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Abstract: In this paper, we propose a beamformer design scheme for wireless physical layer security
using partial channel state information (CSI) in millimeter wave channels. The partial CSI used
in this work is the range of angle-of-departure (AOD). Assuming that the AOD range of each
node is available, we design a transmit beamformer using semidefinite programming based on
array pattern synthesis. Numerical results are presented to verify the secrecy rates achieved by the
proposed scheme.
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1. Introduction

One inherent defect in wireless communication systems is their lack of security owing to the
broadcast nature of wireless channels. To enable secure transmission over wireless channels, physical
layer security schemes exploit the physical characteristics of wireless channels without relying on
cryptography [1,2]. From an information-theoretic viewpoint, secrecy capacity is defined as the
maximum achievable secrecy rate at which a source can send a confidential message to a destination
without being overheard by eavesdroppers. To enlarge the secrecy rate in wireless channels, various
approaches have been studied to exploit multiple-antenna techniques [3,4], relay-assisted secure
transmission schemes [5], node cooperation strategies [6–8], and dirty paper coding (DPC) based
information embedding approaches [9], where global channel state information (CSI) is assumed.
In [10,11], secure communication with delayed CSI has been investigated from a secure degrees of
freedom perspective.

To enhance wireless physical layer security even when global CSI is not available, beamforming
with artificial noise has been widely investigated [12,13]. In [14], the artificial noise is placed in the null
space of the destination’s channel to prevent artificial noise from leaking to the destination. Further,
to decide what portion of available transmit power is allocated for sending artificial noise to interrupt
eavesdroppers, the statistics of the eavesdroppers’ channels are exploited at the source in [15]. Since the
exact CSI of the destination’s channel is required for the above techniques, the leakage of artificial
noise to the destination is inevitable when the destination’s channel estimation is imperfect [16].

In this work, we propose a beamformer design scheme exploiting partial CSI in millimeter wave
(mmWave) channels. The partial CSI exploited in this work is the range of angle-of-departure (AOD).
We assume that even though the AOD of a dominant multipath between the BS and each node is not
exactly known to the BS, it falls within a certain range and the AOD ranges of the destination and
the eavesdroppers are available at the BS. Note that compound wiretap channels in [17] assume that
the destination’s channel is perfectly known, while the eavesdroppers’ channels belong to a known
set of channels characterized by partial CSI such as maximum channel gain. The AOD ranges for the
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eavesdroppers in this work can be considered as the known set of channels defined in compound
wiretap channels. While the compound wiretap channel assumes the perfect knowledge on the
destination’s channel, we consider only the AOD range for the destination. Using the AOD range
information, we design a transmit beamformer for sending confidential messages based on array
pattern synthesis using semidefinite programming [18].

Recently, array pattern synthesis has been utilized to design cluster beamformers in
non-orthogonal multiple access systems. In [19], the cluster beamformer is designed to minimize
inter-cluster interference under the constraint of maintaining the beamforming gain to the desired
cluster exceeding a given threshold. Unlike the previous study in [19], we focus on maximizing the
ratio of the beamforming gains at the destination and the eavesdroppers by considering that the
secrecy rate is determined by the difference between rates at the destination and the eavesdroppers.
Using numerical results, we show that the proposed approach using AOD ranges is efficient for
physical layer security when the array antenna size is large and the channel estimation error is critical.

2. System Model and Secrecy Rate Evaluation

Consider a BS that sends secure information to a destination in the presence of I non-colluding
eavesdroppers [20]. In a non-colluding scenario, each eavesdropper works independently and decodes
the message solely based on its own observation. On the other hand, a colluding scenario considers that
multiple eavesdroppers share their observations and jointly decode the message assuming the existence
of communication links between eavesdroppers, which represents a worst-case scenario. The colluding
eavesdroppers can be treated as a single eavesdropper with multiple antennas in [3]. Even though
we propose a beamformer design scheme assuming non-colluding eavesdroppers, the secrecy rate
achieved by the proposed beamformer is also evaluated in a colluding scenario, which will be presented
in Section 4.

We assume that the BS has an antenna array with N antenna elements, whereas the destination D
and each eavesdropper Ei are equipped with a single antenna. Let yD and yEi be the received baseband
signals at D and Ei, respectively. The received signals can be expressed as

yD = hDws + zD,

yEi = hEi ws + zEi , (1)

where hD ∈ C1×N and hEi ∈ C1×N are vectors containing the complex channel coefficients from the
BS to D and Ei, respectively. Further, w = [w1 w2 · · · wN ]

T ∈ CN denotes a transmit beamformer and
s is the secure information with unit power. The noises zD and zEi are assumed to be complex additive
white Gaussian with zero-mean and variance σ2. Here, we can compute the rates at D and Ei as

RD = log2

(
1 +
|hDw|2

σ2

)
,

REi = log2

(
1 +
|hEi w|2

σ2

)
, (2)

respectively. Then, the achievable secrecy rate can be expressed asR = max
{
RD −maxiREi , 0

}
[21].

Assuming global CSI is available at the BS, we can find the optimal transmit beamformer, which
maximizes the achievable secrecy rate, by solving the following optimization problem:

max
w

σ2 + |hDw|2

maxi
{

σ2 + |hEi w|2
} , s.t. w†w = P, (3)

where (.)† denotes the conjugated transpose and P is the transmit power of the BS. The detailed
derivation for solving (3) is highlighted in the Appendix. It is noteworthy that the beamformer design
problem to minimize the transmit power with the secrecy rate constraint is also considered in [21].
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Let us consider a uniform planar array (UPA) at the BS, where N antenna elements are placed in a
two-dimensional grid pattern. When channel reciprocity is available, the channels from the BS to D
and Ei can be expressed as [22]

hD = (ADgD)
† , hEi =

(
AEi gEi

)† , (4)

respectively, where gD ∈ CKD and gEi ∈ CKEi are complex Gaussian vectors with zero mean

and covariance matrices diag(β
(1)
D , · · · , β

(KD)
D ) and diag(β

(1)
Ei

, · · · , β
(KEi

)

Ei
), respectively. Furthermore,

KD denotes the number of multipaths between the BS and D, KEi is the number of multipaths between

the BS and Ei, and β
(k)
D and β

(k)
Ei

denote the average power gain for each radio path. The k-th columns

of the matrix AD ∈ CN×KD and the matrix AEi ∈ CN×KEi are given as the steering vectors a(k)D and

a(k)Ei
, respectively. Here, the n-th entries of a(k)D and a(k)Ei

are defined as 1√
KD

ej2π
(

u(k)
D xn+v(k)D yn

)
and

1√
KEi

ej2π
(

u(k)
Ei

xn+v(k)Ei
yn

)
, respectively, where xn and yn denote the location of the n-th antenna element

in wavelengths, which can be arbitrary but fixed and known, and

u(k)
D = sin(θ(k)D ) cos(ϕ

(k)
D ), v(k)D = sin(θ(k)D ) sin(ϕ

(k)
D ),

u(k)
Ei

= sin(θ(k)Ei
) cos(ϕ

(k)
Ei

), v(k)Ei
= sin(θ(k)Ei

) sin(ϕ
(k)
Ei

). (5)

Here, (θ(k)D , ϕ
(k)
D ) and (θ

(k)
Ei

, ϕ
(k)
Ei

) denote the AOD of the k-th multipath from D to the BS and from
Ei to the BS, respectively.

Considering the directional characteristics of mmWave channels and their poor scattering
environments [23], we assume that (u(1)

D , v(1)D ) and (u(1)
Ei

, v(1)Ei
) for dominant radio paths are within

certain AOD regions SD and SEi in the horizontal and vertical (u-v) domain, respectively, and SD and
SE = ∪I

i=1SEi are mutually exclusive. The AODs of the other multipaths, which are much weaker than
the dominant multipath, are assumed to be unknown and distributed randomly in the u-v domain.

3. Secrecy Rate Maximization via Array Pattern Synthesis

Our approach to designing w with SD and SE is based on antenna pattern nulling to maximize the
ratio between the minimum radiation to SD and the maximum radiation to SE. Considering only the

dominant radio path, we approximate the objective function in (3) as σ2+β
(1)
D |a

(1)
D w|2

maxi

{
σ2+β

(1)
Ei
|a(1)Ei

w|2
} . Note that

a(1)D and a(1)Ei
can be determined only when (u(1)

D , v(1)D ) and (u(1)
Ei

, v(1)Ei
) are given. Since only the partial

CSI SD and SE are available, we assume that the average power gain for the dominant radio path to

noise ratio is the same for D and Ei (i.e., β
(1)
D

σ2 =
β
(1)
Ei

σ2 = 1
σ̌2 ) and consider a worst-case scenario given as

max
w

min
(u,v)∈SD

σ̌2 + w†Γ(u, v)w

max
(u,v)∈SE

σ̌2 + w†Γ(u, v)w
, s.t. w†w = P, (6)

where Γ(u, v) = a(u, v)a(u, v)† and the n-th entry of the steering vector a(u, v) ∈ CN is given as
ej2π(uxn+vyn). Let us rewrite (6) as

max
w

min
(u,v)∈SD

w†Γ̃(u, v)w

max
(u,v)∈SE

w†Γ̃(u, v)w
, s.t. w†w = P, (7)
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where Γ̃(u, v) = IN + P
σ̌2 Γ(u, v). Note that (7) can be rewritten as

max
w,τD ,τE

τD
τE

s.t. w†Γ̃(u, v)w ≥ τD, ∀(u, v) ∈ SD,
w†Γ̃(u, v)w ≤ τE, ∀(u, v) ∈ SE,
w†w = P.

(8)

It is obvious that (8) is equivalent to

max
W,τD ,τE ,ρ

ρ

s.t. tr(Γ̃(u, v)W) ≥ τD, ∀(u, v) ∈ SD,
tr(Γ̃(u, v)W) ≤ τE, ∀(u, v) ∈ SE,
τD − ρτE = 0,
tr(W) = P, W � 0, rank(W) = 1,

(9)

where W = ww†, tr(.) denotes the trace operation, and W � 0 indicates that W is a Hermitian positive
semidefinite matrix.

To solve (9), we first ignore the rank constraint based on semidefinite relaxation [24]. Then,
the problem becomes quasi-convex. It is noteworthy that all the inequality constraints in (9) are
convex [25]. We can solve this quasi-convex problem using the bisection technique [25,26]. In detail,
let us first consider the following convex feasibility problem for any given value of ρ:

find W, τD, τE
such that tr(Γ̃(u, v)W) ≥ τD, ∀(u, v) ∈ SD,

tr(Γ̃(u, v)W) ≤ τE, ∀(u, v) ∈ SE,
τD − ρτE = 0, tr(W) = P, W � 0.

(10)

By using a semidefinite program solver such as SeDuMi [27] and Yalmip [28], we can check the
feasibility of (10). The infeasibility of (10) indicates that the given ρ cannot be achieved, even though
we ignored the rank constraint. Then, we conclude that the maximum value of ρ, denoted as ρmax,
is less than the given ρ [26]. If (10) is feasible and the solution of (10), denoted as W?, τ?

D, and τ?
E ,

can be obtained, we should confirm that W? is of rank one because the rank constraint is ignored in
our problem. When W? is of rank one, the given ρ can be achieved with the principal eigenvector of
W?. In this case, we conclude that ρmax ≥ ρ.

If the rank of W? is higher than one, we have to determine whether any other rank-one solution to
achieve the given ρ exists or not. Here, the penalty function method (PFM) in [7] is adopted. Using W?,
τ?

D, and τ?
E , we first set W′(0) = W? and perform the initialization step of the PFM. The initialization

step of the PFM can provide W(0) with rank(W(0)) ≈ 1. Then, W(0) is used as a starting point for the
optimization step of the PFM. Both the initialization and optimization steps are iterative processes.
At the j-th iteration, both steps solve the following semidefinite programming problem:

W(j+1) = argmin
W̃

tr(W̃)− λmax(W(j))− tr(w(j)
max(w

(j)
max)

†(W̃−W(j)))

s.t. tr(Γ̃(u, v)W̃) ≥ τ?
D, ∀(u, v) ∈ SD,

tr(Γ̃(u, v)W̃) ≤ τ?
E , ∀(u, v) ∈ SE,

tr(W̃) = P, W̃ � 0,

(11)

where λmax(W(j)) and w(j)
max are the maximum eigenvalue and the corresponding eigenvector of W(j).

If we obtain a rank-one solution via the PFM for the given ρ, we conclude that ρmax ≥ ρ. When a
rank-one solution is not available even though the PFM is performed, we conclude ρmax < ρ.
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Using the above results, we exploit the bisection technique with the initial interval [L, U], which is
assumed to include ρmax. At the midpoint of the interval ρ = L+U

2 , (10) is solved as we described above.
If it is infeasible, we update the upper bound of the interval as U = ρ. If it is feasible, we confirm
whether the rank of W? is one or not. The lower bound of the interval is updated as L = ρ when W? is
of rank one. Otherwise, the PFM is performed whether a rank-one solution for the given ρ exists or
not. If the solution provided by the PFM is of rank one, the lower bound of the interval is updated as
L = ρ. Otherwise, we update U = ρ. The above process is performed again for the updated interval,
until the width of the interval is small enough (i.e., U − L ≤ εb, where εb is the desired accuracy).
Since the initial interval is halved at each iteration, dlog2((U − L)/εb)e iterations are required [29].
As commented in [7], we also found that the above process can always provide a rank-one solution in
our simulations.

For numerical implementations, the constraints tr(Γ̃(u, v)W) ≥ τD, ∀(u, v) ∈ SD and
tr(Γ̃(u, v)W) ≤ τE, ∀(u, v) ∈ SE in (10) are approximated as

tr(Γ̃(up, vp)W) ≥ τD, ∀p,

tr(Γ̃(uq, vq)W) ≤ τE, ∀q, (12)

where (up, vp) and (uq, vq) denote the sample points in SD and SE, respectively [30]. When the
numbers of the sample points in SD and SE are given as QD and QE, we have to solve (10) with a
matrix variable of size N × N, 2 nonnegative variables, and QD + QE + 2 linear constraints at each
iteration of the bisection process. Interior point methods will take O

(√
N + 2 log(1/ε)

)
iterations,

where ε represents the solution accuracy at the algorithm’s termination, and each iteration requires
at most O

(
(N + 2)6 + (QD + QE + 2)(N + 2)2) arithmetic operations [29]. Further, at each iteration

of the PFM, we solve (11), which will take O
(√

N log(1/ε)
)

iterations and each iteration requires at

most O
(

N6 + (QD + QE + 1)N2) arithmetic operations [7].

4. Numerical Evaluation

In this section, we present numerical results to verify the secrecy rate performance of the proposed
scheme. For simulation simplicity, we assume that SD is a circle in the u-v domain given as

SD = {(u, v); (u− uD)
2 + (v− vD)

2 < r2
D}, (13)

where (uD, vD) and rD are the center and the radius of the circle, respectively. For each channel
realization, (u(1)

D , v(1)D ) for a dominant path is randomly chosen within SD, while (u(k)
D , v(k)D ) with

k = 2, · · · , KD are randomly chosen in the whole u-v domain. SEi is also assumed to be a circle in

the u-v domain with a center of (uEi , vEi ) and radius of rEi . (u
(1)
Ei

, v(1)Ei
) is randomly chosen within SEi ,

while (u(k)
Ei

, v(k)Ei
) with k = 2, · · · , KEi are randomly chosen in the whole u-v domain. Note that the

proposed scheme can be adopted for arbitrary shapes of SD and SEi .
In the following results, we fix P = 1, rD = rEi = 0.1, σ2 = 10−3, and KD = KEi = K. Without loss

of generality, we set uD = vD = 0 and consider a UPA with Ñ × Ñ antenna elements (i.e., N = Ñ2),
where each element is uniformly spaced by half a wavelength. The far field radiated by the planar
array can be expressed as f (u, v) = ∑N

n=1 rn(u, v)wnej2π(uxn+vyn) [30], where rn(u, v) is the radiation
pattern of the n-th antenna element. The n-th antenna element is fed by wn, which denotes the n-th
entry of w. In our simulation, we assume isotropic antenna elements with rn(u, v) = 1 [30]. Let us
refer to | f (u, v)|2 as the beamforming gain of the antenna array.

Let us consider a scenario where I = 6 eavesdroppers exist in the network and each (uEi , vEi )

is given as in Table 1. Here, we verify the validity of the proposed beamformer from the viewpoint
of the beamforming gain of the planar array. For illustration purposes, we present the beamforming
gain of the transmit beamformer obtained by the proposed scheme for this scenario when Ñ = 8 in
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Figure 1. The interior of the black circle is SD, whereas the interior of the white circle denotes SEi .
We found that the proposed beamformer provides 12.58 dB of the minimum beamforming gain in SD
and −33.77 dB of the maximum beamforming gain in SE. From the simulation results, we found that
the ratio between the minimum beamforming gain in SD and the maximum beamforming gain in SE
increases with increasing Ñ.

Table 1. The center of the circle for E in the u-v domain.

i (uEi , vEi)

1 (0.3,0.7)
2 (−0.4,−0.5)
3 (0.5,−0.2)
4 (−0.8,0.3)
5 (0.3,−0.3)
6 (0.9,0.1)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

u

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

v

-50

-40

-30

-20

-10

0

10

20

b
e

a
m

fo
rm

in
g

 g
a

in
 (

d
B

)

Figure 1. Beamforming gain of the proposed beamformer when Ñ = 8.

In Appendix A, we derived the transmit beamformer for global CSI. Further, to investigate the
impact of imperfect CSI, we assumed that the imperfect channel coefficients ĥD and ĥEi are used
instead of the exact channel coefficients hD and hEi , where ĥD = hD + vD and ĥEi = hEi + vEi ,
respectively. Here, each entry of vD and vEi is assumed to be independent and identically distributed
complex Gaussian with zero mean and ζ2 variance. We computed the transmit beamformer as in the
Appendix A by replacing hD and hEi with the imperfect CSI ĥD and ĥEi , respectively.

In Figure 2, we compare the secrecy rate achieved by the proposed scheme and that with imperfect
CSI for different values of Ñ. We set K = 3 and consider that β

(1)
D = β

(1)
Ei

= 1, β
(2)
D = β

(2)
Ei

= 0.1,

and β
(3)
D = β

(3)
Ei

= 0.0316, which indicate that the second and third multipaths are 10 dB and 15 dB
weaker than the dominant multipath, respectively [23]. ζ2 = 0 indicates the exact CSI. As expected,
the secrecy rate for imperfect CSI decreases with an increase of ζ2. Note that the secrecy rate
performance of the proposed scheme is independent of ζ2. It is observed that ζ2 at which the
secrecy rate with imperfect CSI is better than that of the proposed scheme decreases as Ñ increases.
This indicates that the proposed scheme is efficient when the size of the antenna array is large and the
channel estimation error becomes critical.
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Figure 2. Comparison of secrecy rates as a function of ζ2.

As described above, we consider that only the dominant path is within the given AOD region
and the other multipaths are randomly distributed. It is expected that the other multipaths with AODs
outside the given AOD region degrade the secrecy rate performance of the proposed scheme. In order
to investigate the impact of the other multipaths, we evaluate the secrecy rate of the proposed scheme
for different numbers of multipaths as shown in Figure 3. For K = 1, we consider only the dominant
path with β

(1)
D = β

(1)
Ei

= 1, whose AOD is within the given AOD region. Note that K = 1 is optimal

for the proposed scheme. For K = 2, the second path is added with β
(2)
D = β

(2)
Ei

= 0.1, which is 10 dB

weaker than the dominant path. For K = 3, we use the same setting for β
(k)
D and β

(k)
Ei

as in Figure 2.
When K ≥ 4, we add the multipaths which are 15 dB weaker than the dominant path. As expected,
the secrecy rate performance of the proposed scheme degrades with an increase of K. In particular,
the gap between the secrecy rates with K = 1 and 2 is remarkable. For Ñ = 8, it is found that the
secrecy rate with K = 2 is about 76% of that with K = 1. However, the secrecy rate is shown to decrease
slightly when K ≥ 2.
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Figure 3. Secrecy rate comparison of the proposed scheme in non-colluding and colluding scenarios as
a function of K.

Figure 3 also presents the secrecy rate achieved by the proposed scheme in a colluding scenario.

The rate at the colluding eavesdroppers can be given as RE = log2

(
1 + ||HEw||2

σ2

)
, where HE =

[hT
E1

hT
E2
· · · hT

EI
]T [3] and the achievable secrecy rate is computed asR = max {RD −RE, 0}. Since the
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proposed beamformer minimizes the beamforming gains to all eavesdroppers as shown in Figure 1,
the proposed scheme is also effective in a colluding scenario. In Figure 3, the secrecy rate in a colluding
scenario is observed to be worse than that in a non-colluding scenario. However, it is noteworthy that
the gap between them reduces as Ñ increases.

5. Conclusions

In this paper, we proposed a transmit beamfomer design scheme exploiting partial CSI for
physical layer security in mmWave channels. Assuming that the AOD region of each node is available,
we designed a transmit beamformer to maximize the ratios between the minimum beamforming gain
to the AOD region of the destination and the maximum beamforming gain to the union of the AOD
regions of the eavesdroppers. In the numerical results, we compared the secrecy rate achieved by the
proposed scheme and that with imperfect CSI to verify the efficiency of the proposed scheme.
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Appendix A

Let us rewrite the optimization problem in (3) to maximize the secrecy rate with global CSI as

max
w̃

w̃†R̃Dw̃
maxi w̃†R̃Ei w̃

, s.t. w̃†w̃ = 1, (A1)

where w̃ = 1√
P

w, R̃D = σ2

P I + hDh†
D, and R̃Ei =

σ2

P I + hEi h
†
Ei

. Note that (A1) is equivalent to

max
W̃

tr(R̃DW̃)
maxi tr(R̃Ei

W̃)
s.t. tr

(
W̃
)
= 1, W � 0, rank

(
W̃
)
= 1.

(A2)

Further, (A2) can be rewritten as

max
W̃,τD ,τE

τD
τE

s.t. tr
(
R̃DW̃

)
= τD,

tr
(
R̃Ei W̃

)
≤ τE, ∀i,

tr
(
W̃
)
= 1, W � 0, rank

(
W̃
)
= 1.

(A3)

Note that (A3) is equivalent to

max
W̃,ρ,τD ,τE

ρ

s.t. tr(R̃DW̃) = τD,
tr(R̃Ei W̃) ≤ τE, ∀i,
ρτD = τE, tr(W̃) = 1,
W̃ � 0, rank(W̃) = 1.

(A4)
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As in Section 3, we exploit the semidefinite relaxation and use the bisection technique with the
PFM. The feasibility problem for this case is given as

find W̃, τD, τE
such that tr(R̃DW̃) = τD,

tr(R̃Ei W̃) ≤ τE, ∀i,
ρτD = τE, tr(W̃) = 1,
W̃ � 0.

(A5)
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