:

φd = sin−1
(

m
Tt
(sψd uv1 − cψd uv2)

)
(33)

θd = sin−1

( m
Tt

uv1 − sψd sφd

cψd cφd

)
. (34)

where:

uv =

[
uv1

uv2

]
= Kpe + Kd ė, (35)

where Kp > 0 and Kd > 0.

3.3. Closed-Loop Stability

The closed-loop stability of the the fully-actuated system Equation (19) in a closed loop with the
controller Equation (28) is analyzed. First, let us express the system in a closed loop as:

ṡ = ∆(t) + d(t) + ua, (36)

where ∆(t) lumps all uncertainties of the model relative to fu(x, t) and gu(x) satisfying |gu(x)|
|g0(x)| ≤

γ2 << 1, ∀x with t > 0, respectively. Therefore, we define a new variable:

ϕ(t) = 4(t) + d(t), (37)
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which includes all uncertainties and external disturbances, which is supposed to be globally
bounded by:

|ϕ(t)| ≤ L, L > 0. (38)

Thus, Equation (36) becomes:

ṡ = −Ka(t)|s|1/2sign(s)− k2s + ϕ(t), (39)

Now, in order to verify the stability, we propose the following candidate Lyapunov function:

V(t) = sTs (40)

with V(0) = 0 and V(t) > 0 for s 6= 0. A sufficient condition to guarantee that the trajectory of the
error from reaching the phase to sliding mode is to choose a control approach such that it fulfills:

V̇(t) = sṡ < 0, s 6= 0. (41)

By substituting Equation (39) into Equation (41), one gets:

V̇(t) = s
(
−Kai(t)|s|1/2sign(s)− k2s + ϕ(t)

)
= −|s|Kai(t)|s|1/2 − k2s2 + sϕ(t)

≤ −|s|Ka(t)|s|1/2 − k2s2 + |s|L (42)

stability under the bounded uncertainties/perturbations. ϕi(t) is guaranteed if:

0 > −|s|Ka(t)|s|1/2 − k2s2 + |s|L
L < Ka(t)|s|1/2 + k2|s| (43)

is fulfilled, i.e., the control signal is greater than the uncertainty/perturbation, leading to the following
constraint on the adaptive gain:

Ka(t) >
1
|s|1/2 (L− k2|s|) . (44)

The stability of the under-actuated part, i.e., the x and y dynamics, is analyzed as follows: recalling
that the calculation of the desired roll and pitch angles φd, θd and ψd via the virtual controller strategy
and due to the attitude control ensures convergence from [φ, θ, ψ]T to [φd, θd, ψd]

T in spite of the
uncertainties/perturbations.

4. Simulation and Experimental Results

In this section, with the aim to verify the performance of the proposed embedded flight controller,
simulation and experimental tests are carried out.

4.1. Simulation Results

The simulation scheme consists of the controller Equation (28) in closed loop with the quadrotor
MAV dynamics Equations (1)–(4). Simulations were conducted through MATLAB Simulink.
A second order solver with a sample time of 0.005 s was implemented. The case of regulation
of the actuated system, i.e., φ, θ, ψ, z dynamics was evaluated. On the other hand, the presence
of persistent disturbances was considered as well, which is a constant vector of force defined as
d(t) = [dφ, dθ , dψ, dz]T = [0.0005, 0.0005, 0.00005, 0.01]T N at time interval d(t) > 8 s. This value stands
and an excitation of 30% of the energy required for flight. Now, to evaluate the advantages of our
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adaptive controller, a comparison versus standard nonlinear feedback linearization, represented by
Equation (28) with:

ua = Kpe + Kd ė (45)

with Kp > 0 and Kd > 0, and also versus the proportional integral derivative with gravity
compensation controller, expressed as:

u = Kpe + ki

∫
e + Kd ė + [0, 0, 0, mg]T , (46)

where e and ė are defined in Equation (25), Kp > 0, Ki > 0, and Kd > 0. Notice that the x and y
controllers were not verified due to them being the same for each controller. Figure 2 displays the
stabilization of state variables. It is clear that all controllers work properly to convergence to zero,
where adaptive sliding mode control presented a better response. Also, the robustness of the controllers
to reject external perturbations can be appreciated, where our proposed control rejected better than
feedback linearization, which needed information of the perturbations to mitigate them, and than PID
control, which due to the integral action, can deal with this problem.
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Figure 2. Regulation. Controllers comparison: adaptive sliding mode control (asmc), feedback
linearization (fbl), and proportional integral derivative with gravity compensation control (PID).

In Figure 3, the control input signals are presented. A similar energy consumption is shown,
where adaptive sliding mode control (asmc) spent more energy; this is related to the rejection of
perturbations. In the end, adaptive gains are illustrated; its behavior verified the design mechanics
due to the increase toward convergence and when disturbances appeared.
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Figure 3. Regulation. Control inputs of the controllers and adaptive gains of the asmc.

4.2. Experimental Results

The proposed embedded flight control was implemented in the rolling spider micro quadrotor by
Parrot depicted in Figure 1. This experimental platform allowed designing and building flight control
algorithms for the Parrot rolling spider. The algorithms were deployed over Bluetooth. Moreover,
state information was obtained via sensor fusion from on-board sensors such as the ultrasonic sensor,
IMU, air pressure, and the downward-facing camera through Kalman filters, which are defined by the
rolling spider toolbox package.

The adaptive sliding mode controller was applied via MATLAB/Simulink, and we used the
following control parameters: k = diag[0.7, 0.7, 0.7, 0.7], k2 = diag[0.1, 0.1, 0.1, 0.2], λ = diag[1, 1, 1, 0.3],
µ = diag[0.05, 0.05, 0.05, 0.02], Kmin = diag[0.01, 0.01, 0.01, 0.01]. For the position controller, the gains
were: kp = diag[0.24, 0.24] and Kd = diag[0.1, 0.1]. Two scenarios were tested. The first one considered
the uncertainties of modeling without external perturbation.

4.2.1. Case without Perturbations

In Figure 4, linear and angular responses are plotted, where the roll, pitch, yaw, x, and y variables
were forced to converge to zero, while z was commanded to achieve 1.1 m. Notice that a transition
phase is clearly shown; this was always different because of the initial conditions of the experiments
differed. Furthermore, the controller was based on the nominal model. Therefore, uncertainties such
as parametric variations (the vehicle had external wheels, which increased the weight and inertia
moments), battery discharge, and electronic issues (response of the microcontroller, speed controllers
of the motors, and more), affect the performance of the vehicle. However, due to the robustness
properties of the control, stabilization was guaranteed.

The errors of the state variables with respect to references are illustrated in Figure 5. It is possible to
note that the controlled variables by the adaptive sliding strategy, i.e., angles and altitude, kept a small
error, less that 0.1 rad, regarding the x and y variables.



Electronics 2019, 8, 793 10 of 15

0 5 10 15 20

-0.2

0

0.2

0.4

0 10 20

-0.4

-0.2

0

0.2

0 10 20

-0.2

-0.1

0

0.1

0.2

0 5 10 15 20

-1

-0.8

-0.6

-0.4

-0.2

0

0 10 20

-0.2

0

0.2

0.4

0.6

0 10 20

-1.2

-1

-0.8

-0.6

-0.4

-0.2

Figure 4. Hovering. Pose of the quadrotor MAV.
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Figure 5. Error, reference versus variable state.

Figure 6 shows the applied angular velocities of the motors. Note that Motors 2 and 4 have
a negative sign. This is because they spin in the opposite sense with respect to Motors 1 and 3.
The adaptive gains of the controllers allow stabilizing once the MAV has achieved the proper altitude.
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Figure 6. Hovering. Control inputs of the quadrotor MAV.

Figure 7 displays the evolution of the adaptive control gains. It is clear that at the start, the gains
increased their values to reach the control objective, then they decreased until a defined minimal value,
where stability was guaranteed.

0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

7

Figure 7. Hovering. Adaptive control gains.

4.2.2. Case with Perturbations

The second scenario considered model uncertainties, as well as external disturbances. Then,
a perturbation, which consisted of a force induced by hand, was applied to the vehicle approximately
in t = 10 s. Recalling that this quadrotor MAV is tiny, external disturbances notably affect its
performance. Figure 8 displays the state response, where the stabilization was clearly more difficult.
Nevertheless, the adaptive flight control could achieve and keep stability even in the presence of such
uncertainties and external perturbations.

Figure 9 shows the error response subject to external disturbances.



Electronics 2019, 8, 793 12 of 15

0 5 10 15

-0.5

0

0.5

0 5 10 15

-0.3

-0.2

-0.1

0

0.1

0.2

0 5 10 15

-0.4

-0.2

0

0.2

0.4

0 5 10 15

-0.8

-0.6

-0.4

-0.2

0

0 5 10 15

-0.5

0

0.5

1

1.5

0 5 10 15

-1.5

-1

-0.5

0

Figure 8. Hovering. Pose of the quadrotor MAV subject to external perturbations.
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In Figure 10 as well, the corresponding angular velocities, which are the control inputs of the
systems, are depicted. Again, due to its adaptive controller gains, the vehicle achieved and kept
stability against uncertainties and external perturbations.

Finally, Figure 11 shows the adaptive control gains’ behavior under a perturbed environment;
such a picture demonstrates that gains increase or decrease their values to reject such disturbances.
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Figure 10. Hovering. Control inputs of the quadrotor MAV under external perturbations.
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Figure 11. Hovering. Adaptive control gains under external perturbations.

5. Conclusions

An embedded flight control for a quadrotor micro air vehicle subject to uncertainties and
perturbations was designed and implemented. An adaptive sliding mode technique was the core
of the approach, which was robust against bounded disturbances. Due to adaptive gains, necessary
control was employed as the task requirement, reducing the chattering effect, and it was able to reject
external perturbations. Even more, a stability analysis of the closed-loop system was provided. Finally,
simulations and two experimental scenarios were conducted on a Parrot rolling spider micro drone,
first with no perturbations and second disturbed, where the feasibility and advantages of the proposed
control were demonstrated.
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