
electronics

Article

Pedestrian Detection with Lidar Point Clouds Based
on Single Template Matching

Kaiqi Liu , Wenguang Wang * and Jun Wang *

School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
* Correspondence: wwenguang@buaa.edu.cn (W.W.); wangj203@buaa.edu.cn (J.W.);

Tel.: +86-10-8231-7240 (W.W.); +86-10-8233-9767 (J.W.)

Received: 7 June 2019; Accepted: 8 July 2019; Published: 11 July 2019

Abstract: In the field of intelligent transportation systems, pedestrian detection has become a problem
that is urgently in need of a solution. Effective pedestrian detection reduces accidents and protects
pedestrians from injuries. A pedestrian-detection algorithm, namely, single template matching with
kernel density estimation clustering (STM-KDE), is proposed in this paper. First, the KDE-based
clustering method is utilized to extract candidate pedestrians in point clouds. Next, the coordinates
of the point clouds are transformed into the pedestrians’ local coordinate system and projection
images are generated. Locally adaptive regression kernel features are extracted from the projection
image and matched with the template features by using cosine similarity, based on which pedestrians
are distinguished from other columnar objects. Finally, comparative experiments using KITTI
datasets are conducted to verify pedestrian-detection performance. Compared with the STM with
radially bounded nearest neighbor (STM-RBNN) algorithm and the KDE-based pedestrian-detection
algorithm, the proposed algorithm can segment gathering pedestrians and distinguish them from
other columnar objects in real scenarios.

Keywords: Lidar; pedestrian detection; point clouds; template matching

1. Introduction

With the development of intelligent transportation systems, environmental perception is becoming
increasingly significant in the fields of advanced driver assistance systems (ADAS) and autonomous
vehicles [1]. Considering that there is a large number of traffic accidents every year, pedestrian detection
has become an urgent challenge in need of a solution. Pedestrians are vulnerable in traffic. Millions of
people in the world are killed or injured by traffic accidents every year (https://www.who.int/
violence_injury_prevention/road_safety_status/2015/zh/). To some extent, effective pedestrian
detection would reduce traffic accidents to protect pedestrians from vehicle injuries. Meanwhile,
detecting the position and movement of a pedestrian has a great effect on the motion planning of
autonomous vehicles.

There are dynamic and stationary pedestrians on road scenarios, in which their motion and
position are random. Compared with vehicles, pedestrian profile sizes are smaller. In addition,
pedestrians in these scenarios often gather together, which makes it difficult to accurately segment
them. All these factors make pedestrian detection difficult.

In the field of pedestrian detection, the camera is one of the most commonly used sensors. It has
the closest structure to that of human eyes and can directly reflect the world how humans perceive
it. In optical images, it is easy to obtain color, texture and contour features of targets. These features,
combined with learning methods, can classify objects in road scenarios. Dalal proposed the histogram
of oriented gradient (HOG) feature for pedestrian detection [2]. HOG is insensitive to light and
shadows, which widely interests researchers [3]. Scale-invariant feature transform (SIFT) and Haar-like

Electronics 2019, 8, 780; doi:10.3390/electronics8070780 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-2063-5997
https://www.who.int/violence_injury_prevention/road_safety_status/2015/zh/
https://www.who.int/violence_injury_prevention/road_safety_status/2015/zh/
http://dx.doi.org/10.3390/electronics8070780
http://www.mdpi.com/journal/electronics

Electronics 2019, 8, 780 2 of 19

features are also commonly used in pedestrian detection [4,5]. For autonomous vehicles, determining
the position of pedestrians is significant to designate driving strategies. However, it is difficult to
obtain accurate pedestrian-position information with monocular images.

A Lidar sensor can obtain the contour, position and distance information of objects, which makes
it an excellent sensor in 3D environment perception [6,7]. Generally, pedestrian-detection methods
with Lidar can be divided into three categories: training-based methods, foreground and background
segmentation methods and kernel density estimation (KDE)-based methods.

1.1. Training-Based Methods

Features play an important role in training-based methods. A pedestrian classification system
with three features, including the total number of points in a cluster, distance to the Lidar
and spatial distribution direction of clustered points, was utilized in Reference [8]. The backpropagate
autoencoder-artificial neural network was trained for the classification. An AdaBoost classifier,
combined with a radius feature, a convexity feature, a local minimum feature and a robust compactness
feature were utilized to detect pedestrians in Reference [9]. Fifteen unique features of Lidar point
clouds, such as the number of points, the normalized Cartesian dimension and the central moment,
were used to detect pedestrians in urban scenarios [10]. The segmentation method in Reference [11]
was used for point-cloud segmentation in Reference [12]. Thirty-one features and a radial basis
fuction additive kernel support vector machine (SVM) were also used for pedestrian detection.
Three-dimensional features from point clouds and two-dimensional features from projection images
were extracted to classify pedestrians with a radial basis function kernel SVM [13]. In order to detect
pedestrians in a long-range area with sparse point clouds, radial basis function-based interpolation
was implemented to robustly extract features and SVMs are applied to learn the classifiers [14].

In general, training-based methods perform well in pedestrian detection with a large number of
training data but complex and changeable real scenarios make it difficult to obtain sufficient negative
training samples, which limit the performance of these methods.

1.2. Foreground and Background Segmentation Methods

In addition to directly extracting pedestrians from scenarios, there is also a kind of method
based on the foreground and background segmentation of point clouds. “Background” refers to fixed
ground, buildings, trees and stationary pedestrians and vehicles. “Foreground” refers to moving
objects such as cyclists and moving pedestrians and vehicles. Fixed sensors are required in these
methods, which are common in monitoring scenarios or when the vehicle is stationary at the roadside
or an intersection. A visual monitoring system that passively observes moving objects was proposed
in Reference [15]. Over time, the pixel values of the particular pixel in the background obey adaptive
Gaussian distribution. With illumination changing, the background pixel values obey the adaptive
mixture of Gaussians. After the background model is constructed, pixel values that do not satisfy the
distribution of the background pixel values are regarded as moving foreground pixels and foreground
targets are obtained by morpholological processing. A similar segmentation method was applied in
Lidar monitoring scenarios [16] and a point-cloud foreground detection method based on the dynamic
Markov model was proposed to detect moving pedestrians.

Although this kind of method can adaptively detect background and foreground pixels, it has
some drawbacks. First, the utilized sensors in this method should be fixed in the scenarios in order to
segment foreground and background. If the sensors have movements, the background information
is changed, which makes it difficult to collect a large number of data to establish the background
model. Second, this method needs to accumulate the pixel values in each pixel, which demands much
computation and many computing resources.

Electronics 2019, 8, 780 3 of 19

1.3. KDE-Based Method

In the field of pedestrian detection with Lidar, single-line Lidar has been applied to perceive the
environment earlier. In Reference [17], four single-line Lidars were constructed in the scenarios whose
height was set to sixteen centimeters in order to detect the legs of pedestrians with KDE. With the
development of Lidar sensors, 2.5D and 3D Lidar have attracted increasing attention. In Reference [18],
a fusion method based on KDE was proposed for pedestrian detection. The geometric features of
pedestrians and the returned layer numbers are applied to determine their positions.

The KDE-based method can effectively detect upright pedestrians in a scenario but it is difficult
for it to accurately distinguish columnar objects with similar sizes to pedestrians, such as mailboxes
and guideboards.

The main objective of the paper is to propose a pedestrian detection system using Lidar point
clouds with the ability to detect gathering pedestrians and avoid the training process of a large
number of data, thereby improving the ability of the intelligent transportation system in environmental
perception. In this work, our contributions are demonstrated by the detection system named single
template matching with kernel density estimation clustering (STM-KDE). Compared with the existing
methods, STM-KDE can well segment the gathering pedestrians with the KDE-based clustering,
which ignores the problem that the point clouds are distributed uneven but only focuses on the
accumulation of the point clouds at the object’s upright position. Meanwhile, the system does not
need a large amount of data for model training and only a single pedestrian template is needed for
detecting pedestrians in the scenarios. In the end, the qualitative and quantitative experiments validate
the performance of the proposed detection system. In the range of 15 m, by considering the detection
results and the false alarms, the F1 score of STM-KDE exceeds the comparative methods by 4% and
19%, respectively. Meanwhile, the proposed detection method does not improve the computational
complexity on the basis of improving the detection efficiency compared with existing method.

The remainder of the paper is organized as follows. In Section 2, the implementation process
of the proposed STM-KDE detection system is depicted. The experiments are shown in Section 3,
in which two KITTI datasets are employed. Finally, concluding remarks and the contributions are
given in Section 4.

2. Materials and Methods

With the influence of environmental interference and measurement noise, it is difficult to
distinguish pedestrians from objects with similar shapes. In addition, pedestrians in road scenarios
often appear in groups. The segmentation performance of point clouds is poor within a short distance.
In order to solve these problems, a pedestrian-detection method based on STM-KDE is proposed.
The method uses one template to match objects in scenarios and detect pedestrians. It should be noted
that pedestrian detection in this paper includes pedestrians and cyclists, because the state of people
while cycling is similar to that of walking and, compared with the human body, the number of point
clouds scanned by Lidar on the bicycle is smaller, which can be ignored. The detection flowchart is
shown in Figure 1.

As shown in Figure 1, there are three main processes in the proposed detection algorithm.

1. Point-cloud preprocessing. This process includes ground segmentation and grid filtering, which is
mainly utilized to reduce the number of point clouds and improve the efficiency of the algorithm.

2. Pedestrian clustering based on KDE, which is employed to extract candidate pedestrians from
point clouds with size limitation.

3. Template matching. Three-dimensional point clouds are projected onto the 2D plane, from which
contour features are extracted. Cosine Similarity between the features of the template and the
projection image is calculated for pedestrian detection.

Electronics 2019, 8, 780 4 of 19

Original

3D point

clouds

Projection

image

generation

Cosine

similarity

LARK

extraction

Morphological

processing

Pedestrian

detection

Ground

segmentation

Grid

filtering

Hierarchical

segmentation

Preprocessing

Template matching

Multi-layer

fusion

Candidate

pedestrian

extraction

KDE-based clustering

Figure 1. Flowchart of pedestrian detection.

2.1. Preprocessing

In the field of autonomous vehicles, Velodyne HDL-64E [19,20] is a commonly used Lidar with
64 laser emitters and 64 receivers, which is equivalent to using 64 laser lines to scan the environment.
Every second, Velodyne HDL-64E receives millions of point clouds, half of which are returned from the
ground. Ground point clouds not only increase computation but also interfere with target detection.
The purpose of point-cloud preprocessing is to reduce the point clouds to be processed and improve
the efficiency of the subsequent detection. In this paper, preprocessing mainly consists of two processes:
ground segmentation and grid filtering. In general, ground modeling is utilized to segment point
clouds into ground points and nonground points [19,21–23]. Grid filtering [20] filters outliers and tall
structural objects that are obviously nonhuman beings. Grid filtering is implemented according to the
height information of point clouds that fall into the same grid. The detailed process is as follows.

First, nonground point clouds are projected onto a grid map that is evenly divided along the x
and y directions. The points in grid cell (i, j) are expressed as Pij =

{
pij

1 , ..., pij
λ

}
, where λ is the number

of point clouds in grid cell (i, j). The maximum height, minimum height and mean height of the points
in grid (i, j) are denoted as zmax

ij , zmin
ij and zmean

ij , respectively. Next, the point clouds are filtered by the
following criteria.

1. Generally, points that are returned by a human are dense. If the point number contained
in a grid cell is smaller than a preset value, these points may come from the measurement
noise, mis-segmented ground points and other interference objects. Therefore, these points are
filtered out.

2. If the height difference of the point clouds in a grid cell that can be calculated with zmax
ij and zmin

ij
is small and the average height zmean

ij of the point clouds is small, these points may come from
roads or low obstacles and are filtered out.

3. If the height difference of the point clouds in a grid cell is large or the maximum height zmax
ij is

big, these points are likely to come from tall buildings and are therefore filtered out.

2.2. Clustering Based on KDE

Before detecting, it is necessary to determine the detection region of interest. Sliding windows
in point clouds is a useful way to extract objects in training-based pedestrian-detection methods [24].
However, searching with sliding windows in whole point clouds results in a large amount of
computation. The distance relationship between point clouds can also be utilized to perform 3D
clustering [25,26]. The purpose of clustering is to segment point clouds based on their characteristics.
For example, in Reference [25], a radially bounded nearest neighbor (RBNN) algorithm is proposed to
cluster the point clouds. RBNN is easy to implement and segments point clouds based on their
relative spatial position. However, RBNN uses a fixed spherical radius to search for neighbor
points. For adjacent objects, such as multiple pedestrians gathering together, its segmentation

Electronics 2019, 8, 780 5 of 19

performance is poor. Undersegmentation occurs and makes multiple pedestrians group into one
segmentation. To solve the above problems, a clustering method based on KDE is proposed to extract
candidate pedestrians.

2.2.1. Hierarchical Segmentation

Hierarchical segmentation uses scanning breakpoints in each layer to segment the point clouds.
The distance between adjacent points pi−1 and pi is compared with the threshold in Equation (1).

ηseg=ε× r× sin(α) (1)

where ε is a constant, r denotes the distance between the point and Lidar and α expresses the horizontal
scanning angular resolution of the Lidar. If the distance between pi−1 and pi is smaller than ηseg,
points pi−1 and pi belong to the same segment. On the contrary, they are used as the end point and
start point of two segments. Subsequently, the above process is implemented on adjacent points pi
and pi+1. After comparing the distances in the scanning layer in order, the hierarchical-segmentation
results of all scanning layers C are obtained.

Next, geometric conditions are utilized to extract the candidate pedestrian segment. As shown in
Equation (2), lCi and wCi represent the length and width of the segment, respectively. ηped expresses
the pedestrian-size that is applied to extract the candidate pedestrian segmentation in single layer.

Cp = {Ci|lCi ≤ ηped, wCi ≤ ηped, Ci ∈ C} (2)

The clustering process is shown in Algorithm 1.

Algorithm 1 Hierarchical segmentation.

Input: P = (p1, p2, ..., pκ)
T , ε, α, ηped;

1: C = ∅, Cp = ∅, idxstart = 1;

2: for i = 2, ..., κ do
3: disi =

∥∥pi − pi−1
∥∥;

4: ηi
seg = ε · ‖pi‖ · sin(α);

5: if disi > ηi
seg then

6: Cs = {px|x = idxstart, ..., i− 1};
7: C = C∪Cs;

8: idxstart = i;
9: end if

10: end for
11: Cs = {px|x = idxstart, ..., κ};
12: C = C∪Cs;

13: for Ci ∈ C do
14: if lCi < ηped and wCi < ηped then
15: Cp = Cp ∪Ci;

16: end if
17: end for
Output: A set of candidate pedestrian clusters Cp in each scanning layer

2.2.2. Multilayer Fusion

Generally, pedestrians in road scenarios remain upright. The body of the pedestrian returns
multiple scanning layers. The accumulation of scanning points at the position of pedestrians is larger

Electronics 2019, 8, 780 6 of 19

than at the position of noise and other environmental objects. Therefore, KDE is utilized to calculate
accumulation probability. In each scanning layer, Gaussian distribution is established in geometric
center cp = (xp, yp) of candidate pedestrian cluster Cp. Clusters in multiple scanning layers are fused
to determine whether Cp is a disturbance in a single scanning layer or a columnar object that exists at
a similar position in each scanning layer. The probability function is

p(c) =
1

Ns

n

∑
p=1

ϕ(c− cp, w) (3)

Ns =
lN

∑
p=1

Np (4)

Np =

{
1, i f 0 < hlidar + r× tan(φp) < hped
0, else

(5)

where c = (x, y) denotes the coordinates of the points in the x − y plane, n denotes the number
of clusters in Cp, w is the window length that depends on pedestrian size and Ns can be regarded
as the theoretical number of scanning layers returned by a pedestrian. lN is the total number of
scanning layers. Φ = {φ1, ..., φN} represents the pitch angle corresponding to each scanning layer.
hped denotes the average pedestrian height. In Equation (3), ϕ(·) denotes the probability density
function of Gaussian distribution.

ϕ(c, w) =
1

(2π)d/2wd |Σ|1/2 exp(−cTΣ−1c
2w2) (6)

where Σ is a covariance matrix and the identity matrix is utilized in this paper [17]. It is considered
that the coefficient in Equation (6) is a constant; the equation can be simplified to the following form.

p(c) =
1

Ns

n

∑
i=1

exp(− (c− ci)
T(c− ci)

2w2) (7)

After fusing multiple layers, a local extreme value appears at the position of upright pedestrians.
The mean shift algorithm in Reference [27] was utilized to extract the position of the local maxima.

It is assumed that the obtained positions of the m local maximum values are expressed by
Ppeak = {p1, ..., pm}, pi = (fpi, xpi, ypi), where fpi is the probability of the ith extremum, whose position
is represented by (xpi, ypi). The positions of candidate pedestrians are selected from the positions of
probability values that are greater than a preset threshold. The positions of the selected γ maximum
extremums are denoted by Pp =

{
p1, ..., peakγ

}
. With the local maximum position as the center,

the point clouds of candidate pedestrian cped are extracted according to the probable pedestrian size.

All candidate pedestrian clusters are expressed as Cped =
{

c1
ped, ..., cγ

ped

}
.

2.3. Template Matching

2.3.1. Projection-Image Generation

For each candidate pedestrian cluster ci
ped in Cped, principal component analysis (PCA) [28] was

implemented to determine the main plane and local coordinate system. The plane determined by
eigenvectors corresponding to the two large eigenvalues is defined as the main plane of the pedestrian
point clouds. In these two eigenvectors, the eigenvector that has the smallest angle with vector (0, 0, 1)
is defined as the z′ axis and another is defined as the y′ axis. The eigenvector corresponding to the
smallest eigenvector is the x′ axis. As shown in Figure 2, Oxyz is the Lidar coordinate system. O′x′y′z′

is the local coordinate system in which the pedestrian is located. O′y′z′ denotes the main plane of the

Electronics 2019, 8, 780 7 of 19

pedestrian. Ox′y′z′ is the coordinate system that has the same origin as Oxyz and each coordinate
axis of Ox′y′z′ is parallel to coordinate system O′x′y′z′. (x, y, z), (x′, y′, z′) and (x′′, y′′, z′′) represent
the coordinates in Oxyz, O′x′y′z′ and Ox′y′z′, respectively. The coordinate transformation from Lidar
coordinate system Oxyz to local coordinate system O′x′y′z′ is as follows [14].

O'

x'

y'

z'

O'x'
y'

z'

z
x

y
O

Figure 2. Pedestrian-detection coordinates. Oxyz, Lidar coordinate system; O′x′y′z′, local coordinate system.

 x′′

y′′

z′′

 =

 cos(ψox′ ,ox) cos(ψox′ ,oy) cos(ψox′ ,oz)

cos(ψoy′ ,ox) cos(ψoy′ ,oy) cos(ψoy′ ,oz)

cos(ψoz′ ,ox) cos(ψoz′ ,oy) cos(ψoz′ ,oz)

 x

y
z

 (8)

 x′

y′

z′

 =

 x′′ −O′x
y′′ −O′y
z′′ −O′z

 (9)

where ψ denotes the angle between the two axes; and O′x, O′y and O′z represent the x, y and z coordinates
of point O′, which is determined by the geometric center of the candidate pedestrian cluster.

After transforming the coordinates of clusters in the Lidar coordinate system to the local coordinate
system, the point clouds are projected onto the main plane. As shown in Figure 2, O′y′z′ is the main
plane, in which the grid is divided with a fixed length in the direction of the y′ and z′ axes. In each
grid, the minimum distance of the points to the main plane is regarded as the pixel value. If there are
no points in the grid, the pixel value is set to 0. Figure 3c is the projection result of point clouds in
Figure 3b.

(a) (b) (c) (d)

Figure 3. Projection-image generation. (a) Pedestrian optical image; (b) corresponding point clouds;
(c) projection image generated by projecting point clouds onto main plane; (d) result of morphological
processing on (c).

Since the Lidar discretely collects 3D points , the projection image obtained in Figure 3c is a discrete
range image. The discrete image is filled into a complete contour image by using morphological

Electronics 2019, 8, 780 8 of 19

processing, such as morphological expansion and hole filling. Subsequent feature extraction and
template matching are implemented in the projection image like Figure 3d.

2.3.2. Feature Extraction

As shown in Figure 3d, the projection image of pedestrian point clouds shows a clear pedestrian
outline that can clearly distinguish the shape of the pedestrian’s head, waist, arms and legs by visual
observation. The features from the contour of objects can be extracted to build the template for
matching. The locally adaptive regression kernel (LARK) feature can estimate the contour of an object
by calculating the similarity of the current pixel with its surrounding pixels. It has achieved success in
the field of face detection [29,30]. The LARK feature of pixel x is calculated as follows.

K(xl − x, Σl) =

√
det(Σl)

2πh2 exp(− (xl − x)TΣl(xl − x)
2h2), l = 1, ..., P2 (10)

The local window is established with x as its center and P as the length of the window. There are
P2 pixels in total in the local window. The pixel coordinates in the local window are denoted as
xl = (x1, x2)

T , h denotes the smoothing parameter, Σl represents the covariance matrix calculated by
the spatial gradient vectors in a local window of x. The calculation of Σl is as follows [31].

Σl =

 ∑
xj∈wl

gx1(xj)gx1(xj) ∑
xj∈wl

gx1(xj)gx2(xj)

∑
xj∈wl

gx2(xj)gx1(xj) ∑
xj∈wl

gx2(xj)gx2(xj)

 (11)

where wl represents the local window of xl . gx1(·) and gx2(·) are the first derivatives in the x and
y directions.

For each pixel in the projection image, Equations (10) and (11) are utilized to extract LARK features
Ki ∈ RP×P. Subsequently, the LARK feature is normalized as a column vector li ∈ RP2×1. The LARK
vectors of all pixels constitute the LARK matrix of image

L = [l1, ..., li, ..., lM] ∈ RP2×M, (12)

where M is the pixel number of the projection image.

2.3.3. Cosine Similarity

The angle between the two vectors can be used to describe the difference between them.
After LARK feature extraction, cosine similarity is utilized to characterize the matching degree between
the template feature matrix and the feature matrix of the candidate pedestrian. Cosine similarity is
widely used in many fields [32,33]. The cosine similarity of LARK matrices is defined as follows

ρ(Ltest, Ltemp) =
M

∑
i=1

(li
test)

Tli
temp

‖Ltest‖F
∥∥Ltemp

∥∥
F

, (13)

where Ltest is the LARK feature matrix of the candidate pedestrian and Ltemp is the LARK feature
matrix of the template. M is the column number of the feature matrix, which is the number of pixels in
Equation (12). li

test and li
temp are the ith column vector of the corresponding kernel matrix, respectively.

‖·‖F denotes the Frobenius norm.

2.4. Pedestrian Detection

A pedestrian-detection algorithm based on STM-KDE is proposed in this paper. The algorithm
used only one template to detect pedestrians in the whole frame of point clouds without a large
number of training data. The algorithm process is shown in Algorithm 2.

Electronics 2019, 8, 780 9 of 19

Algorithm 2 Pedestrian-detection method based on single template.

Input: Pw = (p1, p2, ..., pn)
T , ηc, ηdet, Ltemp;

1: Pa = GroundFilter(Pw);

2: Pe = GridFilter(Pa);

3: Cped = CandidatePedestrianExtract(Pe, ηc);

4: for ci
ped ∈ Cped do

5: Ii = RangeImage(ci
ped);

6: Li
test = LarkExtract(Ii);

7: ρi = CosineSimilarity(Ltemp, Li
test);

8: if ρi > ηdet then
9: ci

ped ∈ ped;

10: else
11: ci

ped /∈ ped;

12: end if
13: end for
Output: Pedestrians point clouds.

The inputs of the algorithm include: original point clouds Pw, the LARK feature matrix of
template Ltemp, threshold of clustering ηc and the threshold of template matching ηdet. The output is
the detected pedestrian point clouds. Before detection, a pedestrian cluster with a complete contour
is manually extracted from the point clouds to establish the template, which is projected onto the
main plane to construct the template projection image. The template matrix of LARK feature Ltemp

is extracted from the projection image. Then, ground segmentation and grid filtering in Lines 1 and
2 are implemented to filter out ground points and tall buildings. Next, the clustering method based
on KDE is utilized to obtain candidate pedestrian ci

ped, which is shown in Line 3. After coordinate
transforming and main-plane projection, the LARK feature matrix is extracted from the projection
image with morphological processing. Cosine similarity is calculated to detect pedestrians with preset
threshold ηdet.

2.5. Comparing with Existing Methods

There are three important distinctions between the proposed STM-KDE algorithm and existing
pedestrian-detection methods. First, while the KDE-based method in Reference [18] uses the KDE
process twice to fuse the information for pedestrian detection, the proposed algorithm only uses
KDE once to fuse the central information of the segmentation results in multiple scanning layers for
pedestrian clustering, which reduces the amount of computation in this process.

Second, the single template-matching method was first utilized for face detection in optical
images [29]. This paper applies this detection idea to pedestrian detection with point clouds
and proposes the novel STM-KDE detection method that avoids the need for a large number of
training data.

Third, compared with existing methods, the proposed algorithm solves the problem of
neighboring pedestrian detection with the combination of KDE clustering and LARK contour feature
matching, which avoids the problems caused by sliding-window processing or undersegmentation.

2.6. Computation Complexity

The complexity of the proposed STM-KDE detection method is analyzed in this section.
The detection method mainly includes two stages: the candidate pedestrian extraction and pedestrian
detection with single template.

Electronics 2019, 8, 780 10 of 19

For candidate pedestrian detection, it is assumed that there are totally n point clouds and m
hierarchical segmentations with k point clouds in the scenario. The complexity of Hierarchical
segmentation is O(n). Since only center position is utilized to extract the candidate pedestrian,
the complexity of KDE-based segmentation is O(m), m < k < n.

For pedestrian detection with single template, since the LARK feature is extracted for each pixel,
therefore, the complexity of single template matching process is r×O(m) as r denotes the pixel number
of the projection image. By integrating the computation of the two processes, the total complexity of
the STM-KDE is O(n) + O(m) + r×O(m) = O(n).

While in Reference [18], there are two-stage of KDE process and the complexity of the first-stage
KDE process is the sum of O(n) and O(k). The complexity of the second-stage KDE is O(c) with c is
the number of selected cluster center in each scanning layer, c < n. Therefore, the total complexity of
the KDE-based detection is O(n) + O(k) + O(c) = O(n).

In conclusion, the total complexities of the two methods have the same order of magnitude.
The proposed detection method does not improve the computational complexity comparing with
existing method.

3. Results

KITTI datasets [34] were used to verify the detection efficiency of the proposed STM-KDE
algorithm. The 0047 and 0016 datasets were used in the experiments. In the 0047 dataset, the vehicle
was driving in the campus and the Lidar was on a mobile platform. The optical image of the scenario
is shown in Figure 4a. The sensor platform in the 0016 dataset was static. The sensor was fixed at the
road junction in the campus, where there was a large number of pedestrians. The scenario is shown in
Figure 4b. Since these two datasets did not provide pedestrian ground truth, we manually labeled the
position of each pedestrian. The 0047 dataset contained 31 frames of point clouds and a total of 118
pedestrians. The 0016 dataset contained 186 frames of point clouds and a total of 2174 pedestrians in
the scenario.

Three experiments were implemented in the paper. The size of grid filtering lgrid was set to
0.2 m. Since the segmentation in Hierarchical segmentation is a rough selection process for candidate
pedestrians, ε was set to 20. Thresholds in grid filtering ηn and pedestrian clustering ηped, ηc were set
to 4 and 0.8 m and 0.4 m, respectively, considering the distribution of the point clouds and the size of
the pedestrians.

(a)

(b)

Figure 4. Scenario optical images: (a) 0047 and (b) 0016 dataset.

3.1. Clustering

In this section, some areas in the 0016 dataset were utilized to verify the efficiency of the proposed
clustering based on KDE. The areas were close to the Lidar. The point clouds were relatively dense
and many pedestrians gathered in these areas. In the original point-cloud coordinate system, the x and

Electronics 2019, 8, 780 11 of 19

y range of the selected areas were at x ∈ [0, 20] (m) and y ∈ [−7, 13] (m), respectively. Since there was
no ground truth provided, the clustering results are qualitatively described.

Figure 5 shows the clustering results selected every 10 frames. The first column represents the
original point clouds. The second column shows the RBNN clustering results, in which the radius
of the sphere was set to 0.5 m. The third column is the results of the proposed KDE clustering.
Only the extracted candidate-pedestrian clusters are shown in the results. In Figure 5, different types
of point-cloud clusters are represented by different colors.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5. Clustering results. Images in the first column are the original point clouds. Results in the
second column are clustering with radially bounded nearest neighbor (RBNN). The results in the third
column are the clustering with kernel density estimation (KDE). (a) Original point clouds (Frame 1);
(b) RBNN (Frame 1); (c) KDE (Frame 1); (d) original point clouds (Frame 11); (e) RBNN (Frame 11);
(f) KDE (Frame 11); (g) original point clouds (Frame 21); (h) RBNN (Frame 21); (i) KDE (Frame 21);
(j) original point clouds (Frame 31); (k) RBNN (Frame 31); (l) KDE (Frame 31).

As shown in Figure 5, the clustering results of the proposed KDE method are more accurate for
the clustering of gathering pedestrians. In the black box 1 in Figure 5b,c, there are four pedestrians

Electronics 2019, 8, 780 12 of 19

in total. With the RBNN algorithm, there are three pedestrians among them are undersegmented (in
orange points). While the KDE-based clustering method could segment the four gathering pedestrians
well. The similar results are shown in box 2. With KDE-based clustering, the two pedestrians are
segmented well. However, it is worth noting that if the pedestrians stood within a close distance
and there was occlusion in the scenario, neither algorithm could accurately segment the pedestrians,
as shown in the black box of Figure 5e,f. Therefore, it can be seen that pedestrian size is small and at the
same time occlusion often happens in the environment, which causes many difficulties for subsequent
pedestrian detection.

3.2. Template Matching

The density of Lidar point clouds decreases with the increase of distance due to Lidar’s scanning
characteristics. In real scenarios, pedestrians may encounter occlusion, which leads to the reduction of
returned point clouds. Figure 6 shows the projection image of pedestrians with different numbers of
point clouds and their cosine similarities with the template. The pedestrians are extracted in different
positions based on the ground truth. Some pedestrians that are occluded by obstacles are split into
multiple small areas, like Figure 6b,d,e. As shown in Figure 6, with the number of point clouds
increasing, the contour of pedestrians is gradually completed and similarity is also higher. When a
pedestrian is occluded, as shown in Figure 6b,d,e, occlusion causes the contour to be missing and
reduces similarity between pedestrian and template.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. Projection image with different number of point clouds. Numbers in parentheses indicate
cosine similarities. (a) Five points (0.36); (b) 10 points (0.38); (c) 15 points (0.46); (d) 22 points (0.49);
(e) 26 points (0.53); (f) 30 points (0.54); (g) 35 points (0.58); (h) 40 points (0.59); (i) 43 points (0.61);
(j) 49 points (0.62).

Electronics 2019, 8, 780 13 of 19

Figure 7 shows the statistical relationship between the number of point clouds and cosine
similarity. Each red point in Figure 7a represents a test sample. Figure 7b shows a curve of the similarity
variation trend with the number of point clouds. The x-coordinate of the curve is quantization value X
of number of point clouds x using Equation (14), in which s is the quantization unit. For pedestrians
that are quantized to the same value, similarity is calculated by their mean value. It is assumed that
the samples are denoted by (X, Y), in which X = x1, ..., xn represents the set of point clouds numbers,
Y = y1, ..., yn represents the set of cosine similarities between the samples and the template. Then X is
quantified to X with Equation (14) and the cosine similarities of the obtained same quantified X are
averaged to Y. Figure 7b shows the relationship of (X , Y). As can be seen from Figure 7, similarity
gradually increases with the increase of number of point clouds.

X =
⌈ x

s

⌉
× s (14)

Figure 8 shows similarity variation with pedestrian distance. Figure 8a shows the similarity and
pedestrian distance of each test sample. Figure 8b shows the curve of similarity and quantized distance,
which is obtained by using the same quantified process as Figure 7b. Similarity gradually decreases
with the increase of distance. In summary, it can be seen that a template-based detection method can
obtain good matching results at close distance with dense point clouds.

Number of point clouds
0 50 100 150 200

C
os

in
e

si
m

ila
rit

y

0

0.2

0.4

0.6

0.8

(a)
Number of point clouds

0 20 40 60 80 100

C
os

in
e

si
m

ila
rit

y

0

0.2

0.4

0.6

0.8

(b)

Figure 7. Relationship between number of point clouds and cosine similarity. (a) Relationship between
number of point clouds and similarity for each sample. (b) Statistical curve of relationship between
quantized number of point clouds and average similarity.

Distance(m)
0 10 20 30 40

C
os

in
e

si
m

ila
rit

y

0

0.2

0.4

0.6

0.8

(a)
Distance(m)

0 10 20 30 40

C
os

in
e

si
m

ila
rit

y

0

0.2

0.4

0.6

0.8

(b)

Figure 8. Relationship between pedestrian distance and cosine similarity. (a) Relationship between
distance and similarity for each sample. (b) Statistical curve of relationship between quantized distance
and average similarity.

Electronics 2019, 8, 780 14 of 19

3.3. Pedestrian Detection

The pedestrian-detection method in Reference [18] and single template matching with RBNN
(STM-RBNN) were utilized to compare detection efficiency. A receiver operating characteristic (ROC)
curve was adopted to evaluate pedestrian-detection performance with detection rate and false-alarm
number. The calculation of the detection rate is in Equation (15).

RD =
NP

NPA
, (15)

where NP denotes the number of detected pedestrians and NPA represents the total number of
pedestrians in the scenarios.

Figure 9 shows the ROC curve of pedestrian detection in the range of 50 m. The black solid
line shows the performance of the STM-KDE algorithm. The blue dash-and-dotted line shows the
performance of the STM-RBNN algorithm. The red dotted line is the results of Gidel’s method
based on KDE. It can be seen that, under the same false-alarm number, the detection rate of the two
STM-based methods achieves better performance than the method based on KDE. The KDE-based
pedestrian-detection method models upright pedestrians as cylinders and regards objects with high
probability as candidate pedestrians. However, there are many objects that have a similar size to
pedestrians in the scenario, such as street signs and mailboxes. Figure 10 shows a detection example
of objects that may cause false alarms. Figure 10a is the optical image of the scenario. The object in
the blue circle is a street sign that has similar height to a pedestrian. Detection results are shown in
Figure 10b,c. The STM-based method can distinguish the object, while the KDE method detects it
as a pedestrian. In addition, a tree trunk in the bush was wrongly detected as a pedestrian with the
KDE-based method. Therefore, the KDE-based pedestrian-detection method is more suitable in simple
scenarios with fewer columnar targets.

Number of false detection
0 200 400 600 800 1000

D
et

ec
tio

n
ra

te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

STM-KDE
STM-RBNN
KDE-based method

Figure 9. Receiver operating characteristic (ROC) curve in the range of 50 m.

Electronics 2019, 8, 780 15 of 19

(a)
(b) (c)

Figure 10. Detection results of objects that may cause false alarms. (a) Scenario optical image.
(b) Detection results with single template matching. (c) Detection result with the KDE-based method.

In Figure 9, it can also be concluded that the detection rate of the STM-RBNN algorithm is higher
than that of STM-KDE in the case of low false alarms. The reason is that RBNN clustering results for
most of the objects in the environment were good, though undersegmentation may occur when objects
are close to each other. In KDE clustering, some point clouds of walls and street signs in special angles
may be accumulated and extracted as candidate pedestrians, which produces false alarms. However,
with threshold decrease, the STM-KDE algorithm achieves a higher detection rate. The reason that
limits the detection rate with RBNN clustering is that there were many gathering pedestrians in the
scenario, which made them undersegmented with RBNN clustering and filtered them out.

According to the ROC curve, appropriate thresholds were selected to show the statistics of
pedestrian-detection results in different distances. Equations (16) and (17) were used to evaluate
detection performance, in which the precision P indicates the ratio of the number of correct detections
to the total number of detections and the recall R indicates the ratio of the number of correct detections
to the total number of targets.

P=
TP

TP + FP
, R =

TP
TP + FN

, (16)

F1 =
2PR

P + R
, (17)

where TP, number of true detections; FP, number of false alarms, FN, number of missing detections. F1

score is the harmonic average of precision P and recall R and it is a comprehensive measure of detection
results. Generally, the higher the F1 score is, the better the detection performance of the algorithm
is. The probability threshold in the KDE-based detection method was set to ηKDE

det = 0.6. The cosine
similarity thresholds in STM with RBNN and KDE clustering were set to ηST

det = 0.6. Detection results
in the range of 15 m, 25 m and 50 m are listed in Tables 1–3, respectively.

Table 1. Pedestrian detection in the range of 15 m.

Algorithm Datasets Total
Number

Truely
Detected

False
Alarms Precision Recall F1 Score

KDE-based method
0016 852 579 23 96.2% 68.0% 0.80
0047 30 22 11 66.7% 73.3% 0.70
Total 882 601 34 94.6% 68.1% 0.79

STM-RBNN
0016 852 427 77 84.7% 50.1% 0.63
0047 30 29 10 74.4% 96.7% 0.84
Total 882 456 87 84.0% 51.7% 0.64

STM-KDE
0016 852 629 34 94.9% 73.8% 0.83
0047 30 28 14 66.7% 93.3% 0.78
Total 882 657 48 93.2% 74.5% 0.83

Electronics 2019, 8, 780 16 of 19

Table 2. Pedestrian detection in the range of 25 m.

Algorithm Datasets Total
Number

Truely
Detected

False
Alarms Precision Recall F1 Score

KDE-based method
0016 1591 890 27 97.1% 55.9% 0.71
0047 100 90 33 73.2% 90.0% 0.81
Total 1691 980 60 94.2% 58.0% 0.72

STM-RBNN
0016 1591 711 27 96.3% 44.7% 0.61
0047 100 97 18 84.3% 97.0% 0.90
Total 1691 808 45 94.7% 47.8% 0.64

STM-KDE
0016 1591 945 38 96.1% 59.4% 0.73
0047 100 97 23 80.8% 97.0% 0.88
Total 1691 1042 61 94.4% 61.6% 0.75

Table 3. Pedestrian detection in the range of 50 m.

Algorithm Datasets Total
Number

Truely
Detected

False
Alarms Precision Recall F1 Score

KDE-based method
0016 2174 962 1106 46.5% 44.3% 0.45
0047 118 97 59 62.2% 82.2% 0.71
Total 2292 1059 1165 47.6% 46.2% 0.47

STM-RBNN
0016 2174 731 196 78.9% 33.6% 0.47
0047 118 98 21 82.4% 83.1% 0.83
Total 2292 829 217 79.3% 36.2% 0.50

STM-KDE
0016 2174 965 313 75.5% 44.3% 0.56
0047 118 102 26 79.7% 86.4% 0.83
Total 2292 1067 339 75.9% 46.6% 0.58

As can be seen in Tables 1–3, as the distance of the Lidar and the objects increases, the F1 score of
the three detection algorithms decreases to different degrees, which shows that pedestrian-detection
efficiency has a decreasing trend. As distance increases, the number of point clouds returned by
the pedestrian decreases and the contour of pedestrian gradually blurs, which causes a lot of miss
alarms. At the same time, due to sparse point clouds in distant areas, the contour difference between
pedestrians and other columnar objects may be reduced, resulting in many false alarms.

In addition, as can be seen from the results, in the range of 25–50 m, the detection performance
of the KDE-based method obviously increases. The number of detections increases from 980 to 1059,
while the detection number of STM-KDE only increased from 1042 to 1067. From Figures 7 and 8, it can
be seen that cosine similarity decreases as the number of point clouds decreases, which makes detection
more difficult. In the 50 m range, the number of false alarms of the two STM-based algorithms was
217 and 339, respectively, while the false-alarm number of the KDE-based number was increased to
1165. Therefore, compared with the KDE-based algorithm, the STM-based algorithm has a significant
suppression effect on false alarms.

Since the moving speed of pedestrians is slow, and the safety of pedestrians who are closer to
vehicles is more threatened by vehicles, pedestrian detection in close areas is more significant for
environmental perception. Figure 11 shows the ROC curve in the range of 15 m. The KDE-based
method performs well in the case of low false alarms. However, it cannot distinguish between upright
pedestrians and columnar objects. The low detection threshold leads to a high detection rate but at the
same time brings many false alarms, which limits the improvement of the detection rate. It can be seen
from Figure 5 that RBNN clustering cannot accurately segment gathering pedestrians, so improvement
of the detection rate is also limited. The STM-KDE algorithm could solve the problem of point-cloud
segmentation and it has good detection performance for pedestrians in close distances.

Electronics 2019, 8, 780 17 of 19

Number of false detection
0 50 100 150 200 250 300 350 400

D
et

ec
tio

n
ra

te

0

0.2

0.4

0.6

0.8

1

STM-KDE
STM-RBNN
KDE-based method

Figure 11. ROC curve in the range of 15 m.

3.4. Operation Time

All experiments in this work are implemented on a MacBook Pro with a 2.9 GHz Inter Core i5
CPU and 8 GB main memory. The MATLAB R2017b is employed to process the pedestrian detection
with KITTI datasets. The operation time in 0016 dataset is shown in Table 4. Each process is calculated
seprately. There are totally 31 frames of point clouds in 0016 dataset. The algorithm will detect a total
of 583 candidate pedestrians in the scenarios, from which the real pedestrians are finally determined.

Table 4. Operation time of the pedestrian detection.

Total
Time

Time/
Frame Read Data Preprocessing Scan Layer

Mark Cluster Template
Match

Cluster
Number

Detection/
Cluster

28.4 s 916 ms 248 ms 1791 ms 242 ms 11231 ms 11831 ms 583 48 ms

As shown in Table 4, in the consumed 28.4 s, there are 248 ms to read the point clouds and 242 ms to
mark the layer index, which is caused due to processing the data in MATLAB platform. After removing
the consuming time of data reading and scan layer index marking, it takes an average of 48 ms to detect
one cluster. With the advanced hardware platform and parallel computing, the detection method can
get real-time performance.

4. Conclusions

In this paper, a pedestrian-detection algorithm based on STM-KDE was proposed. The experiment
results show that the proposed algorithm can cluster gathering pedestrians well and effectively
distinguish pedestrians from other columnar objects. The main contributions of the paper are listed
as follows.

First, considering the size of pedestrians and gathering characteristics, the candidate-pedestrian
clustering method based on hierarchical segmentation and multilayer fusion can solve the segmentation
problem of gathering pedestrians. The KDE-based method can distinguish between columnar objects
and other structural objects in the scenario and reduce the searching region of pedestrian detection.

Second, the proposed single template-matching pedestrian-detection method can distinguish
upright pedestrians from other columnar objects in the scenario. The contour feature matrix is
established by projecting the point clouds on the main plane and constructing a projection image.

Electronics 2019, 8, 780 18 of 19

The proposed method applies the idea of template matching to pedestrian detection with point clouds,
which avoids model training with a large number of data.

Third, the proposed detection method does not improve the computation complexity on the basis
of improving the detection efficiency compared with existing detection method. With the advanced
hardware platform and parallel computing, the proposed detection will perform well in operation time.

The proposed algorithm still has the problem of a decrease in detection rate when point clouds
are sparse or occluded. In the future, point-cloud density enhancement and sensor fusion could be
applied to obtain more object information for better detection.

Author Contributions: K.L. presented the algorithm and wrote the paper; K.L. and W.W. analyzed the data.
W.W. and J.W. reviewed and revised the paper.

Funding: This research was funded by the National Natural Science Foundation of China under grant
No. 61771028.

Acknowledgments: The authors would like to thank the Jianqiang Wang of Tsinghua University for his
constructive suggestions on our manuscript. The authors are also grateful to the reviewers and editor for
their valuable comments and remarks to improve the quality of the contributions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ren, R.; Fu, H.; Wu, M. Large-Scale Outdoor SLAM Based on 2D Lidar. Electronics 2019, 8, 613. [CrossRef]
2. Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005

IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA,
USA, 20–25 June 2005; Volume 1, pp. 886–893.

3. Ouyang, W.; Zeng, X.; Wang, X. Single-Pedestrian Detection Aided by Two-Pedestrian Detection.
IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1875–1889. [CrossRef] [PubMed]

4. Hurney, P.; Waldron, P.; Morgan, F.; Jones, E.; Glavin, M. Review of Pedestrian Detection Techniques in
Automotive Far-Infrared Video. IET Intell. Transp. Syst. 2015, 9, 824–832. [CrossRef]

5. Inan, T.; Halici, U. 3-D Face Recognition with Local Shape Descriptors. IEEE Trans. Inf. Forensics Secur. 2012,
7, 577–587. [CrossRef]

6. Wang, R.; Xu, Y.; Sotelo, M.A.; Ma, Y.; Sarkodie-Gyan, T.; Li, Z.; Li, W. A Robust Registration Method for
Autonomous Driving Pose Estimation in Urban Dynamic Environment Using LiDAR. Electronics 2019, 8, 43.
[CrossRef]

7. Goodin, C.; Carruth, D.; Doude, M.; Hudson, C. Predicting the Influence of Rain on LIDAR in ADAS.
Electronics 2019, 8, 89. [CrossRef]

8. Zhao, J.; Xu, H.; Wu, J.; Zheng, Y.; Liu, H. Trajectory Tracking and Prediction of Pedestrian’s Crossing
Intention Using Roadside LiDAR. IET Intell. Transp. Syst. 2019, 13, 789–795. [CrossRef]

9. Arras, K.O.; Mozos, O.M.; Burgard, W. Using Boosted Features for the Detection of People in 2D Range
Data. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy,
10–14 April 2007; pp. 3402–3407.

10. Premebida, C.; Ludwig, O.; Nunes, U. Exploiting LIDAR-based Features on Pedestrian Detection in Urban
Scenarios. In Proceedings of the 2009 12th International IEEE Conference on Intelligent Transportation
Systems, St. Louis, MO, USA, 4–7 October 2009; pp. 1–6.

11. Kim, B.; Choi, B.; Yoo, M.; Kim, H.; Kim, E. Robust Object Segmentation Using A Multi-layer Laser Scanner.
Sensors 2014, 14, 20400–20418. [CrossRef]

12. Kim, B.; Choi, B.; Park, S.; Kim, H.; Kim, E. Pedestrian/Vehicle Detection Using a 2.5-D Multi-Layer Laser
Scanner. IEEE Sens. J. 2016, 16, 400–408. [CrossRef]

13. Tang, H.L.; Chien, S.C.; Cheng, W.H.; Chen, Y.Y.; Hua, K.L. Multi-cue Pedestrian Detection from 3D Point
Cloud Data. In Proceedings of the 2017 IEEE International Conference on Multimedia and Expo (ICME),
Hong Kong, China, 10–14 July 2017; pp. 1279–1284.

14. Li, K.; Wang, X.; Xu, Y.; Wang, J. Density Enhancement-Based Long-Range Pedestrian Detection Using 3-D
Range Data. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1368–1380. [CrossRef]

http://dx.doi.org/10.3390/electronics8060613
http://dx.doi.org/10.1109/TPAMI.2014.2377734
http://www.ncbi.nlm.nih.gov/pubmed/26353133
http://dx.doi.org/10.1049/iet-its.2014.0236
http://dx.doi.org/10.1109/TIFS.2012.2186293
http://dx.doi.org/10.3390/electronics8010043
http://dx.doi.org/10.3390/electronics8010089
http://dx.doi.org/10.1049/iet-its.2018.5258
http://dx.doi.org/10.3390/s141120400
http://dx.doi.org/10.1109/JSEN.2015.2480742
http://dx.doi.org/10.1109/TITS.2015.2502325

Electronics 2019, 8, 780 19 of 19

15. Stauffer, C.; Grimson, W.E.L. Learning Patterns of Activity Using Real-time Tracking.
IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 747–757. [CrossRef]

16. Benedek, C.; Gálai, B.; Nagy, B.; Jankó, Z. Lidar-Based Gait Analysis and Activity Recognition in a 4D
Surveillance System. IEEE Trans. Circuits Syst. Video Technol. 2016, 28, 101–113. [CrossRef]

17. Cui, J.; Zha, H.; Zhao, H.; Shibasaki, R. Laser-Based Detection and Tracking of Multiple People in Crowds.
Comput. Vis. Image Underst. 2007, 106, 300–312. [CrossRef]

18. Gidel, S.; Checchin, P.; Blanc, C.; Chateau, T.; Trassoudaine, L. Pedestrian Detection and Tracking in an
Urban Environment Using a Multilayer Laser Scanner. IEEE Trans. Intell. Transp. Syst. 2010, 11, 579–588.
[CrossRef]

19. Liu, K.; Wang, W.; Tharmarasa, R.; Wang, J. Dynamic Vehicle Detection With Sparse Point Clouds Based on
PE-CPD. IEEE Trans. Intell. Transp. Syst. 2019, 20, 1964–1977. [CrossRef]

20. Börcs, A.; Nagy, B.; Benedek, C. Instant Object Detection in LiDAR Point Clouds.
IEEE Geosci. Remote Sens. Lett. 2017, 14, 992–996. [CrossRef]

21. Liu, K.; Wang, W.; Tharmarasa, R.; Wang, J.; Zuo, Y. Ground Surface Filtering of 3D Point Clouds Based on
Hybrid Regression Technique. IEEE Access 2019, 7, 23270–23284. [CrossRef]

22. Giorgini, M.; Barbieri, F.; Aleotti, J. Ground Segmentation from Large-Scale Terrestrial Laser Scanner Data of
Industrial Environments. IEEE Robot. Autom. Lett. 2017, 2, 1948–1955. [CrossRef]

23. Wei, P.; Cagle, L.; Reza, T.; Ball, J.; Gafford, J. LiDAR and Camera Detection Fusion in a Real-Time Industrial
Multi-Sensor Collision Avoidance System. Electronics 2018, 7, 84. [CrossRef]

24. Jun, W.; Wu, T.; Zheng, Z. LIDAR and Vision Based Pedestrian Detection and Tracking System.
In Proceedings of the 2015 IEEE International Conference on Progress in Informatics and Computing
(PIC), Nanjing, China, 18–20 December 2015; pp. 118–122.

25. Klasing, K.; Wollherr, D.; Buss, M. A Clustering Method for Efficient Segmentation of 3D Laser Data.
In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA,
19–23 May 2008; pp. 4043–4048.

26. Chavez-Garcia, R.O.; Aycard, O. Multiple sensor fusion and classification for moving object detection and
tracking. IEEE Trans. Intell. Transp. Syst. 2015, 17, 525–534. [CrossRef]

27. Cheng, Y. Mean Shift, Mode Seeking, and Clustering. IEEE Trans. Pattern Anal. Mach. Intell. 1995, 17, 790–799.
[CrossRef]

28. Navarro-Serment, L.E.; Mertz, C.; Hebert, M. Pedestrian Detection and Tracking Using Three-dimensional
Ladar Data. Int. J. Robot. Res. 2010, 29, 1516–1528. [CrossRef]

29. Seo, H.J.; Milanfar, P. Training-Free, Generic Object Detection Using Locally Adaptive Regression Kernels.
IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1688–1704. [PubMed]

30. Wang, Y.; Wang, W. Face Detection Using Skin Color and Locally Adaptive Regression Kernels.
In Proceedings of the 2017 20th International Conference on Information Fusion (Fusion), Xi’an, China,
10–13 July 2017; pp. 1–8.

31. Takeda, H.; Farsiu, S.; Milanfar, P. Kernel Regression for Image Processing and Reconstruction.
IEEE Trans. Image Process. 2007, 16, 349–366. [CrossRef] [PubMed]

32. Wang, D.; Lu, H.; Bo, C. Visual Tracking via Weighted Local Cosine Similarity. IEEE Trans. Cybern. 2015,
45, 1838–1850. [CrossRef] [PubMed]

33. Pirlo, G.; Impedovo, D. Cosine Similarity for Analysis and Verification of Static Signatures. IET Biom. 2013,
2, 151–158. [CrossRef]

34. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision Meets Robotics: The KITTI Dataset. Int. J. Robot. Res. 2013,
32, 1231–1237. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/34.868677
http://dx.doi.org/10.1109/TCSVT.2016.2595331
http://dx.doi.org/10.1016/j.cviu.2006.07.015
http://dx.doi.org/10.1109/TITS.2010.2045122
http://dx.doi.org/10.1109/TITS.2018.2857510
http://dx.doi.org/10.1109/LGRS.2017.2674799
http://dx.doi.org/10.1109/ACCESS.2019.2899674
http://dx.doi.org/10.1109/LRA.2017.2715378
http://dx.doi.org/10.3390/electronics7060084
http://dx.doi.org/10.1109/TITS.2015.2479925
http://dx.doi.org/10.1109/34.400568
http://dx.doi.org/10.1177/0278364910370216
http://www.ncbi.nlm.nih.gov/pubmed/20634561
http://dx.doi.org/10.1109/TIP.2006.888330
http://www.ncbi.nlm.nih.gov/pubmed/17269630
http://dx.doi.org/10.1109/TCYB.2014.2360924
http://www.ncbi.nlm.nih.gov/pubmed/25423661
http://dx.doi.org/10.1049/iet-bmt.2013.0012
http://dx.doi.org/10.1177/0278364913491297
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Training-Based Methods
	Foreground and Background Segmentation Methods
	KDE-Based Method

	Materials and Methods
	Preprocessing
	Clustering Based on KDE
	Hierarchical Segmentation
	Multilayer Fusion

	Template Matching
	Projection-Image Generation
	Feature Extraction
	Cosine Similarity

	Pedestrian Detection
	Comparing with Existing Methods
	Computation Complexity

	Results
	Clustering
	Template Matching
	Pedestrian Detection
	Operation Time

	Conclusions
	References

