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Abstract: After decades of research, X-band marine radars have been broadly used for wind
measurement. For retrieving the wind direction based on the wind-induced streaks, a lot of effort
has been expended on three celebrated approaches—the local gradient method (LGM), the adaptive
reduced method (ARM), and the energy spectrum method (ESM). This paper presents a scientific
study of these methods. The contrast of retrieving the real measured marine radar images and vane
measured results is evaluated, in perspective of the error statistics and algorithm operation efficiency.
Interference factors, such as the historical information of the measured area, reference wind speed,
and sea condition showing in the monitoring equipment are also concerned. The tentative results
showed that LGM is robust, which can be implemented in most radar images, because it allows for a
lower selection of requirements compared with the other two methods. For ARM, the better retrieval
performance is a tradeoff with extra computation, which is expensive. ESM is superior to the other
two algorithms in terms of accuracy and computation load; however, this algorithm is sensitive in
rain-contaminated radar images, meaning it is a good choice for data post-processing in the lab.

Keywords: marine radar; wind direction retrieval; small wind streak; local gradient method; adaptive
reduced method; energy spectrum method

1. Introduction

A near-surface wind field is formed by the horizontal movement of air relative to the sea surface,
which is an important driving force for marine dynamics. Wind field parameters are imperative for
the safety of navigation and marine engineering, necessary for military activities such as vessels’
or ships’ voyages. Conventional wind direction measurement methods are classified into two
categories—site-based measurement and remote sensing. Site-based measurement can obtain ocean
wind direction information through a wind vane [1], however this method may be influenced by the
surrounding environment, such as platform movement or vile weather. Additionally, it is difficult
to mount a vane in a remote ocean area, and to have a wind field error of up to 10% [2]. At present,
remote sensing mainly depends on spaceborne/airborne microwave scatterometers [3], SARs [4], and
so on. These devices can capture a large area of ocean wind field information, however, as they are
restricted to a low spatial resolution, it is difficult for them to consistently monitor sea surface wind,
and they are vulnerable to weather or other defects at the same time [5].
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In order to make up for the deficiency existing in remote sensing measurement, low-cost marine
X-band radars, with the advantage of high resolution and timely feedback, have been broadly used in
many monitoring scenarios. X-band radar image sequences have previously been used to measure
two-dimensional wave spectra in order to retrieve sea wave components [6,7]. The image sequences of
the ocean surface can be utilized for target identification [8], detection [9], mean near-surface current
measurement [10], and current field measurement [11]. Specially, X-band radar image sequence is
becoming the state-of-the-art for wind field retrieving [12].

By operating at a low grazing angle, the transmitting signal can be reflected by the sea surface to
form backscatter, which is mainly caused by sea surface roughness. Both a long surface gravity and
local wind can modulate the roughness, thus generating radar images [13]. Particularly, small-scale
roughness is highly dependent on local wind; hence, the wind direction can be retrieved accordingly,
based on collecting marine radar images.

From a graphic perspective, the normalized radar cross section (NRCS), indicating an intensity
level of radar echo, keeps a high correlation with the wind speed and direction. NRCS has only one
peak in the upwind direction, and a minimum in the crosswind direction—simultaneously, it is an
exponential function of wind speed [14]. According to these characters, two key approaches are posed
for wind direction retrieval from X -band radar image sequences [15].

The first one is based on the relationship of NRCS and the radar look direction—this approach
necessitates the azimuth being equal or greater than 180◦, which is difficult to realize for shore-based
radars because of the sheltering of land [16]. Recently, Lund et al. [17] and Vicen Bueno et al. [18]
utilized the same principle to retrieve wind field information with independent platform movement.
However, the abovementioned two methods neglect the following crucial factors: in cases of low sea
states’ circumstances—the obstruction of the radar field and the appearance of islands—the wind
measurement errors will be increased [19]. Although the latter method has been improved by Ying
Liu et al. [19], it cannot be applied to local X-band radar images or to a sheltering of land greater than
180◦ [20].

The second approach is based on small-scale streaks modulated by the wind in radar images—the
determined wind directions as the orientations of the wind streaks that are approximately aligned with
the mean surface wind direction. A large amount of literature has proven that this method has the
advantage of high precision, fast operation, and is robust in a variety of circumstances, and it has thus
gradually dominated X-band sea environmental monitoring [21–23]. There are quite a few algorithms
for small-scale streak retrieving, including, but not limit to, the local gradient method (LGM), the
adaptive reduced method (ARM), the energy spectrum method (ESM), and the optical flow-based
motion (OFM). Because a wind field is in the presence of static signals as a result of the radar image
sequence, the outcome of the OFM algorithm has a lower accuracy that will not meet the demand of
an actual sea monitoring project [24]; thus, we dropped this approach for this paper. LGM needs to
iteratively smooth and subsample the wind streaks’ images three times in order to obtain a so-called
Gaussian pyramid. From each of these images, the local wind directions are computed using the
standard local gradient [25]. ARM puts forward an adaptive reduction operator, which means that the
algorithm can automatically select the reduction operator with a different step size according to the
judgment result, and the local wind directions are computed using the adaptive local gradient [26].
ESM is proposed for extracting the wind direction through wind streaks’ image energy spectrum—the
wind direction gained directly from the energy spectrum image based on the energy concentrated areas
perpendicular to the wind streaks [27]. To the authors’ knowledge, there is limited literature making an
explicit comparison of the three algorithms using real-time collected radar data. The main contribution
of this paper lies in that we, in detail, analyze and compare the three algorithms’ performance error
statistics and operating efficiency, and simultaneously consider the influence factors, which are helpful
and vital for engineering realization problems.

The data for analyzing and researching is gathered by the HEU wave monitoring system, which
is developed by the HEU marine monitoring research group [28,29]. The remainder of the paper
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is organized as follows. Section 2 presents a preliminary introduction of wind feature extraction
from a small-scale wind streak. In Section 3, we give a review and contrast of LGM, ARM, and ESM.
These methods are analyzed and discussed with the testing data in Section 4. Finally, we draw a
conclusion in Section 5.

2. Data and System Model Overview

The above-mentioned algorithms cannot be directly used for the collection of raw radar data,
as the mapped objective is a small-scale wind streak. This section will give an overview of the data
collection, and will introduce the data pre-processing in terms of rain recognition and image filtering,
in order to extract small-scale wind streaks initially.

2.1. Data Overview

The data used for testing was collected from the Pingtan General Testing Ground, an institution in
the south of Haitan Island, the Fujian Province of China. Haitan Island is the fifth largest Chinese sea
island, located between the Taiwan Strait and Haitan Strait. The average depth of the radar-measured
sea area is about 28 m; this area often happens in high-sea conditions due to terrain and strong storms.
The measured tidal level difference is up to 5 m, accompanied by an average wind speed of about
6.9 m/s. The average strong-wind (over seven level) days are nearly 125 days a year. Strong storms
happen about 6.3 times a year, which indicates that the ground is one of the strongest wind areas in
Fujian Province. The test site can provide abundant data for algorithm analyzing. Figure 1 shows how
the HEU wave monitoring system collects and records data at this site, in which a standard RM-1290
marine X-band radar is mounted on top of a platform tower.
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Figure 1. The testing site as well as the monitoring equipment.

The radar transceiver signal is replicated into triplet form—the replicated signal is sent to the data
acquisition unit, radar display unit, and data processing unit, respectively. For reference, another piece
of sophisticated equipment, WAVEX, works simultaneously, so as to measure the wave height and
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sea current direction. The X-band marine radar operates at a low grazing incidence with horizontal
polarization in the transmitting and receiving process—it belongs to a sort of shot pulsed radar with a
pulse width of 0.5–10 µs. The radar operates at 9.4 GHZ, with a sampling frequency of 20 MHz The
specifications detail of the RM-1290 marine radar are shown in Table 1.

Table 1. Specifications of the RM-1290 marine radar. HH—horizontally;
RF—radiofrequency; IF—infrared.

Antenna Rotating Speed 26+2
−6 rpm

Gain 28.5 dB
Polarization HH

Horizontal beam width ≤1.3◦ (antenna of 1.8 m)
Vertical beam width 23◦ ± 2

Radio frequency 9410 ± 30 MHz
RF pulse envelope width Short pulse: 0.05+0.03

−0.02 µs
Pulse repetition frequency Short pulse: 1300 (± 10%) Hz

RF pulse peak power Short pulse: ≥16 KW
Receiver IF bandwidth Short pulse: 20 ± 3 MHz

Distance resolution ≤23 m
Azimuth resolution ≤1.3◦

The radar antenna rotatory period is 2.5 s (24 rpm), with a pulse repetition frequency of 1.3 kHz.
Each of the radar-image sequences collected here consists of 32 images, with a time interval of 80 s.
Using the azimuth-range bin and scales data, the monitoring system digitizes the radar backscatter
intensity into a 14-bit, that is, digitized back-scatter intensity, in the range of 0 to 8192 (2(14-1)), as shown
at the right bottom corner in Figure 1.

2.2. Data Pre-Processing

Before using the radar data to retrieve the wind direction, a basic data pre-processing quality
control procedure should be conducted. The procedure includes the rain recognition and image filter.

2.2.1. Rain Recognition

All of the methods work only for rain-free radar images, which have to been automatically selected
depending on the rain recognition data pre-processing. Lund et al. [17] proposed using the zero-pixel
percentage (ZPP) in the whole radar image in order to identify the rainfall radar image. Considering the
influence of sea conditions on the statistical results, this paper will extend a method for rainfall image
recognition based on the statistical results of ZPP in the occlusion area of a radar image. The ZPP is as
follows:

P =
f0
f

(1)

where f is the total number of pixels in the radar image, and f0 is the number of normalized zero
intensity pixels.

No matter whether using a ship-based or shore-based navigation radar image, when the
propagation route of the radar electromagnetic wave is blocked because of obstacles such as a
chimney, mast, island, and so on, a large number of invalid signals will be generated in the radar
image, resulting in a fanned shadow area (shielding area) in the radar image. When there is no rain,
the shielding area is almost blue, and there is no radar echo. When there is rainfall, the raindrop can
reflect the radar electromagnetic wave signal and generate uniform backscattering, so that the blocking
area appears as flaky rain echo. As the zero-intensity percentage of the statistical occlusion area will
not be affected by the change of sea conditions, it will be more effective and accurate to detect whether
the radar image is affected by rainfall.
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Figure 2 shows the occlusion zero pixel proportion (OZPP) distribution of 200 radar images,
in which the selected radar region is 80–600 points in the radial direction, and 50–90 degrees in the
azimuth direction. The rectangular area in the figure is the data of the rainfall in the radar image.
As can be seen from the figure, when there is no rain, the OZPP basically maintains a stable change
range, very close to 1, because there is almost no radar echo at this time. When rainfall occurs, the
percentage of zero-intensity in the shielding area decreases immediately by a large margin. Finally,
according to the statistical results, 0.94 is selected as the threshold to detect whether the radar image
is affected by rainfall. When the OZPP is greater than 0.94, it indicates that there is no rainfall in
the detection area; when the OZPP is less than 0.94, it can be determined that there is rainfall in the
detection area.
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2.2.2. Image Filter

In order to effectively remove the influence of the same frequency, a small amount of rainfall, and
a small target on the radar image, it is necessary to filter the radar images to the extract the sea wind
direction. While a linear filter will alter the intrinsic features of the radar images, a nonlinear median
filter, which not only owns a superior denoising performance, but also has a protective effect on the
image detail features, is more preferable in this paper. Median filtering is implemented by overlapping
the slide window with the image; the gray value of the pixel in the window is arranged according to a
monotonic rise or monotonic fall. A median filtered image is obtained by traversing the slide window
over the entire image. It can be written as follows:

g(x, y) = median
{
f (x− i, y− j), (i, j) ∈W

}
(2)

where g(x, y) represents the filtered image, f (x− i, y− j) is the input image, and W represents the slide
window. According to the resolution of the input data, the size of W is determined to be 3× 3.

2.3. Small Scale Wind Streak Characteristics Extraction

Some streaks can form, evolve, and decay over relatively short lifetimes of only dozens of minutes,
and then rapidly regenerate—so, it is named “small-scale wind streak” [30,31]. The light and dark
stripes’ characteristics modulated by wind fields exist in marine radar images. The experimental results
show that the change of roughness caused by the turbulence of wind shear stress can be detected
by marine radar, and these results can be reflected on the radar image in a stripe distribution [32].
The relationship between the near-surface wind vector and NRCS can be described by a geophysical
model function (GMF), as described in [14]:

σ0 = A(θ)uγ(θ)(1 + B(u,θ) cos Φ + C(u,θ) cos 2Φ) (3)
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where σ0 and u represent the NRCS and wind speed, respectively; Φ means the angle between the
radar look and wind direction; and θ is the angle of grazing incidence. A, B, C, and γ, typically
determined by the radar frequency and polarization mode, are empirical parameters. It is well known
that NRCS represents the level of near-surface roughness, and the GMF model shows that there is a
high correlation with the wind field. Thus, wind streaks possessing same distribution characteristics
with near-surface roughness will exist in the X-band marine radar image. In other words, the wind
streaks characteristics are consistent with the stripe-like turbulence characteristics, and exist in the
marine radar image sequence, shown as light-, dark-, and small-scale forms. The visible streaks in the
radar images hover around 200 m to 500 m; these streaks have been shown to be well aligned with the
mean surface wind direction, with their frequency being close to static.

The small-scale wind streaks cannot be observed in a single radar image, because of the single
observation lasting for only a few seconds, whereas the small-scale wind streaks have static features.
The following formulation shows how to separate wind from other signatures according to the
small-scale wind streak evolving period. Firstly, integrate a set of radar-image sequences (typically, 32
images representing 80 s duration of data) over time, and then construct an image space low-pass filter
to average the radar image at the same position’s pixel points, as follows [33]:

f (θ, r) =

Nt∑
t=0

f (θ, r, t)

Nt
(4)

where f (θ, r) represents the sea surface static feature image, including the numbers of the small scale
wind streaks, which we are interested in; f (θ, r, t) is the single radar image at time t; θ and r are the
radar image azimuth angle and radial radius; and Nt is the sum of the sequence. In the following, we
will compare three kinds of sea surface wind retrieval algorithms based on f (θ, r).

3. Review and Illustration of LGM, ARM, and ESM

In this section, we firstly give a review of three different wind-direction retrieval methods of
the ocean surface based on small-scale wind streaks, and then a complexity comparison of the three
algorithms is discussed.

3.1. The Traditional LGM

Under the assumption that small-scale streaks are supposed to be approximately parallel with the
mean wind direction, LGM can retrieve the wind direction by using a space domain iterative to reduce
and smooth; the flow chart of LGM is shown in Figure 3.

The reduce process in Step 4 can be computed, depending on the Gaussian pyramid (GP), as
follows:

FG1 = C(↓2)F (5)

C(↓2) =
1
4

[
1 1
1 1

]
(6)

where C(↓2) is the GP reduce operator, and the subscript means that the sampling rate is 2. F denotes
the original image, and FG1 is the first-time reduced image. FG1 needs to be smoothed in order to filter
out the high-frequency signals, this process uses both fourth- and second-order Yang hui triangular
filter matrixes, as follows:

H4 =
1

256


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 16 4 1


H2 =

1
16


1 2 1
2 4 2
1 2 1

 (7)
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to formulate an operator for R = H2C(↓K)H
4, the image including the wind streaks (sea surface static

feature image) has firstly been denoted to be as follows: FR1 = RFG1; the smooth process does not
change the image resolution. For an equivalent of the wind steak scale, the upper entire process,
including reducing and smoothing, has to repeated three times, and finally, we obtain FR3.Electronics 2019, 8, x FOR PEER REVIEW 7 of 22 
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With FR3, the gradient direction of the wind streaks image can be calculated by applying the
optimized Sobel operator along the x and y axes. Then, we have WX = DxFR3 and WY = DYFR3, and
the optimized Sobel operator is as follows:

Dx = 1
32


3 0 −3

10 0 −10
3 0 −3


Dy = Dx

T

(8)

Hence, the main sea wind direction can be obtained by the normal main gradient direction.
Danker [21] has verified the effectiveness of this method, but he did not consider whether the
subsampled image resolution could march with the streaks scale or not. This may lead to a lower
accuracy, with some data being unavailable.

3.2. The Improved ARM

On the basis of the LGM algorithm, ARM uses an adaptive reduction operator, and this means
that ARM can automatically select the reduction operator based on the loop index of K, and then
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determine the dimension size of the slide window. The flow chart of ARM is shown in Figure 4. The
adaptive reduction operator is shown, as follows:

C↓K =
1
K


1
1
...
1


K

×
1
K
[ 1 1 · · · 1︸             ︷︷             ︸

K

] =
1

K2



1 1 · · · 1
1 1 · · · 1

1 1
. . .

...
1 1 · · · 1︸             ︷︷             ︸

K


K


(9)

where C(↓K) is the reduction operator of the reduced rate K; according to the marine radar resolution,
the rate can be determined as K= 2, 3, . . . 8, in which scope maximum value is 8. The flow chart of
ARM is shown in Figure 4. The reduce process using C(↓K) can be similarly computed, depending on
the Gaussian pyramid (GP), as follows:

FGK = C(↓K)F (10)

The image uses H4 to smooth before and after the reduction so as to filter out the high frequency noise,
and then formulate an operator for R = H2C(↓K)H

4; the image including the wind streaks has been
denoted to be FRK = RFGK, and the smoothing process does not change the resolution of the image.
For a match of the wind steak scale, the upper entire process, including the reducing and smoothing,
has to repeat N times, and then we obtain FRK. The gradient of each pixel along the x and y axes can be
written as follows: {

Wx = FRK ∗Dx

Wy = FRK ∗Dy
(11)

Thus, the gradient direction Wθ of each pixel is obtained, as follows:

Wθ = arctan
Wy

Wx
(12)

Histogram statistics were performed for all of the pixel gradient directions. From the probability
distribution map of the gradient direction, we could get the direction with the maximum frequency
Wθmax . In order to calculate the stability factor, we selected all of the gradient directions in the range of
λWθmax~Wθmax , where λ is a scale parameter, and can be chosen depending on the practical situation.
In this paper, we choose λ = 0.7, and the array of direction consisted of WP =

[
W1, W2, · · ·Wp

]
.

ARM uses an optimal reduction rate and stability coefficient to determine when the image
reduction process should stop. It is upon this that the reduced image resolution and scale of the
small-scale wind streaks can achieve the best ratio. The stability coefficient (η) can be calculated, as
follows:

η =

√
1

p−1
∑p

i=1

(
Wi −

1
p
∑p

i=1 Wi
)2

1
p
∑p

i=1 Wi
× 100% (13)

where, Wi is i-th pixel gradient value of the reduced image, i = 1, 2, 3, · · · p and p is the amount of
pixels. The stability coefficient (η) means the aggregation density of the gradient direction Wi; if η
is small, the distribution of gradient direction is dense, and vice versa. A dense gradient direction
can better reflect the wind streak information, while a sparse one indicates an implicit interference of
another signal. Figure 5 shows the reduction rate for the K = 2 and K = 7 gradient direction probability
distribution on a set of collected radar data. The maximum probability of the gradient direction is
0.012 when the reduction rate is K = 2. The maximum probability of the gradient direction is 0.025
when the reduction rate is K = 7. So, K = 7 is the optimal reduction rate in ARM. At the optimal
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reduction rate, the reduced image resolution more closely matches the small-scale wind streak. From
the data, it is shown that the ARM result for the wind direction is about 37◦, and the anemometer result
for the wind direction about 35◦.Electronics 2019, 8, x FOR PEER REVIEW 9 of 22 
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3.3. The New ESM

Unlike retrieving the wind direction in the spatial domain, the ESM algorithm is posed in order
to extract the wind direction through the SAR image energy spectrum. The flow chart of the ESM is
shown in Figure 6.
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The two-dimensional image is composed of sins and cosines signals with different frequencies,
amplitudes, and phases. Thus, the energy spectrum distribution of the 2D image can be obtained by
2D FFT. The mathematical model of the 2D FFT for the two-dimensional sea surface static feature
images, g(x, y), in Cartesian coordinates, is as follows:

F(kx, ky) =

Nx∑
i=1

Ny∑
j=1

g(xi, y j) exp[−i ∗ 2π(
xi ∗ kx

max(xi)
+

y j ∗ ky

max(y j)
)] (14)
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where, F(kx, ky) is the Fourier coefficient of g(x, y), (kx, ky) is the frequency domain coordinates, and Nx

and Ny are the pixel elements of g(x, y) in the space domain, respectively. In the formula, the complex
exponential term can be expanded as follows:

exp[−i ∗ 2π(
xi ∗ kx

max(xi)
+

y j ∗ ky

max(y j)
)] = cos 2π(

xi ∗ kx

max(xi)
+

y j ∗ ky

max(y j)
) + i sin 2π(

xi ∗ kx

max(xi)
+

y j ∗ ky

max(y j)
)

(15)
with the relationship of the wavenumber and wavelength (kx = 2π

max(xi)∗dx
and ky = 2π

max(y j)∗dy
,

respectively), dx and dy are the radial and amplitude resolution of the radar image, respectively. As
F(kx, ky) has both an imaginary and real part, using Equation (14), we can obtain the energy spectrum
A(kx, ky) of the static characteristic image, g(x, y), as follows:

A(kx, ky) =

√[
Re(F(kx, ky))

]2
+

[
Im(F(kx, ky))

]2
(16)

where Re(F(kx, ky)) is the real part of F(kx, ky), and Im(F(kx, ky)) is the imaginary part of F(kx, ky).
ESM uses a small-scale wind streak band-pass filter to extract the small-scale streak energy spectrum.
This band-pass filter can be shown as follows:

I(kx, ky) =

 A(kx, ky)(
√

kx2 + ky2 ∈ [|kd|, |kt|]),

0(else)
(17)

where I(kx, ky) is the energy spectrum of the wind streaks, and kd = 2π
Lt

is the wind streak energy
spectrum wave number low-limit, where Lt is the scale upper-limit. Similarly, kt =

2π
Ld

is the upper-limit,
where Ld is the scale low-limit. The small-scale wind streaks wave number energy spectrum is shown
in Figure 7.
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Figure 7. Small-scale wind streak energy spectrum. Figure 7. Small-scale wind streak energy spectrum.

As mentioned above, wind direction is retrieved based on the feature that small-scale streaks are
assumed to be approximately parallel with the mean wind direction. We can find that the connection
line of two energy concentrated areas is perpendicular to the wind streak, and then perpendicular
to the wind direction. Figure 8 shows the filtered wind streak energy spectrum from the previously
mentioned data set. The inner dotted circle represents the upper-limit, correspondingly, the outer
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circle represents the low-limit—both are labeled in this figure. The wind direction is perpendicular to
the connection line of two energy concentrated areas. From this calculation, it is possible to obtain
a vertical line of 36◦ and 144◦, with respect to the north direction, and the 180◦ ambiguity problem
was removed according to the quadrant comparison method. Therefore, this is an example of taking a
radar image sequence and applying ESM to obtain the wind direction of 36◦. It can be seen that the
ESM result is far more agreeable with the anemometer data.

Figure 8. Wind direction retrieved from the filtered wind streak ES.

3.4. Complexity Analysis

The ARM is an improved variant of the traditional LGM. It utilizes the stability coefficient to
judge the algorithm loop; recycles the adaptive reduction operator to reduce the image; and carries out
two rounds of smoothing, before and after reduction. LGM employs a fixed number of judgments
(three times); similarly, it applies a fixed two-order reduction operator to reduce the images, as well
as applying the same smoothing process. The time complexity of the LGM is 5O(1)(for the image
processing) plus O(n) (the gradient derivation), so the total algorithm complexity is O(n). As a result
of the increase in the calculation and cycle adaptive judgment, ARM takes longer than LGM; similarly,
the time complexity is calculated as kO(1) (k is random, with a maximum value of 8) plus O(n), and as
the ARM complexity equals LGM, both are O(n).

The new ESM is used on the frequency domain characteristics to retrieve the wind direction.
Compared with the other two methods, the computation time of ESM mainly lies in the two-dimensional
discrete FFT transformation; however, there is no need to calculate the smoothing and shrinking process
for each pixel in the image. At the same time, the small-scale wind band pass filter can be designed
to completely separate the small-scale wind streak from the static feature image of the sea surface.
Therefore, the information about the sea surface wind direction can be extracted more efficiently by
using the feature of a small-scale wind streak parallel to the sea surface wind direction. However, time
complexity of 2D FFT is O(MN log MN); in our algorithm, we made M = N = 128 (input image’s
resolution), so the entire time complexity comes down to O(N2 log N).

Because the pixel gradients calculated by the two spatial algorithms (LGM and ARM) do not
necessarily reflect the gradient directions of small-scale wind streaks, the inversion accuracy is not as
good as the ESM algorithm. Nevertheless, ESM has a higher requirement for the size of the experimental
area, and excessive measurement areas contain a lot of noise, which could increase the complexity of
the wind streaks, while small measurement areas lead to incomplete wind streaks that will destroy the
frequency domain characteristics of the wind steaks. In the application of ESM, experiments should be
applied so as to select the appropriate research area, which increases the complexity of the algorithm.
Additionally, the time complexity of EMS is a higher order than ARM and LGM, so this algorithm
computation would be sensitive to the input image, meaning it will increase sharply with the growing
input image resolution.

4. Testing and Results

4.1. Mathematical Metric for the Comparison

In order to measure the performance of the three inversion algorithms, this paper employs
a metric of data error to analyze the errors between the inversion and reference wind direction.
Let Xi be the time series of the inversion wind direction results, while Yi refers to the reference
wind direction time series, i = 1, 2 · · ·N is the number of navigation radar image sequences
used for the inversion of sea surface wind direction. We evaluated the performance of these
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algorithms by calculating the correlation coefficient, standard deviation, and bias between the
inversion and reference wind direction. The calculation formula of these parameters are as follows:

Ai = Yi −Xi Error between the single retrieval and reference wind direction

Bias = A = 1
N

N∑
i=1

Ai Average deviation of two sequences

Var = 1
N−1

(
N∑

i=1
A2

i −
Bias2

N

)
Mean variance of two sequences

σ =
√

Var =

√
1

N−1

(
N∑

i=1
A2

i −
Bias2

N

)
Standard deviation of two sequences

r =

N∑
i=1
(Xi−X)(Yi−Y)√

N∑
i=1

(Xi−X)
2
·

N∑
i=1
(Yi−Y)

2
Correlation coefficients of two sequences

where X = 1
N

N∑
i=1

Xi is the average value of the inversion wind direction, and Y = 1
N

N∑
i=1

Yi refers to

the average wind direction. Compared with the other parameters, r is much more powerful for
demonstrating the similarity between two sets of data, so in this paper, we choose r as the uniform
perform evaluation metric, while Bias and σ are simultaneously listed in following tables as the
contrasts of the different algorithms.

The comparison of the operating times of the three algorithms is the average inversion time
obtained by applying each algorithm to all of the data in the experiment. Because we focused on the
post data processing, all of the data were tested using MATLAB software. Suppose ti is one of the
operating time series, then average operating time is as follows:

T =

N∑
i=1

ti

N
(18)

4.2. Inversion Results

Figure 9 shows the comparison of the LGM and ARM wind direction from 180 sets of marine
radar image-sequences with reference wind directions. Because the two algorithms are both operating
in a space-domain, it would be feasible to put them together. The gray bars in the background are
the wind speed measured by the anemometer Model-05103. We found wind speed ranges between
1.2–19.4 m/s. The results of ARM are more consistent with the reference wind direction, as shown in
Figure 6, while the LGM curve shows a large jitter related to the reference wind direction, especially at
a lower wind speed case, as shown from sampling points 29 to 64 in Figure 8.
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It should be noticed that the discrepancy between LGM and the reference is larger than ARM.
LGM’s direction is always smaller than the reference in the numerical value, however, the results of
LGM maintain a good consistency with the reference wind direction. Although there is a little jitter in
the curve, it can quickly track the wind speed to get the ideal results. The comparison of LGM and
ESM is in Figure 10.
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It can be found that ESM contributes a similar performance to LGM, keeping an acceptable
fluctuation trend as with LGM, and it can also track the reference values.

Table 2 shows the statistics of the error and running time between the retrieved and reference
wind directions. From this information, in terms of the correlation coefficient, standard deviation, and
deviation relative to the reference wind direction, we found that ARM is better than LGM and ESM.
The correlation coefficient between ARM and the reference wind direction is 0.9956, which illustrates
that it has a good consistency with the vane wind direction. The LGM coefficient is slightly inferior
to ARM, while EMS establishes only 0.9523. At the same time, the mean differences and standard
deviation of ARM are better than for LGM and ESM. the inversion accuracy of LGM and ESM are
nearly the same. The last column of Table 2 shows that the average running times for processing a set
of 32 radar images are 38.3, 27.1, and 20.5 s, respectively. EMS has the fastest operation time, nearly
half that of ARM. From these results, we can conclude that ARM has a better retrieving accuracy
compared with LGM and EMS, at the cost of a longer running time. EMS demonstrates a time efficient
performance as a result of its spectrum character. LGM contributes a medium performance in the
two aspects.

Table 2. Error and running time statistics between the retrieved and reference wind directions.
ARM—adaptive reduced method; LGM—local gradient method; ESM—energy spectrum method.

Algorithm Reference Correlation
Coefficient r

Standard
Deviation σ (◦)

Deviation
Bias (◦)

Average Running
Time (s)

ARM results Vane measured
Wind direction 0.9956 7.62 −1.04 38.3

LGM results Vane measured
Wind direction 0.9832 17.33 1.18 27.1

ESM results Vane measured
Wind direction 0.9523 18.54 1.21 20.5

As ESM is sensitive to the measured area, for a deeper comparison of ARM and ESM, we picked
1494 sets of radar image sequences, and used both ARM and ESM to retrieve the wind direction, and to
optimize an appropriate measurement area. Figure 11 shows the results of ARM and ESM compared
with the reference wind directions. It can be found that both algorithms can provide satisfactory
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retrieving results in most cases, but a dramatic change exists with the reference wind directions between
points 500 to 630, and the wind direction using even ARM cannot accurately reflect the wind direction
fluctuation. In general, the ESM results are more identical to the reference, although there was always
some jitter present in the green curve. By contrast, ARM maintained the up- and down-trend, especially
when it comes upon an adverse wind direction, leading ineffective sampling points.

Electronics 2019, 8, x FOR PEER REVIEW 15 of 22 

 

ESM are nearly the same . The last column of Table 2 shows that the average running times for 
processing a set of 32 radar images are 38.3, 27.1, and 20.5 s, respectively. EMS has the fastest 
operation time, nearly half that of ARM. From these results, we can conclude that ARM has a better 
retrieving accuracy compared with LGM and EMS, at the cost of a longer running time. EMS 
demonstrates a time efficient performance as a result of its spectrum character. LGM contributes a 
medium performance in the two aspects.  

Table 2. Error and running time statistics between the retrieved and reference wind directions. 
ARM—adaptive reduced method; LGM—local gradient method; ESM—energy spectrum method. 

Algorithm Reference  
Correlation 
Coefficient 

r  

Standard 
Deviation σ   

(°) 

Deviation
Bias  (°) 

Average 
running 
time (s) 

ARM results Vane measured 
Wind direction 

0.9956 7.62 −1.04 38.3 

LGM results Vane measured 
Wind direction 0.9832 17.33 1.18 27.1 

ESM results  
Vane measured 
Wind direction 0.9523 18.54 1.21 20.5 

As ESM is sensitive to the measured area, for a deeper comparison of ARM and ESM, we picked 
1494 sets of radar image sequences, and used both ARM and ESM to retrieve the wind direction, and 
to optimize an appropriate measurement area. Figure 11 shows the results of ARM and ESM 
compared with the reference wind directions. It can be found that both algorithms can provide 
satisfactory retrieving results in most cases, but a dramatic change exists with the reference wind 
directions between points 500 to 630, and the wind direction using even ARM cannot accurately 
reflect the wind direction fluctuation. In general, the ESM results are more identical to the reference, 
although there was always some jitter present in the green curve. By contrast, ARM maintained the 
up- and down-trend, especially when it comes upon an adverse wind direction, leading ineffective 
sampling points. 

 

Figure 11. Results of the ARM and ESM algorithms compared with the reference wind directions. 

Figure 12 shows the retrieving error distribution of the ARM (subplot-a) and ESM (subplot-b). 
Both of the retrieval algorithms have greater errors at a reference wind direction about 150°, because 
of the influence of typhoons and rain, but the ARM wind direction error is superior to that of ESM. 
The ESM wind direction errors range between −50° to 50°, whereas they are only −20° to 20° for the 
ARM errors. It can be inferred from the results that ESM is sensitive to rain-contaminated data, and 
the outlier points enlarge the retrieval range error for the data considered here. 

Figure 11. Results of the ARM and ESM algorithms compared with the reference wind directions.

Figure 12 shows the retrieving error distribution of the ARM (subplot-a) and ESM (subplot-b).
Both of the retrieval algorithms have greater errors at a reference wind direction about 150◦, because
of the influence of typhoons and rain, but the ARM wind direction error is superior to that of ESM.
The ESM wind direction errors range between −50◦ to 50◦, whereas they are only −20◦ to 20◦ for the
ARM errors. It can be inferred from the results that ESM is sensitive to rain-contaminated data, and
the outlier points enlarge the retrieval range error for the data considered here.Electronics 2019, 8, x FOR PEER REVIEW 16 of 22 
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The statistics of the wind direction results’ error and average execution times for the 1494 datasets
utilizing the ARM and ESM algorithms are shown in Table 3. It is shown that with an appropriate
measured area, the results of ESM are superior to ARM in correlation, bias, and standard deviation,
although it appears to have many more outlier points in rain-contaminated circumstance compared
with ARM. The average running time of ESM is about 7 s less than that of ARM.

Table 3. Main statistical parameters and time of the ocean wind direction error.

Results Correlation
Coefficient r Deviation Bias (◦) Standard

Deviation σ (◦)
Average Running

Time (s)

ARM results 0.92 −5.66 22.32 25.2
ESM results 0.98 1.68 12.13 18.4
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4.3. The Influence Factors

It can be found that ARM performs better than LGM in most aspects. Meanwhile, the preceding
experimental results show that ARM and ESM are all in line with the engineering requirements for
accuracy and running time. In the following, we will discuss the key factors than can influence
algorithm performance, particularly for spatial-domain ARM and frequency-domain ESM, when using
real-time data.

4.3.1. The Influence of the Measurement Area Size

For testing the influence of the measurement area size for ARM and ESM, we choose data with
almost the same reference wind directions, wind speeds, and sea conditions, in order to make the
experiment immune to other factors of interference. WE selected 227 sets of radar image sequences
lasting 14 hours on 22 October 2010. In these data, the reference wind direction range was about
31◦–43◦, the reference wind speed range was about 13.3–19.6 m/s, the average wave height was 3.5 m,
and the average wave direction equaled 93◦.

The object region area had a radius ranging from 600 to 2100 m, and the azimuth direction
ranged from 106◦–69◦ anticlockwise. The measurement area was selected so as to be a square, with
a side length lower bound at 500 m and upper bound at 2100 m, because the wind streak scale was
200–500 m. Finally, we took three typical measurement areas of 1485 m × 1485 m, 960 m × 960 m, and
720 m × 720 m, in order to apply the real measured area data to test the influence of the measurement
area size.

The influence of the measurement area size on ARM and ESM is shown in Table 4. Here, ARM
shows the highest precision in the measurement area, at 1485 m × 1485 m, because ARM retrieves
the wind direction based on the small-scale wind streak spatial domain characteristics. The larger
the measured area, the more wind streaks, that will lead to the measurement areas have the higher
probability of the gradient direction. It demonstrates that if a large measurement area is available, the
ARM would be more preferable. It shows that ESM has the highest precision in the measurement area
of 960 m × 960 m from the table. Excessive measurement areas contain a lot of noise, which could
increase the complexity of the wind streaks, while small measurement areas lead to incomplete wind
streaks that will destroy the frequency domain characteristics of the wind steaks. Therefore, the ESM
algorithm requires the measurement area to be validated and preprocessed in order to guarantee its
performance. However, the average running time is less than that of ARM by about 6 s.

Table 4. Statistical parameters of wind direction considering different areas.

Measurement Area 1485 m × 1485 m 960 m × 960 m 720 m × 720 m

ARM results (◦)

Deviation(◦) 3.1 13.3 −20.7
standard deviation (◦) 13.2 15.1 27.7
Correlation coefficient 0.99 0.95 −0.95

Average running time (s) 24.4 24.3 23.7

ESM results (◦)

Deviation (◦) −4.4 −2.2 −4.9
Standard deviation (◦) 9.03 5.6 9.6
Correlation coefficient 0.99 0.99 0.99

Average running time (s) 18.8 18.2 16.8

4.3.2. The Influence of Sea Surface Wind Speed

Next, we began to investigate the influence of the sea surface wind speed on retrieving the wind
direction. By comparing the error of the wind direction results obtained from the 1494 sampling points,
the results of ARM and ESM are shown in Figure 13a,b, respectively.
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It can be found that both algorithms suffer large errors at about 500 sampling points, when the
reference wind speed decreased sharply from 15 to 5 m/s. The errors became bigger because the
small-scale wind streak was collapsed by the increasing ocean surface swell, due to the dramatic
changes in wind speed. However, the ESM is much more robust against the uncertain interference.
The main reason for this is that the ESM algorithm obtains the wind direction information from the
wind streak energy spectrum. The energy spectrum band pass filter removes other streaks’ features,
which helps to eliminate the influence of the increased wind speed. The ARM algorithm obtains the
wind direction information from the processing of small-scale wind streaks in the spatial domain, and
the scale of the wind streak increases with the wind speed growth; hence, the characteristics of the
reduced small-scale wind streak in the spatial domain will be lost as a result of the wind streak scale
increasing, so ARM has a low accuracy in this case.

4.3.3. The Influence of Significant Wave Height

To test the influence of the wave height on ARM and ESM, we compared the wind direction under
the data of the significant wave heights from 172 20-min long aligned sampling points of WAVEX.
As shown in Figure 14, the average significant wave height in the data was in the range of 1–5 m. It can
be found that the wind direction errors of both algorithms increased as the wave height increased.
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When the significant wave height was less than 2 m, the wind direction error of the ARM was greater
than ESM, but the acquisition point in this condition was too small to study. The wind direction error of
ARM keeps on increasing when the significant wave height is more than 2 m, while the wind direction
error of ESM is more stable in this case. The wind direction error of ESM has a slow growth, only when
the significant wave height is more than 4.5 m.
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In general, the sea surface is almost swelling when the effective wave height is lower, and the
wind field is relatively weak under this condition. The ESM algorithm seems to be more robust because
swelling cannot break the small-scale wind streaks of the sea-surface wind field. In contrast, when the
significant wave height is high, the sea surface is full of wind waves. It is easy to influence the ESM
algorithm, because the small-scale wind streaks are not clear. However, for ARM, the characteristic
image of the small-scale wind streak is obtained by the spatial domain reduction and filtering, once the
significant wave height is high with increasing winds, it can be inferred that the wind direction error
will increase, as the small-scale wind streak is collapsed.

4.3.4. The Influence of Near-Surface Current

To test the influence of the near-surface current on ARM and ESM, the near-surface current and
reference wind direction from 172 20-min aligned acquisition points of WAVEX are shown in Figure 15,
Figure 15a shows the relationship between the wind direction retrieving error and near-surface current,
while Figure 15b gives the retrieving error and reference wind directions. In the following analysis, we
considered the above-mentioned two factors at the same time. It should be noted that there were no
data for the shored-based near-surface current at 110◦–170◦, as well as no data for the reference wind
directions at 140◦–200◦.

It has been observed that the wind direction result errors have the most growth in the current
at 180◦ to 200◦, and in the reference wind direction at 0◦ to 50◦, and the lower errors appear in the
current at 60◦ to 120◦, and in the reference wind direction at 200◦ to 240◦. It is also shown that the
error becomes the largest when the current direction is identical to the reference wind direction and
is smallest in the opposite direction. For horizontally-polarized (HH-polarized) radars at grazing
incidence, the NRCS has only one peak in the upwind direction, and has minimum in the crosswind
direction. The influence of the sea-surface wind streaks’ characteristics is relatively strong when the
NRCS is a large value, further leading a severe wind retrieving error. From Figure 14, we find that the
sea-surface current has almost no impact on the two wind direction algorithms. Both algorithms can
retrieve a real-time wind direction, even in the varying near-surface current circumstances.
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5. Conclusions

In this paper, we studied three celebrated wind direction retrieving methods—LGM, ARM, and
ESM—based on small wind streaks extracted from X-band marine radar images. The data for the
analyses were collected by the HEU wave monitoring system, and an anemometer on the Chinese
South Coast, at Pingtan General Testing Ground. The contributions of this paper are that we give a
straightforward comparison of the three methods, and their performances with real-world data are
compared, with the additional analysis of the interference factors. The experiment results show that
the ARM and ESM algorithms are better than LGM in terms of retrieving accuracy. However, LGM has
the shortest running time, and it can be implemented for coarse-retrieving cases.

The ARM algorithm contributes a breakthrough, by retrieving the wind direction from the ocean
surface in the spatial domain, and effectively suppresses the drawback of LGM. However, the ARM
algorithm is computationally expensive, because it has more recursive cycles and an additional
threshold judgment. Both LGM and ARM may overwhelm some characteristics of small-scale wind
streaks, simultaneously losing part of the small-scale wind streak images. So, the performances of the
spatial domain approaches cannot be guaranteed when the small-scale wind streaks’ characteristics
are not obvious. As ESM can automatically adapt to small-scale streak scale changes, it is robust with
different data for retrieval, and with applying the band-bass filter. It can guarantee the quality of the
separated small-scale wind streaks energy spectrum. Therefore, this method can provide an acceptable
retrieving accuracy based on the data from X-band marine radars.

It has been shown that although ARM is inferior to ESM in terms of accuracy, it can cover most of
the real-time requirements, and provide an acceptable performance. Furthermore, it requires only a
single measurement area, compared with ESM. Taking the interference factors into account, ARM is
susceptible to sea-surface wind speeds and significant wave heights, but is robust against sea-surface
currents. ESM is almost robust against all of the interference factors, except for in a rain-contaminate
environment; its wind direction results error increases only if the significant wave height is higher
than 4.5 m. We draw a conclusion that ARM is better for real-time wind retrieving, while ESM is much
more adaptable for post-data processing, with a superior retrieving performance. Future work will
focus on the real-time implementation of the above-mentioned methods in real engineering areas with
various circumstances.
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