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Abstract: Infrared imaging is widely applied in the discrimination of spatial targets. Extracting
distinguishable features from the infrared signature of spatial targets is an important premise for
this task. When a target in outer space experiences micro-motion, it causes periodic fluctuations in
the observed infrared radiation intensity signature. Periodic fluctuations can reflect some potential
factors of the received data, such as structure, dynamics, etc., and provide possible ways to analyze
the signature. The purpose of this paper is to estimate the micro-motion dynamics and geometry
parameters from the observed infrared radiation intensity signature. To this end, we have studied the
signal model of the infrared radiation intensity signature, conducted the geometry and micro-motion
models of the target, and we proposed a joint parameter estimation method based on optimization
techniques. After analyzing the estimation results, we testified that the parameters of micro-motion
and geometrical shape of the spatial target can be effectively estimated by our estimation method.

Keywords: infrared signature; spatial targets; parameters estimation

1. Introduction

Spatial target recognition is a significant problem in many scientific and engineering fields, such
as precise guidance systems and space surveillance systems. Infrared imaging technology is widely
used in spatial target recognition systems. On account of the long distance between the target and
sensor, spatial targets are often shown as a single pixel on the infrared image, which is a great challenge
with respect to recognition. The grey level in infrared images of the objects varies with time, called
the infrared signature, which contains numerous information and can be used in discrimination and
tracking systems. In the past few decades, a large number of analysis methods have been utilized.
Resch implemented exoatmosphere object recognition using an extracted feature, the ratios of the
object’s irradiance, and the time-averaged irradiance values of each object in the FOV (field of view) [1].

A spatial target may have micro-motions due to maneuvering control or uneven force during
exoatmospheric flight, such as tumbling, spinning, and precessing [2]. Estimating micro-motion
parameters of objects has received attention in the radar community as well. An analysis method based
on mixed micro-Doppler time-frequency sequences has been put forward to extract micro-motion
dynamic and inertial characteristics of free rigid targets in space [3]. However, radar signals are
susceptible to interference and application scenarios are limited.

This prompted us to study infrared signals for the analysis and extraction of spatial target
micro-motion features. If the target experiences some micro-motion, the feature of the target projection
area is typically a time-varying amplitude function and periodically time-varying modulation is applied
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to the received IR signal [4]. Therefore, from the accurate mathematical description of the observed
infrared signature, it is feasible to obtain the complete signal of the target projection area and estimate
the micro-motion parameters (including the spin rate, the precession rate, and the nutation angle, etc.)
and geometric parameters that are not available for the signal without micro-motion. Deng [5] studied
the influence of inertial parameters, including inertial moments (MOI) and initial angular rate (IAR)
on the target infrared radiation sequence, without considering the rich target information contained
in parameters, such as precession angle and shape parameters. Liu [6] used a sparse representation
method for micro-motion parameter estimation. The problem of sparse representation is suitable
to be solved by the “relaxed” convex optimization method, and the regularization parameters are
introduced. However, this method is limited to the case targets having sparse features, and it does not
have universal adaptability.

This paper develops a projection model of spatial targets and derives mathematical formulas of
projection area signatures induced by micro-motions. We also propose a joint parameter estimation
method with optimization techniques of target micro-motion dynamics and geometrical shape
parameters from IR intensity features, which makes it easier to extract useful information when
constructing classifiers or other predictors in IR space applications. And our method is applicable to
situations where the shape of the target is not limited.

The rest of the paper is organized as follows: A signature model is constructed in Section 2 and
a simulation has been conducted. A shape estimation algorithm and experiments are put forward
in Section 3, followed by a joint estimation algorithm and experiments in Section 4. Conclusions are
presented in the last section.

2. Infrared Signature Model

For infrared detection of outer space targets, the infrared energy received by the detector is only
from the radiation of the target and the deep space of the universe if we keep stars (sun, moon, and
etc.) out of the FOV. The radiation deep in outer space is small and negligible. The radiation of the
target is determined by temperature, infrared emissivity, projection area, observing angle, and so on.

2.1. Emitted Radiation Analysis

The blackbody is an idealized model. Eb(λ,T) is the spectral radiant existence of a blackbody in
the waveband λ1–λ2 at an absolute temperature T, which is defined by Plank’s radiation law [7] as:

Eb(λ, T) =
c1λ−5

exp
( c2
λT

)
− 1

, (1)

where c1 represents the first radiation constant with the value of is 3.7419 × 10−16 W·m2, c2 denotes the
second radiation constant, and the value is 1.4388 × 10−2 m·K.

Suppose AO and ϕ are the entrance pupil area of sensor and the angle between the principle axis
of the lens and LOS (line of sight), RS denotes the distance from the object to the sensor, and Aproj is the
projecting area of the object at LOS, and ε is the surface material or coating infrared emissivity of the
target, the whole radiation power Ie received by the observing sensor for an exo-atmospheric object in
the waveband λ1–λ2 at an absolute temperature T is approximately represented as:

Ie =

∫ λ2

λ1

AO cosφ

πR2
S

Aprojε(λ)Eb(λ, T)dλ. (2)

2.2. Target Geometry Model

Assume that the convex target surface is divided into N small triangles, its area and the normal
vector are ai and ni (i = 1, ..., N), respectively, and the vector of line of sight is nLOS. Due to the convex
surface on the topology, relation among triangles in any cover phenomenon does not exist, and the
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target projection area is an accumulation of all triangles’ projection areas in the detection field [8].
The target projection area Aproj can be expressed as:

Aproj =
N∑

i=1

aimax
(
cos

(
−n′LOS, ni

)
, 0

)
, (3)

where n′LOS is detecting line of sight in the local coordinate system.
For the sake of simplicity, this paper takes the cone object as an example. Figure 1 shows the

geometry structure of the cone object and LOS in the local coordinate system. The projecting area of
the object at the LOS orientation can be computed by following integration:

A =

∫ π

−π
max

(
0,
→
o γ ·

→
o s

)1
2

R
sinα

Rdγ+ πR2max
(
0,
→
o b ·

→
o s

)
. (4)
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Figure 1. Projection area model of the cone object. 
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Figure 1. Projection area model of the cone object.

In the formula, α represents the cone object’s half angle, R is the circle radius of the cone’s bottom,
→
o γ = [cosα cosγ, cosα sinγ, sinα] is the unit normal vector of the conical region,

→
o b = [0, 0,−1] is the

bottom unit normal vector, and
→
o s = [sin δ cosφ, sin δ sinφ, cos δ] is the unit direction vector of LOS,

where ϕ expresses the azimuth angle of LOS. Therefore the computing result of projection area is:

A(R, cotα, cos δ) = R2(A1(cotα, cos δ) + A2(cos δ)), (5)

A1(cotα, cos δ) =


0, cos δ ∈ [−1,− cosα]

cos δarccos
(
−

cot δ
cotα

)
+ sin δ

√

cotα2 − cot δ2, cos δ ∈ [− cosα, cosα]
cos δ×π, cos δ ∈ [cosα, 1]

(6)

A2(cos δ) =
{
−π cos δ, cos δ ∈ [−1, 0]

0, cos δ ∈ [0, 1]
. (7)

According to above analysis, we discovered that the projection area at the sensor orientation is
only related to the angle δ on condition that given the cone.

2.3. Attitude Motion Model

Exoatmospheric targets are mainly influenced by gravity, and their flight attitude is not fixed with
changing period. There are three main motion types, including spinning, tumbling, and precession in
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terms of spatial targets. Different motion types leads to difference in the infrared signature of targets [9].
The attitude and position have important effects on the signal. Therefore, the observing angle from the
sensor to the target is studied.

Suppose the motion type of the target is precessing and spinning. The variation mode of δ is
addressed in the following part. The relationship of the radar coordinate system (U,V,W), the object’s
local coordinate system (x,y,z) and the reference coordinate system (X,Y,Z), which is parallel to the
radar coordinates are depicted in Figure 2. Letting the symmetric axis of the object be the z-axis of
local coordinate system (x,y,z). The object’s local coordinate system (x,y,z) and the reference coordinate
system (X,Y,Z) share the same origin point O [10].
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Assume that the target rotates about a rotation axis ON in the reference coordinate system, and its
azimuth and elevation angle in the above coordinates are αR and βR with the angular velocity of ω.
According to Rodriguez’ Equation (7), the rotation matrix R(t) can be expressed as:

R(t) = I + D sinωt + D2(1− cosωt), (8)

where D is the skew symmetric matrix:

D =


0 − sin βR sinαR cos βR

sin βR 0 − cosαR cos βR

− sinαR cos βR cosαR cos βR 0

. (9)

We make an assumption that the initial azimuth and elevation angle of the object is α0 and β0 in
the reference coordinate system. Therefore, the initial unit vector of the symmetric axis is:

→
n0 = [cosα0 cos β0, sinα0 cos β0, sin β0]

T. (10)

Therefore, at time t, the unit vector of symmetric axis is represented as:

→
n(t) = R(t)

→
n0. (11)
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The angle δ (the angle between the symmetric axis of the object and LOS) can be computed as
follows:

cos δ(t) =
→
n(t) ·

→
o (t). (12)

We can obtain the position of the object and sensor by the ground-based radar system.
→
o (t) is the

unit direction vector of the LOS. Combining the above formulas together, the variation condition of δ
is achieved:

cos δ(t) =
[
I + D sinωt + D2(1− cosωt)

]
→
n0 ·

→
o (t). (13)

In the above formula, D is a function of αR and βR,
→
n0 is related to α0 and β0, and

→
o (t) can be

acquired from the radar system.

2.4. Infrared Signature Model Simulation

From above analysis of infrared radiation principle and signature model of the spatial target, the
emitted radiation can be calculated by Equations (2), (4), and (13). Control variable methods are used
to design several different precession parameters, and contrast experiments have been carried out on
the infrared radiation of two types of targets [11,12]. Target 1 has a small precession angle, a long
motion period, and a higher attitude stability, while Target 2 has a relatively large precession angle
and a short motion period. Then the radiation power of the object received by the sensor is shown in
Figure 3, on the basis of several parameters’ assumptions shown in Table 1 [13–15].
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Table 1. Table of parameter settings.

Tests Index Test 1 Test 2 Test 3 Test 4

Targets index 1 2 1 2 1 2 1 2
Precession angle (θp) 2◦ 10◦ 4◦ 8◦ 3◦ 9◦ 3◦ 9◦

Precession period (Tp) 8 s 2 s 8 s 2 s 10 s 1 s 6 s 4 s
Partition 200

Initial temperature(T0) 330 K
Emissivity (ε) 0.45

Waveband (λ1–λ2) 7–9 µm
Initial distance (Rs) 250 km

Radius (R) 0.25 m
Height (H) 1.5 m

As depicted in Figure 3, the difference in infrared radiation characteristics of the two types of
targets is mainly reflected in the difference of the attitude motion parameters in the case of the same
shape, material, and initial temperature. When the precession angle is the same, the precession period
has a greater influence on the infrared radiation. When the precession period is the same, the influence
of the precession angle on the infrared radiation is relatively small. The regular attitude change of the
target caused by precession conduces the periodic change of the projection area. This signal without
noise is in the ideal situation.

We also studied the spatial targets of seven typical shapes, including flat-base cone, cone-cylinder,
cylinder, and ball-base cone, equal curvature arc, non-equal curvature arc, and circular ring. Their 3D
models were then built and the projected areas under different motion states simulated according to
the above model, as shown in Table 2.

The results show that the projection area sequence of the spatial target has the same fluctuation
characteristics as the infrared radiation intensity sequence. The projection sequence fluctuation
characteristics of different shape targets are differentiated, which can provide the basis and clues for
the discrimination of spatial targets. For example, the projection area time series of the convex object
has mirror symmetry inside a single period (i.e., within a single period, the first half period sequence
and the second half period sequence are mirror symmetrical). This is because the projection area of
the convex object in the nLOS direction is equal to the projection area in the −nLOS direction. Thus,
when the target rotates γ around the fixed axis and rotates π − γ, the projection area is equal, and the
mirror symmetry phenomenon occurs. Fragments do not have the symmetry of the projection area,
so the projection area sequence usually does not have mirror symmetry. Moreover, under the same
micro-motion parameters, the time-series fluctuation of the projection area of the debris is larger and
the undulating characteristics are more obvious.
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Table 2. Table of projection area of several typical shapes.

Shape Parameters Micro-Motion Parameters 3D Models Observed Signatures

Flat-base cone: hcone = 1.134 m,
r = 0.2 m.

Precession: α0 = 0.0 π,
β0 = 0.5 π, ω = 1.0π
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hcylinde = 1.0 m, r = 0.2 m.
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3. Shape Parameters Estimation Algorithm

The problem of unique shape identification and reconstruction based on projection area information
has been widely concerned in the field of geometry. Alexandrov’s theorem states that the two origin
symmetry convex shapes are identical if and only if both have the same projection area function [16].

Both the origin symmetrical convex and the semi-convex target have conditions for uniquely
determining and reconstructing the shape. Targets with a semi-convex structure in the space target
group, such as warheads and imitation baits, satisfy the conditions of unique shape determination
and reconstruction.

3.1. Gaussian Image Representation

There are many ways to describe the shape of the target. However, most of the description
methods, including the depth map, the normal stitch, etc., are affected by the target position and
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posture, and are not suitable for describing the shape of the spatial target. To this end, this section
introduces a kind of shape description method suitable for attitude change, the Gaussian images
method [17]. The basic idea is to establish the mapping relationship between the target surface and the
unit Gaussian sphere according to the Gaussian curvature of the target surface.

If the Gaussian image representation method is used, the projection area will be greatly simplified
as shown in the following Equation (15).

As shown in the Figure 4, assuming that the normal vector of the gray surface in the target surface
is n, the vector n can be expressed by the azimuth angle α and the elevation angle β, that is, n(α, β) =

[cosαcosβ, sinαcosβ, sinβ]. When the Gaussian image representation of the target is established, the
gray surface is projected into the small area dαdβ of the unit sphere, and the area of the target gray
surface is:

dA = G−1(α, β)dαdβ. (14)Electronics 2019, 8, x FOR PEER REVIEW 9 of 18 
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The projection area calculation formula of the target becomes:

Aproj(t) =

2π∫
0

0.5π∫
−0.5π

max[cos(−n′LOS(θ, δ,ω,ϕ0, t), n), 0]G−1(α, β)dαdβ. (15)

Equation (15) has a well-defined integration domain, and its shape information is mainly
concentrated in the reciprocal G−1(α,β) of the Gaussian curvature, which makes the shape estimation
problem more clear.

3.2. Shape Discrete Description and Estimation

The solution to G−1(α,β) is morbid because the integral operation is tight and its inverse operation
is necessarily non-tight. That is to say, there is no way to accurately estimate G−1(α,β) without any
constraint or prior information. Therefore, in the shape estimation, it is necessary to establish a discrete
representation of G−1(α,β) under certain constraints, and transform Equation (15) into a discrete linear
representation, i.e.:

A = Dg. (16)

where A is the projection area vector of the target, g⇔ G−1(α,β)dαdβ contains discrete variables
describing the shape of the target, and matrix D is the cosine calculation [7,8].

When G−1(α,β) is discretely sampled, g is the area of the patch corresponding to the discrete points
of G−1(α,β).

For the sake of clarity, taking the truncated column target as an example to describe. As shown in
Figure 5, the target body has a two-ring distribution of G−1(α,β) in the Gaussian image representation
and an isolated point. In this case, it is suitable to discretely sample G−1(α,β) into a series of discrete
points (αj, βj), j = 1, ..., N, so that each discrete point (αj, βj) corresponding to a small patch whose
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normal vector is n(αj, βj) on the target surface, the original target shape is approximated as a convex
polyhedron. As the number of points for discrete sampling of G−1(α,β) increases, the shape of the
convex polyhedron is shown to be closer to the original shape [18,19]. This shape description method
is often referred to as a convex polyhedral representation method [20].
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For an unknown target, the normal vector nj of the patch may be oriented in any direction of
the three-dimensional space. In order to obtain all possible normal vectors npq(αp,βq), the warp and
latitude of the 3-D sphere space are usually equally spaced (e.g., ∆α, ∆β), where:

npq
(
αp, βq

)
=

[
cosαp cos βq, sinαp cos βq, sin βq

]
, (17){

αp = −π+ p∆α, ∆α = 2π/N1

βq = −0.5π+ (q− 1)∆β, ∆β = π/(N2 − 1)
. (18)

At this time, g in Equation (16) is all of the possible patch areas apq (p = 1, ..., N1; q = 1, ..., N2), and
the projection area function of the target is also changed to:

Aproj(t) =
N1∑

p=1

N2∑
q=1

max
[
cos

(
−n′LOS(θ, δ,ω,ϕ0, t), npq

)
, 0

]
apq. (19)

When the projection area sequence data of the unknown target is obtained, the value of the
unknown variable g can be estimated according to Equation (19). The unique convex polyhedron
is reconstructed by g, thereby realizing the estimation and reconstruction of the convex target
shape [6,21,22]. Since A = Dg is a linear model, the standard method for solving g is a least squares
algorithm, and its optimization objective function can be expressed as:

χ2 = ‖A−Dg‖2. (20)

The optimization objective function in Equation (20) is convex and has a unique minimum, and
the conjugate descent gradient method is suitable in the optimization process.

3.3. Space Target Shape Estimation Experiment

The experiments estimate and reconstruct the target shape based on the simulated target projection
area sequence. Since only the shape estimation problem is discussed, it is assumed that the micro-motion
parameters of the target are known a priori. The purpose of the simulation experiment includes the
following points: (1) test the performance of the estimation algorithm under different data noise levels;
and (2) compare the shape estimation error caused by the deviation of the micro-motion parameters θ
and ω, respectively.

Taking the tumbling cone target as the observation object, whose radius and cone height are
1.0 m and 5.6713 m, tumbling parameters are θ = 0.3π, α0 = 0.0π, β0 = 0.2π, ωt = 1.0π rad/s. In data
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acquisition, assume the observing time of infrared sensors is 6 s, and the scanning frequency is 20 Hz.
In the parameter estimation, N1 and N2 are 36 and 19, respectively. The experiment was divided into
three groups to investigate the effects of data noise, precession angle θ and precession angular velocity
ωt on shape estimation performance.

Group 1: The impact of test data noise on shape estimation.
The signal-to-noise ratio (SNR) is used in the experiment to describe the noise level in the observed

data. The signal-to-noise ratio is defined as:

SNR = 10 log10(σs/σn), (21)

where σs, σn are the standard deviations of the observed signal and the Gaussian noise signal,
respectively. Tests are made for the data of different noise levels.

According to the estimation results in Table 3, the degree of restoration of the reconstructed
shape to the original shape is increase as the noise decreases. The reconstruction result of the shape is
relatively accurate as long as the data SNR is greater than 10 dB, and explains the error of the shape
parameters’ estimation is relatively small. When the SNR achieves 30 dB, the reconstructed shape of
the target in the experiment has become a standard cone and is almost restored to the original shape,
and the validity of the shape parameters’ estimation has been proved.

Table 3. Shape reconstruction results of different noise data.

SNR (dB) 0 10 20 30

Sectional view

Electronics 2019, 8, x FOR PEER REVIEW 11 of 18 

 

Table 3. Shape reconstruction results of different noise data. 

SNR (dB) 0 10 20 30 

Sectional view 

 
 

  

Size 

parameters (m) 

r = 1.0411 

h = 3.9321 

r = 1.0129 

h = 4.6337 

r = 1.0039 

h = 5.0655 

r = 1.0010 

h = 5.3214 

Group 2: Test the effect of precession angle θ deviation on shape estimation. 

In the evaluation of the application, it is very important to understand the error caused by the 

micro-motion parameters’ deviation for shape reconstruction. In the experiment, the true precession 

angle θ is set to 0.30π, and the signal-to-noise ratio of the observed data is 30 dB. The other parameters 

are the same as the previous set of experiments. 

Table 4 shows the results of the experiments. It can be seen that the shape reconstruction error 

is relatively small when the θ deviation Δθ ∈ [−0.025π, 0.025π]. The reconstructed shape is similar 

to a cone to some extent. Although the specific experimental results are not representative of all error 

conditions, it can be explained that θ has relatively less influence on shape reconstruction. 

Table 4. Shape reconstruction result under roll angle deviation. 

Precession 

Angle ̂  (rad) 
0.250π 0.275π 0.325π 0.350π 

Sectional view 

 
  

 

Size  

parameters (m) 

r = 0.9582 

h = 4.0977 

r = 0.9939 

h = 4.6027 

r = 0.9831 

h = 4.9493 

r = 0.9144 

h = 4.4621 

Group 3: Test the effect of angular velocity ωt on shape estimation. 

Electronics 2019, 8, x FOR PEER REVIEW 11 of 18 

 

Table 3. Shape reconstruction results of different noise data. 

SNR (dB) 0 10 20 30 

Sectional view 

 
 

  

Size 

parameters (m) 

r = 1.0411 

h = 3.9321 

r = 1.0129 

h = 4.6337 

r = 1.0039 

h = 5.0655 

r = 1.0010 

h = 5.3214 

Group 2: Test the effect of precession angle θ deviation on shape estimation. 

In the evaluation of the application, it is very important to understand the error caused by the 

micro-motion parameters’ deviation for shape reconstruction. In the experiment, the true precession 

angle θ is set to 0.30π, and the signal-to-noise ratio of the observed data is 30 dB. The other parameters 

are the same as the previous set of experiments. 

Table 4 shows the results of the experiments. It can be seen that the shape reconstruction error 

is relatively small when the θ deviation Δθ ∈ [−0.025π, 0.025π]. The reconstructed shape is similar 

to a cone to some extent. Although the specific experimental results are not representative of all error 

conditions, it can be explained that θ has relatively less influence on shape reconstruction. 

Table 4. Shape reconstruction result under roll angle deviation. 

Precession 

Angle ̂  (rad) 
0.250π 0.275π 0.325π 0.350π 

Sectional view 

 
  

 

Size  

parameters (m) 

r = 0.9582 

h = 4.0977 

r = 0.9939 

h = 4.6027 

r = 0.9831 

h = 4.9493 

r = 0.9144 

h = 4.4621 

Group 3: Test the effect of angular velocity ωt on shape estimation. 

Electronics 2019, 8, x FOR PEER REVIEW 11 of 18 

 

Table 3. Shape reconstruction results of different noise data. 

SNR (dB) 0 10 20 30 

Sectional view 

 
 

  

Size 

parameters (m) 

r = 1.0411 

h = 3.9321 

r = 1.0129 

h = 4.6337 

r = 1.0039 

h = 5.0655 

r = 1.0010 

h = 5.3214 

Group 2: Test the effect of precession angle θ deviation on shape estimation. 

In the evaluation of the application, it is very important to understand the error caused by the 

micro-motion parameters’ deviation for shape reconstruction. In the experiment, the true precession 

angle θ is set to 0.30π, and the signal-to-noise ratio of the observed data is 30 dB. The other parameters 

are the same as the previous set of experiments. 

Table 4 shows the results of the experiments. It can be seen that the shape reconstruction error 

is relatively small when the θ deviation Δθ ∈ [−0.025π, 0.025π]. The reconstructed shape is similar 

to a cone to some extent. Although the specific experimental results are not representative of all error 

conditions, it can be explained that θ has relatively less influence on shape reconstruction. 

Table 4. Shape reconstruction result under roll angle deviation. 

Precession 

Angle ̂  (rad) 
0.250π 0.275π 0.325π 0.350π 

Sectional view 

 
  

 

Size  

parameters (m) 

r = 0.9582 

h = 4.0977 

r = 0.9939 

h = 4.6027 

r = 0.9831 

h = 4.9493 

r = 0.9144 

h = 4.4621 

Group 3: Test the effect of angular velocity ωt on shape estimation. 

Electronics 2019, 8, x FOR PEER REVIEW 11 of 18 

 

Table 3. Shape reconstruction results of different noise data. 

SNR (dB) 0 10 20 30 

Sectional view 

 
 

  

Size 

parameters (m) 

r = 1.0411 

h = 3.9321 

r = 1.0129 

h = 4.6337 

r = 1.0039 

h = 5.0655 

r = 1.0010 

h = 5.3214 

Group 2: Test the effect of precession angle θ deviation on shape estimation. 

In the evaluation of the application, it is very important to understand the error caused by the 

micro-motion parameters’ deviation for shape reconstruction. In the experiment, the true precession 

angle θ is set to 0.30π, and the signal-to-noise ratio of the observed data is 30 dB. The other parameters 

are the same as the previous set of experiments. 

Table 4 shows the results of the experiments. It can be seen that the shape reconstruction error 

is relatively small when the θ deviation Δθ ∈ [−0.025π, 0.025π]. The reconstructed shape is similar 

to a cone to some extent. Although the specific experimental results are not representative of all error 

conditions, it can be explained that θ has relatively less influence on shape reconstruction. 

Table 4. Shape reconstruction result under roll angle deviation. 

Precession 

Angle ̂  (rad) 
0.250π 0.275π 0.325π 0.350π 

Sectional view 

 
  

 

Size  

parameters (m) 

r = 0.9582 

h = 4.0977 

r = 0.9939 

h = 4.6027 

r = 0.9831 

h = 4.9493 

r = 0.9144 

h = 4.4621 

Group 3: Test the effect of angular velocity ωt on shape estimation. 

Size parameters (m) r = 1.0411 r = 1.0129 r = 1.0039 r = 1.0010
h = 3.9321 h = 4.6337 h = 5.0655 h = 5.3214

Group 2: Test the effect of precession angle θ deviation on shape estimation.
In the evaluation of the application, it is very important to understand the error caused by the

micro-motion parameters’ deviation for shape reconstruction. In the experiment, the true precession
angle θ is set to 0.30π, and the signal-to-noise ratio of the observed data is 30 dB. The other parameters
are the same as the previous set of experiments.

Table 4 shows the results of the experiments. It can be seen that the shape reconstruction error is
relatively small when the θ deviation ∆θ ∈ [−0.025π, 0.025π]. The reconstructed shape is similar to
a cone to some extent. Although the specific experimental results are not representative of all error
conditions, it can be explained that θ has relatively less influence on shape reconstruction.
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Table 4. Shape reconstruction result under roll angle deviation.

Precession Angle
^
θ (rad) 0.250π 0.275π 0.325π 0.350π

Sectional view
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The tumbling angular velocity ωt determines the fluctuation period of the observed data and is a

sensitive parameter in the estimation. Even a small deviation probably causes a large error in the shape
estimation. The true precession angular velocity ωt is 0.1π rad/s, and the observed data signal-to-noise
ratio is 30 dB. Other parameters are unchanged.

Adjusting the tumbling angular velocity and recording the shape reconstruction results in Table 5.
The results show that when the value of ∆ωt = ωt − ω̂t exceeds 0.01π rad/s (that is 1% deviation), the
reconstructed target shape has great difference with the original shape. It can be seen that the angular
velocity ωt has a relatively large influence on shape estimation and reconstruction.
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4. Shape and Micro-Motion Parameters’ Joint Estimation

4.1. Problem Description

The estimation of the micro-motion parameters of the spatial target is relatively simple compared
to the shape estimation. Since the number of micro-motion parameters is extremely small, the data
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requirements for the estimation do not exceed the data requirements of the shape estimation. Therefore,
the joint estimation of the geometrical shape and the micro-motion parameters can be effectively
realized as long as the necessary conditions and data requirements of the shape estimation are satisfied.
The main difficulty in the joint estimation of shape and micro-motion parameters is that the objective
function χ2 in Equation (20) is a non-convex function relative to the micro-motion variable θ, δ, ω, ϕ0,
and there are multiple minimum value points in the value space of the variable. In the joint estimation,
how to choose the appropriate optimization techniques and strategies to ensure the global optimal
value of the objective function is the main problem to be solved in this section.

The micro-motion parameters of the precession target include: precession angle θ, observation
angle δ, initial surface angle ϕ0 of the cone rotation axis, angle ψ0 between the projection of the cone
rotation axis on xOy and Ox, and the spin and cone angular velocitiesωs andωc. In the target projection
area sequence function Aproj(t), the micro-motion variables are included in the infrared sensor detecting
line of sight direction vector n′LOS, and the line of sight vector n′LOS (θ, δ, ϕ0, Ψ0, ωs, ωc) can be
expressed as:

n′LOS =


− sinθ cos δ cosψ(t) + cosϕ(t) cosθ sin δ cosψ(t) − sinϕ(t) sin δ sinψ(t)
− sinθ cos δ sinψ(t) + cosϕ(t) cosθ sin δ sinψ(t) + sinϕ(t) sin δ cosψ(t)

cosθ cos δ+ cosϕ(t) sinθ sin δ

, (22)

where ψ(t) = ωst + ψ0, ϕ(t) = ωct + ϕ0 is the surface angle of conical axis.
In order to ensure a unique solution in the parameter estimation, usually the preset azimuth

angle α or the elevation angle β is known, so that α is always equal to the azimuth angle of nLOS.
The unknown micro-motion parameters are changed from θ, δ, ϕ0, ψ0, ωs, ωc to θ, β, ϕ0, ψ0, ωs, ωc,
and there is a unique solution to the micro-motion parameter estimation problem [23].

In addition, since the target is axisymmetric, ωs does not affect the observed data, so let ψ(t) ≡ 0,
then the equation becomes:

n′LOS =


− sinθ cos δ+ cosϕ(t) cosθ sin δ
sinϕ(t) sin δ
cosθ cos δ+ sinθ sin δ

. (23)

Equation (23) is also the n′LOS expression when the target is rolled. For axisymmetric targets,
the estimated parameters are the same including θ, β, ϕ0, ω (ω is ωc or ωt), whether they are precessing
or tumbling [24].

According to Equation (19), the function of the projection area of the spatial target is expressed as:

Aproj(t) =
N1∑

p=1

N2∑
q=1

max
[
cos

(
−n′LOS(θ, β,ω,ϕ0, t), npq

)
, 0

]
apq, (24)

where apq (p = 1, ..., N1; q = 1, ..., N2) is the shape parameter for the space target. In the form of Equation
(16), the target micro-motion parameter estimation problem is expressed as:

A = D(θ, β,ω,ϕ0)g, (25)

where A =
[
Aproj(t1), Aproj(t2), · · · , Aproj(tL)

]T
∈ RL×1 is the observation data in the time period

t1, ..., tL, g =
[
a1,1, a1,2, · · · aN1,N2

]T
∈ R(N1×N2)×1 is the shape parameter vector of the spatial target,

and D =


· · · max

[
cos

(
−n′LOS(θ, β,ω,ϕ0, t1), npq

)
, 0

]
· · ·

· · · max
[
cos

(
−n′LOS(θ, β,ω,ϕ0, t2), npq

)
, 0

]
· · ·

...

 ∈ R(N1×N2)×L is the nonlinear function

of the micro-motion parameters θ, β, ω, ϕ0.
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4.2. Joint Estimation Algorithm and Experiment

Similar to the shape parameter estimation, the joint estimation also uses the least squares
optimization algorithm, i.e.:

χ2(θ, β,ω,ϕ0, g) = ‖A−DDg‖2 (26)

By analyzing the objective function of Equation (26), we know: (1) under the condition of known
micro-motion parameters, the optimal estimation of the shape parameter g from function χ2 is convex;
and 2) in the case of the known shape parameters, the estimation of micro-motion parameters θ, β,
ω, ϕ0 from function χ2 is non-convex, and there are multiple local minima in the value space. Thus,
the optimal non-convexity of the objective function χ2 in the joint estimation is mainly determined
by θ, β, ω, ϕ0. Fortunately, θ, β, ω, ϕ0 have a clear value space, and χ2 is continually differentiable
for θ, β, ω, ϕ0. Therefore, the grid search method is suitable for solving the joint optimal estimation
problem. The value spaces of θ, β, ω, and ϕ0 are partitioned and searched one-by-one to obtain a global
optimal solution.

First we can predefine β ∈ [0, 0.5π] to ensure that there is only a unique solution. Therefore, the
range of values of θ, β, ϕ0 is redefined to θ ∈ [0, 0.5π], β ∈ [0, 0.5π], ϕ0 ∈ [0, 2π]. Only the value space of
the angular velocity ω requires pre-processing or other measurement information to be determined.

4.2.1. Minimum Spacing Selection in the Grid Method

The idea of the grid method is to divide the value space of θ, β, ω, ϕ0 into blocks, and then search
for the global optimal solution block by block. Thus, first it is necessary to determine the minimum
spacing θ∆, β∆, ω∆, ϕ0∆ of the mesh segmentation to ensure that the number of local minima points
is not more than 1 in each region. It is found that in the value space of the θ, β, ϕ0 parameters, the
objective function χ2(θ,β,ϕ0) has only a finite number of local minimum values, and the minimum
spacing is usually determined according to the experiment. However, there is a large number of local
minimum values in the objective function χ2(ω) in value space of ω. We know that ω is the frequency
parameter of the periodic sequence and the minimum value distribution and the minimum spacing
value often have statistical laws to follow.

By statistically analyzing of the function χ2(ω) curve (assuming other parameters θ, β, ϕ0 are
known), we found that it is reasonable to select half of the minimum interval P2/T as the division
interval:

ω∆

ω
=

P∆

P
≈

P
2T

, (27)

where ω is the true value of angular velocity.
In summary, the process of our estimation algorithm is shown in Algorithm 1.

Algorithm 1 Diagram of our estimation.

Input: projection area of spatial target dataset, line of sight vector nLOS.

Output: estimation of micro-motion parameters θ̂, β̂, ω̂, ϕ̂0, and shape parameters
^
g.

Step 1 Initialization
(1) determine the range of values for ω̂;
(2) confirm the value space of θ, β, ω, ϕ, and divide the grid area and try to ensure that there is no more than

one minimum value in each block;
(3) randomly select the initial value of the variable in each block θ0, β0, ω0, ϕ0

0.
Step 2 Search for a minimum value in a single grid to get θ̂, β̂, ω̂, ϕ̂0 and the objective function value χ2.
Step 3 Select the minimum χ2 corresponding to θ̂, β̂, ω̂, ϕ̂0 in all grid areas as the final output.

4.2.2. Estimation Experiment

The simulation experiment explores the optimal estimation problem of joint parameters.
The purpose is to determine the meshing distances θ∆, β∆, ϕ0∆ of θ, β, ϕ0, and test the performance
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of the joint estimation of the shape and micro-motion parameters. The experiment is divided into
three groups: the first group determines the meshing interval θ∆, β∆, ϕ0∆ of the θ, β, ϕ0 parameters;
the second group verifies the approximation law between ∆ω and the observation time T and the
rotation period P in Equation (27) is accurate. Group 3 explores the performance of the algorithm for
shape and micro-motion parameter estimation at different noise levels.

In the dataset acquisition, the infrared sensor scan frequency is 20 Hz, the observation time is
T = 10 s, and the detection line of sight direction nLOS = [0.9511, 0, −0.3090]. The observed object is a
tumbling cone target with a radius and cone height of 1.0 m and 5.6713 m, respectively. The precession
parameters are θ = 0.3π, ϕ0 = 0.4π, αt = 0.0π, βt = 0.2π, ωt = 1.0π rad/s. In the experiment, the initial
value is randomly selected and tested several times. When the random convergence rate reaches 90%
or more, it is considered that the effective convergence condition is satisfied.

Group 1: Determine the meshing pitch θ∆, β∆, ϕ0∆ of θ, β, ϕ0 parameters.
This group of experiments focuses on the division of the value space of θ, β, ϕ0, so we first limit

the value of ω to [0.9375π, 1.0625π] rad/s, i.e., ω∆ = 0.1π rad/s, the condition satisfies the selection
requirement of ω∆ when T = 8 s. As pointed out in the foregoing, θ, β, ϕ0 have a clearly finite value
space, namely θ ∈ [0, 0.5π], β ∈ [0, 0.5π], ϕ0 ∈ [0, 2π], in determining the meshing pitch. It is usually
obtained empirically.

In the experiment, the initial values of θ, β, and ϕ0 were randomly selected for 100 repeated tests,
and the pitches were set to 0.5π, 0.25π, and 0.125π, respectively. At this time, the number of times to
converge to the global minimum point χ2

≤ 0.01 was 45, 96, and 100 times. Therefore, when the pitch
is 0.25π or less, the optimization algorithm can achieve effective convergence. We also discovered
that when the spacing is 0.25π, there are four times that θ, β, ϕ0 only converge to a local minimum
χ2
≈ 0.395, failing to converge to the global minimum. The reasons may be: (1) the gradient descent

algorithm has no ability to cross the saddle point; or (2) the sampling rate is too low, and the amount of
data information is slightly insufficient.

Group 2: Verify the approximation between ω∆ and the observation time T and the angular
velocity true value ω.

The conclusion of Equation (27) indicates that it should be half of P/T. In order to verify the
correctness of the conclusion, the experiment was tested for T = 6 s, 8 s, 10 s (P = 2 s). According to
Equation (27), the division interval of the value range ofω should be 0.167π, 0.125π, 0.10π rad/s, and
the grid division pitch of other parameters, such as θ, β, ϕ0, is 0.25π. After 100 repeated tests, 95, 96, and
94 times, respectively, converge to the global minimum, which proves the correctness of the conclusion
in Equation (27). This conclusion is an important prerequisite for the joint estimation problem.

Group 3: Test the estimation error of shape and micro-motion parameters θ, β, ω, ϕ0 at different
noise levels.

In the experiment, the signal-to-noise ratio (SNR) is used to describe the noise level in the observed
data. The observation time is T = 10 s, and the division interval of the micro-motion parameters θ, β, ω,
ϕ0 is determined according to the first group and the second group. The error of the estimation results
of the micro-motion parameters ∆θ, ∆β, ∆ϕ0, ∆ω in the different noise levels are listed in Table 6.

According to the experimental results, when the data noise level is low, for example when the
SNR > 10 dB, the optimization algorithm can converge to the global minimum, and the accuracy and
reliability of the shape and micro-motion parameter estimation results are higher. The reconstructed
shape has been restored to its original shape to a large extent, and demonstrates the validity of the
joint estimation algorithm for shape parameter estimation. The errors of the estimated value of the
micro-motion parameter are very small, as shown in the Table 6. The optimization algorithm is difficult
to converge when the data noise is high, and the error of the estimation result is relatively large.
The reason is that the details of the radiation intensity sequence of the target caused by micro-motion
which makes it possible to be distinguished are easily masked by noise in a noisy environment. Under
the same experimental conditions, when SNR > 10 dB, Liu [5] obtained micro-motion parameter
estimation results of ∆θ < 0.025π rad, ∆β < 0.002π rad, ∆ϕ0 < 0.015π rad, and ∆ω < 0.01π rad/s.
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Compared with our method, we find that Liu’s method performs better in the estimation of parameter
β, but the results of our methods in estimation of ω, θ, and ϕ0 are better than those of Liu.

Table 6. Micro-motion parameter estimation results of different noise data.

SNR (dB) 30 20 10 0

∆θπ rad 0.004 0.000 0.020 0.036
∆βπ rad 0.007 0.009 0.012 0.034

∆ϕ0π rad 0.001 0.002 0.008 0.033
∆ωπ rad/s 0.000 0.000 0.000 0.001
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5. Conclusions

This paper investigated the method of estimating the micro-motion and geometry parameters of
spatial targets from the received infrared signatures. Firstly, based on the geometric and attitude motion
analysis to construct the infrared feature model, we derive the mathematical formula of the space target
projection region with micro-motion. Secondly, we used the least squares optimization algorithm to
estimate the shape parameters of the spatial target with a Gaussian image representation to describe
the discrete parameters of the shape. Finally, a joint estimation algorithm involving optimization
techniques is proposed to solve the estimation problem of shape and micro-motion parameters. Aiming
at the problem that the optimization objective function is a non-convex function, a solution to search the
global optimal solution by the grid method is proposed to avoid the local minimum value. Simulation
results show that the proposed method can guarantee the reliability of joint estimation of shape and
micro-motion parameters.

However, the extraction of spatial target features in practical applications usually faces many
difficulties. For example, in complex observation environments, received data by the detector may
have insufficient observation conditions or high data noise, and the amount of data information cannot
meet the data requirements of the parameter estimation. Target feature extraction methods under the
condition of insufficient observation data will be studied in future research.
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